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Abstract 

 
 In  the spin dynamics of accelerators and storage rings, the components of spin parallel 
and perpendicular to the particle orbit behave differently.  The conventional treatment employs a 
coordinate system derived from a reference orbit. However, it has recently been pointed out that 
in this treatment the distinction between longitudinal and transverse components is not treated 
accurately. We present revised equations for the strengths of depolarizing resonances and for 
calculating the spin rotations effected by “Siberian snakes” and other spin rotators, showing that 
the strengths of resonances usually contain a factor Gg rather than 1+ Gg. 
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1. Fundamentals 
 

The Froissart-Stora [1] formu ation of the Thomas-BMT equation [2] may be written  l
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 The Lorentz force equation is 
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Combining (1.1) and (1.2) we obtain  
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  The Froissart-Stora equation (1) is independent of the coordinate system. But, since 
the particle moves in the vicinity of a closed orbit, it is convenient to use a coordinate system 
based on a closed reference orbit as we consider particles whose motion takes place near (though 
not exactly on) that orbit. We assume the reference orbit is plane and has a circumference we 
denote by 2πR. We transform to a coordinate system (a Frenet-Serret system) based on this 
reference orbit. The position of a particle is characterized by the vector ξ

G
 from the point on the 

reference orbit closest to the particle, and we define the coordinates to be: 
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s = the distance along the reference orbit from an origin point (arbitrarily chosen) on the 
reference orbit to the point on the reference orbit closest to the particle. 
 
z = the vertical component of  ξ

G
, i.e. the distance from the plane of the reference orbit to the 

particle. 
 
x = the horizontal component of   ξ

G
, which is the length of the projection of  ξ

G
on the orbit plane. 

 
We also define ( )sρ to be the radius of curvature of the reference orbit at s.; in a straight section 
the curvature 1/ ( )sρ  is zero, and the coordinates are locally Cartesian. 
 

It is convenient to change to s  instead of the time t as the independent variable, with  

 
1 /

vds dt
x ρ

=
+

 (1.5) 

 
(note that s is the distance along the reference orbit, not exactly the distance traversed by the 
particle). 
 
 In what follows we shall use the prime for differentiation by s; i.e. 
 

 ' dXX
ds

≡  

for any variable X. 
 
 We define a frame with the unit vectors in the x, s, z directions as basis vectors. These 
basis vectors form a right-handed system. They rotate with s: 
 

 31 2 2 1 ˆˆ ˆ ˆ ˆ
;   ;   0dede e de e

ds ds dsρ ρ
= = − =  (1.6) 

 2. Trajectory-based Frame 
 
The particles do not necessarily travel on the reference orbit, therefore the spin components in 
the directions are not exactly in the directions transverse and longitudinal to the  1 2 3ˆ ˆ ˆ, , e e e
motion of a particle. Since the dynamical equation (1.1) shows that the transverse and 
longitudinal spin components behave differently, it is desirable to formulate equations of motion 
that maintain this distinction.   
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Following Kondratenko and Sivers [3] we introduce a “natural” or “local” reference frame based 
on the actual trajectory of the particle. The basis vector  is taken to be exactly the unit vector 2û

2
2 1 3ˆ ˆ ˆ ˆ( ' ' ) / 1 'v e x e z e x z= + + + + 2'

2

3

ˆ

 in the direction of the instantaneous particle velocity, and the 
other two are in the local radial and vertical direction orthogonal to : v̂
 

  (2.1) 
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where the subscript N denotes normalization to unit length. The ≈  relations are correct to first 
order in the excursions x and z from the reference orbit. 
 
 The new basis vectors, of course, also rotate; using (1.6) and (2.1) we obtain, to first 
order in x and z, 
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Here the independent variable  s and the excursions x and z are still defined with respect to the 
reference orbit, while the basis vectors are derived from the actual trajectory. 
 

With s as the independent  variable the F-S equation is 
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m vB

q
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with  
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It is convenient to express this in terms of the excursions of the particle. Courant and Ruth [4] 
and Lee [5] express ,  and B B⊥ &

JG JG JG
F  in terms of the particle excursions, governed by the 

Lorentz force equation (1.2). In terms of the fixed vectors    ê
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where  Bsol  is the solenoidal field on the reference orbit, which was not included in [4] and [5].  
 
  In the trajectory-based coordinate system (2.2) this becomes 
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Note that  has no component in the direction .  B⊥

JG
2û

 
 We thus have (to first order in the displacements x and z) 
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and  
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Note that if G=0, i.e. if there is no anomalous magnetic moment, the longitudinal spin 
component S2   is constant: helicity is conserved. 
 
 The dominant terms in the equations for  are 1 '  a 2Snd 'S /Gγ ρ∓  , 
 leading to the precession frequency (spin tune) Gߛ.  
 

