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Abstract

The method for calculating the mass of a fully stripped ion was detailed in
RHIC AP Note 20, in 1994 [1]. Values for various constants have since been
revised. This note gives updated values for various constants and recalculates the
rest mass of the various ions used in RHIC. We also explore the possibility of
performing ion mass measurements in RHIC.
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1 Introduction

The mass of any ion is (note; we use the notation of [2]):

m = au−Qme + Eb/c
2 (1)

Here, for any given ion, a is the relative atomic mass, u is the atomic mass constant,
Q is the charge, me is the electron mass, Eb is the binding energy of the electrons that
have been removed, and c is the speed of light. Table 1 gives values for the constants u,
me, the proton mass, the deuteron mass, and c, as taken from the National Institute of
Standards and Technology (NIST) on-line database [3].

Table 1: Constants

Parameter Value Uncertainty Unit
atomic mass constant (u) 931.494028 0.000023 MeV/c2

electron mass (me) 0.510998910 0.000000013 MeV/c2

proton mass 938.272013 0.000023 MeV/c2

deuteron mass 1875.612793 0.000047 MeV/c2

velocity of light (c) 299792458 (exact) m/sec

2 Relative Atomic Masses and Atomic Electron Bind-

ing Energies

The National Nuclear Data Center (NNDC) on-line database [4] provides a listing of the
relative atomic masses. Isotopic compositions of the most common atomic isotopes are
taken from the NIST on-line database of relative atomic masses and compositions [5].
The values of the relative atomic masses from the NNDC data base are the same as
those found on the NIST database, but are not rounded off. These on-line databases are
based on reports from [6, 7, 8]. Table 2 gives the values for ions that are of interest to
RHIC. The NIST database for the relative atomic masses does not represent a critical
evaluation by the NIST Physics Laboratory, but is given for NIST user’s convenience.
NNDC values are evaluated by NNDC.

In 2004, new reference tables were published of total atomic energies of ground state
configurations [9]. The values published in that report are calculated, but agree well
with experimental values. (They state that, even though the outer shells are the most
difficult ones to calculate, the standard deviation between theory and experiment is 1.2
eV in cases for ionization of neutral and singly charged atoms.) These values are different

2



Table 2: Relative Atomic Masses for some Common Isotopes

Isotope # nucleon a (amu) Uncertainty Composition %
H 1 1.0078250321 0.0000000001 99.9885
D 2 2.01410177785 0.00000000036 0.0115
Cu 63 62.929669374 0.000000641 69.17
Au 197 196.966568662 0.000000646 100
Pb 208 207.976652071 0.000001335 52.4
U 238 238.050788247 0.000002044 99.2745

from those obtained by adding individual electron binding energies derived from X-ray
emission data. The X-ray derived binding energies are the energies required to lift each
individual electron from its bound state to the continuum, leaving all the other electrons
intact. To lift electron after electron leaving behind an ion of increasing charge requires
more energy than just randomly picking out electrons from different shells. Table 3 gives
the values of binding energies for a sample of ions and charge states. These values are
taken directly from the tables in ref. [9]. We have included in Appendix A a description
of the procedure used to derive the correct values from those tables. Note that the
tables in [9] only go down to Li. To get Eb for Helium-like gold we performed a simple
extrapolation, shown in figure 1.

Table 3: Binding energies for different isotopes and charge states

Isotope charge Binding Energy [eV]
Cu 11 1,291.0
Cu 29 44,961.7
Au 79 517,015.2
Au* 77 332,391.0
Au 32 14,485.8
Au 31 13,541.0
Pb 82 567,984.8
U 92 761,653.7

[* value is calculated by extrapolation from Li-like gold (Au76)]
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3 Ion Masses

From tables 1, 2, and 3 we can now calculate the masses of the ions using Eq. 1. Table 4
gives the various quantities and the final masses. The corresponding uncertainties are
listed in Table 5. Number of significant figures are given consistently according to those
given in the on-line database tables.