The dominant depolarizing term (contribution to ) is the last term in the equation for 
 and is proportional to Gߛ, not to (1+ Gߛ), in agreement with   Kondratenko, Sivers and 

others [3]. In the calculation of depolarization  due to transverse field perturbations (including 
magnet errors and rf excitation dipoles) and/or vertical betatron oscillations, appearing in much 
of the literature on spin dynamics including [4], [5] and [6] the basis vectors are used; 
the relations corresponding to (2.9) in S Y Lee’s book [5], are his equations (2.44), rewritten in 
our notation as 

3 'S
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               (2.10)    

Both formulations (2.9) and (2.10) are correct. But the components S1,  S2 ,  S3 addressed 
here in (2.9) have a direct physical significance, S2  being the helicity (spin component along the 
velocity direction) which is strictly longitudinal, while S1 and S3 are strictly transverse 
components. The components ,  ,  x sS S S
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z  in (2.10), along the axes of the coordinate system 
defined by the reference orbit, all contain a mixture of the longitudinal and the transverse, and 
therefore have much less physical significance.  Therefore (2.9) and not (2.10) is the relation 
that should be used in calculations of polarization, including resonance strength and strengths of 
(full or partial) Siberian snakes. Fortunately this makes very little practical difference because 
we almost always deal with large values of Gߛ. But in the case of deuterons G is small  and 



negative, and indeed analysis of some recent experimental COSY data, by Leonova and others, 
also point to the factor Gߛ and not 1+ Gߛ.  

  

3. Depolarization Resonances 
 We recall how resonance strengths are calculated in the literature [4], [5], [6]: 
 
Equation (2.4), in the form 
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is equivalent to the spinor equation 
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where  the relation between the 2-component spinor  ߰  and the spin S
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Here σ1, σ2, σ3  are the Pauli matrices   1 2 3

0 1 0 1 0
,  ,  

1 0 0 0 1
i

i
σ σ σ
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= = =⎜ ⎟ ⎜ ⎟ ⎜

⎞
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and W  is given by (2.8). We simplify W3 by averaging it over a revolution and noting that x” 
averages to zero: 3 /W G Rγ≈ . Then (3.2) becomes 
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                   (3.4)                      

 The diagonal elements of the matrix in (3.4) lead to  the precession frequency νs = Gγ. 
The off-diagonal terms ζ and ζ* will, therefore, produce resonant behavior if they contain this 
frequency. Since ζ arises from z oscillations this will occur when these oscillations have a 
component of frequency Gγ. Therefore we have the well-known resonance criteria: Resonance 
occurs at those energies where the spin precession νs = Gγ equals a frequency present in the 
spectrum of of z, specifically of ζ. 
 
 We expand ζ as a Fourier series 
 
 1 2

i

Ki

iK

i
W iW e θζ −= − = ε∑  (3.5) 

where Ki , the i-th resonance value of Gγ, may be 
 
 Imperfection resonances: Ki  = an integer k, for imperfection resonances. 
 
 “Intrinsic” resonances (due to vertical betatron oscillations): Ki  = kP±νz, where  νz is the 
vertical betatron tune, P is the periodicity of the magnet structure, k is any integer. 
 
 Broken periodicity resonances  Ki  = k±νz  occur when the structure periodicity P is 
inexact. 
 
 RF resonances Ki = ωrf/ωorbit induced by rf dipoles and/or solenoids placed somewhere on 
the orbit. 
  
 In addition there are higher order resonances and/or resonances due to horizontal 
oscillations, which we shall not consider here. 
 
 The resonance strengths are calculated by Fourier analysis of ζ (Eq. 3.5): 

 
2

0

1
2

R iK
K e ds

R
π θε ζ

π
= ∫  (3.6) 

       
 The computer program DEPOL, introduced and described in [4], computes this quantity 
for  intrinsic, imperfection and broken periodicity resonances. But it is employs the reference-
orbit based basis vectors and the dynamical equations (2.10); therefore it is now being rewritten 
on the basis of the trajectory-based formulation (2.9). 
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 Since the major difference between (2.9) and (2.10) is the replacement of the  factor 
(1+Gγ) by Gγ, calculations by the old method are approximately right if the results are multiplied 
by a factor Gγ/(1+ Gγ). In most practical cases Gγ is large, therefore the difference is minor. 
 
 The same applies to calculations of the strength of Siberian snakes and rotators. 
 
 In the case of deuterons, where G = -.138 is small and negative, the distinction is 
important.  A. Luccio [7] has taken the case of COSY with low energy deuterons, and shows that 
experimental results disagree widely with his tracking program SPINK when the factor 1+ Gγ is 
used, but agree very well if the program is modified to use the factor Gγ instead. 
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