Table 4: Masses for ions of interest to RHIC

Isotope Q au (MeV/c2) Qme (MeV/c2) Eb (MeV ) m (MeV/c2)
Cu 11 58618.6112059 5.6209880 0.0012910 58612.9915089
Cu 29 58618.6112059 14.8189684 0.0449617 58603.8371992
Au 79 183473.18242431 40.3689139 0.5170152 183433.3305256
Au 77 183473.18242431 39.3469161 0.3323910 183434.1678992
Au 32 183473.18242431 16.3519651 0.0144858 183456.8449450
Au 31 183473.18242431 15.8409662 0.0135410 183457.3549991
Pb 82 193729.00936757 41.9019106 0.5679848 193687.6754418
U 92 221742.88761277 47.0118997 0.7616537 221696.6373668

Table 5: Uncertainties in Masses for ions of interest to RHIC

Isotope Q σ(au) σ(Qme) σEb
σm

Cu 11 0.00156570 0.00000014 0.00000005 0.0015657
Cu 29 0.00156570 0.00000038 0.00000005 0.0015657
Au 79 0.00457002 0.00000103 0.00000005 0.0045700
Au 77 0.00457002 0.00000100 0.00000005 0.0045700
Au 31 0.00457002 0.00000040 0.00000005 0.0045700
Au 32 0.00457002 0.00000042 0.00000005 0.0045700
Pb 82 0.00494246 0.00000107 0.00000005 0.0049425
U 92 0.00579677 0.00000120 0.00000005 0.0057968

As seen in Table 5 the uncertainty in the mass from the lost electrons and the binding
energy is insignificant. Uncertainties in reported values represent r.m.s. values, with
the assumption that the error distributions are Gaussian.
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4 Measuring Masses in RHIC

It is possible to consider measuring the mass of the ions in RHIC, although it is a
difficult measurement. There are two approaches one can attempt. First, it would seem
best to take the ratio of the revolution frequency of two different ions, circulating in
the same magnetic field. That would allow the absolute magnitude of the field to be
ignored, which cannot be precisely known. The other approach is to measure just one
ion as precisely as possible, in which case we need to evaluate the precision of the field
measurement, the accelerator circumference, and the revolution frequency.

The Lorentz force on a particle with velocity v, traveling in a constant magnetic field
B, can be expressed as

dP

dt
= eQ(v ×B) (2)

The centrifugal force is

Fc =
mγv2

ρ
, (3)

where ρ is the of the radius-of-curvature of the trajectory. In a circular accelerator,
a particle follows a closed circular trajectory and the two forces are in equilibrium.

mγv2/ρ = eQvB (4)

Re-expressing this in terms of momentum, p, then we find the familiar expression,

p = eQBρ (5)

Expressed in this way, the units of p are [kg ·m/s] and the units on the right hand side
are [C(N ·A−1 ·m−1)m]. Since 1[T ] = 1[N ·A−1 ·m−1], 1[A] = 1[C/s], and 1[kg] = c2/e
[eV ], we can re-express again, now in units of [eV/c]

p = cQBρ [eV/c] (6)

This is usually expressed in units of [GeV/c], in which case we write p = cQBρ/109.
It is convenient here to work in units of [MeV/c], in which case we write,

p =
cQBρ

106
[MeV/c] (7)

For this expression, B is in units of [T ], ρ is in units of [m], and c is in [m/s].
The momentum of any particle, of mass m, is (note: normal convention is for c to

be held in the units)
p = mβγ [MeV/c] (8)
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The mass of the ion is then equal to the ratio of the beam rigidity to the average
velocity factor.

m =
cQBρ

106βγ
[MeV/c2] (9)

To calculate β we need to measure radius and revolution frequency.

β = 2πRf/c (10)

γ = (1− β2)−1/2 (11)

The value of ρ depends on the radius and the lattice γtr. This is important since the
first method of measuring the mass ratios requires we set the radius to R0 as best as
possible for the same optics and magnetic field.

ρ = ρ0 (R/R0)
γ2

tr (12)

The observables are radius, frequency and field, but we factor out the field by mea-
suring the ratio of frequencies for two different ions, one of which has a mass known to
a higher degree of precision than the other (e.g., carbon would be ideal, since the value
of u is defined as 1/12 of a neutral carbon atom). The ratio of the masses we denote as
M , is then,

M =
m

mr

=
Q

Qr

βrγr

βγ
(13)

where Qr, βr, γr, and mr correspond to the charge state, velocity factors, and mass of
the reference ion. The technique requires a method be developed to determine that the
magnetic field is the same for both ions and the radius is set as close to R0 as possible.
In this case the observables would be the radius of the two ions, R and Rr, revolution
frequency of the two ions, f and fr, the uncertainty in the difference in the field for the
two ions, and the uncertainty in the difference in the radius of the two ions. But we
need not evaluate all of these variables into the uncertainty in the measured mass, since
the best we can do in measuring the absolute mass is dependent on the uncertainty in
the mass of the reference particle.

σ2
m = m2

rσ
2
M + M2σ2

mr
(14)

As seen in tables 1 and 5 the absolute uncertainties in the masses of gold ions
and deuterons are 0.00475 and 0.000047, respectively. The ratio of the two masses is
approximately 100. From this we can see that it is not possible to measure the absolute
mass in units of [MeV] to higher precision than already exists. But we do not need to
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measure the absolute mass, since we can measure the relative atomic masses directly. If
we replace the deuteron with a carbon beam, then we can re-express Eq. 13 as,

M =
au−Qme + Eb/c

2

12u− 6me + Ebc/c2
(15)

The relative atomic mass of m can be obtained from this ratio. Of course we then
need to consider the fact that we will be comparing two atomic nuclei, and not two
neutral atoms. So the uncertainty in the binding energies and in the electron mass will
add to the uncertainty in our measurement. To fully evaluate the uncertainty in the
measurement, we need to consider that Eq. 13 is only valid if both beams are in exactly
the same field and at exactly the same radius. More precisely,

M =
Q

Qr

(
1± δ(βγ)

βrγr

)−1 (
1± δB

Br

) (
1± δR

Rr

)γ2
tr

(16)

Where δ(βγ) is the difference in βγ from the measured difference in the revolution
frequency of the two beams and δR and δB are the measured differences in the radii
and fields of the two beams.

To determine how well M needs to be measured we need to evaluate the final un-
certainty in a in Eq. 15. Approximating, and leaving only the more significant terms,
then

σ2
a ≈ 144σ2

M +
(

Q− 6M

u

)2

σ2
me

+

(
me(Q− 6M)

u2

)2

σ2
u (17)

The values for the uncertainties in u, me, and a for gold are given in tables 1 and
2. From these we can estimate how good the measurement of M needs to be to make
any improvement in the value of a for gold. The value of the last two terms in Eq. 17
are both on the order of 10−19 and are insignificant compared to σ2

a ≈ 4× 10−13. So to
improve in the value of a, we need to measure M to the level of σM < 5× 10−8.

The uncertainty in M can be approximated if we assume that δB and δR are in-
significantly small (in which case we can drop all terms of the form (1 ± δB/Br) and
(1± δR/Rr)).

σ2
M ≈

(
QδB

QrB2
r

)2

σ2
Br

+

(
γ2

tr

QδR

QrR2
r

)2

σ2
Rr

+


 Qδ(βγ)

Qr(βrγr)2

(
1± δ(βγ)

βrγr

)−2



2

σ2
βrγr

+


 Q

QrBr

(
1± δ(βγ)

βrγr

)−1



2

σ2
δB +


γ2

tr

Q

QrRr

(
1± δ(βγ)

βrγr

)−1



2

σ2
δR +


 Q

Qr(βrγr)

(
1± δ(βγ)

βrγr

)−2



2

σ2
δ(βγ) (18)
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The first three terms of Eq. 18 turn out to be insignificantly small. From the last
three terms we find the uncertainty in σβrγr needs to be less than 4×10−7, the uncertainty
in the difference between the two magnetic fields needs to be less than 1×10−2 [G], and
the uncertainty in the difference between the two radii of the two beams needs to in the
range of nano-meters.

The second method of measuring the mass is extremely difficult, since it is obvious
we need to know to high precision the magnetic field. The uncertainty in the mass being
measured is

σ2
m =

(
∂m

∂B

)2

σ2
B +

(
∂m

∂ρ

)2

σ2
ρ +

(
∂m

∂βγ

)2

σ2
βγ (19)

Working in units of [MeV ] (and one must be careful how the units are carried, thus
the c2 factor), then

σ2
m =

c2Q2

1012(βγ)2


ρ2σ2

B + B2σ2
ρ +

(
Bρ

βγ

)2

σ2
βγ


 (20)

where,

σ2
βγ = (βγ)2




(
γ2

C

)2

σ2
C +

(
γ2

f

)2

σ2
f


 (21)

If we want to match the current precision in the mass of the gold ion, making the
measurement at RHIC injection at a Bρ = 70 [Tm], then the factor c2Q2/(1012βγ) is
approximately 7 × 106. In this case, ignoring how well we can measure frequency and
the equilibrium orbit, we would need to measure field to better than 1 × 10−4 [G] and
the value of ρ to better than 5× 10−3 [mm].

5 Summary

The value for the mass of fully stripped gold in RHIC, published in [1] was 183,433.18
MeV/c2. The new value, given more recent values for the various constants is now
183,433.33053±0.00457 MeV/c2. Methods of measuring the mass of the ions in RHIC
prove to be extremely difficult, due to the extremely high precision required in measuring
radius and field. Current technology makes these kinds of measurements impracticable.
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A Determination of Binding Energies

To obtain the energy required to remove a certain number of electrons from a given
atom, we use the tables given in Ref. [9]. Here the table numbered N gives the energy
required to remove all electrons from atoms consisting of N electrons and Z protons,
with Z running from N to 118. Tables are given for N = 3 (Lithium-like atoms) through
N = 105 (Dubnium-like atoms).

Let EQ be the energy required to remove the outer Q electrons from a neutral atom
containing Z protons, and let EZ−Q be the energy required to remove the remaining
Z −Q electrons. Then we have

EQ = EZ − EZ−Q (22)

where EZ is the energy required to remove all Z electrons. Here EZ is obtained from
the first entry of Table Z and EZ−Q is obtained from entry Z of Table Z −Q.

A.1 Some Examples

The use of the tables is best illustrated with a few examples.
Let E31 be the energy required to remove the outer 31 electrons from a neutral gold

atom, and let E48 be the energy required to remove the remaining 48 electrons. The sum
of these energies is the energy E79 required to remove all 79 electrons from the atom.
Thus we have

E31 = E79 − E48. (23)

From the first entry (Z = 79) of Table 79 of Ref. [9] we obtain

E79 = 517015 eV (24)

and from the Z = 79 entry of Table 48 we obtain

E48 = 503474 eV. (25)

This gives
E31 = 13541 eV. (26)

Similarly, the energy required to remove the outer 32 electrons from a neutral gold
atom is given by

E32 = E79 − E47 (27)

where
E47 = 502529 eV (28)

is obtained from the Z = 79 entry of the Table 47. This gives

E32 = 14486 eV. (29)
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Finally, the energy required to remove the outer 11 electrons from a neutral copper
atom is

E11 = E29 − E18 (30)

where E29 is the energy required to remove all 29 electrons from the neutral atom, and
E18 is the energy required to remove all electrons from a copper ion with 18 electrons.
Here

E29 = 44962 eV (31)

is obtained from the first entry (Z = 29) of Table 29, and

E18 = 43671 eV (32)

is obtained from the Z = 29 entry of Table 18. This gives

E11 = 1291 eV. (33)

A.2 Binding Energy for Helium-Like Gold

Because there are no tables in Ref. [9] for atoms with fewer than 3 electrons, we can not
obtain directly the energy

E77 = E79 − E2 (34)

required to remove the outer 77 electrons from a neutral gold atom. However, we can
obtain

E76 = E79 − E3 = 517015− 207635 = 309380 eV (35)

from Tables 79 and 3. Then if we know the ionization energy W required to remove the
outer electron from the Lithium-like atom consisting of three electrons and 79 protons,
we can calculate

E77 = E76 + W. (36)

We can obtain a reasonable estimate of W by extrapolation. Let WM be the energy
required to remove one electron from a gold ion with M electrons. Then we have

WM = EM − EM−1 (37)

where EM is the energy required to remove all electrons from a gold ion with M electrons.
Here EM is given by the Z = 79 entry of Table M . Thus we can obtain W4 through W79

from the tables. The ionization energy

W = W3 = 23011 (38)

is then obtained by extrapolation. This gives

E77 = 309380 + 23011 = 332391 eV. (39)
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Figure 1: Extrapolation of the single electron ionization (the energy to remove the last
L electron from the Li-like ion)
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