
Brookhaven National Laboratory 

U.S. Department of Energy
USDOE Office of Science (SC)

Collider Accelerator Department

January 2007

Y. Luo

Simulation of 3Qx Resonance Driving Term Measurement with AC Dipole
Excitation

BNL-99415-2013-TECH

C-A/AP/265;BNL-99415-2013-IR

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the technical
note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for
United States Government purposes.



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or any 
third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  



C-A/AP/#265 
January 2007 

 
 
 

Simulation of 3Qx resonance driving term 
measurement with AC dipole excitation 

 
 
 
 

Y. Luo, M. Bai, J. Bengtsson, W. Fischer, D. Trobjevic 
 
 
 
 
 

 
 
 
 
 

Collider-Accelerator Department 
Brookhaven National Laboratory 

Upton, NY  11973 
 



CAD/AP/265
January 17, 2007

Simulation of 3Qx resonance driving term measurement

with AC dipole excitation
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To further improve the luminosity in polarized proton operation of the Relativistic Heavy Ion Collider,
correction of the horizontal two-third resonance is desirable, to increase the available beam-beam tune space.
The long-lasting coherent beam oscillations, produced by the AC dipole, are used to measure 3Qx resonance
driving term h30000, through the analysis of turn-by-turn beam position data. In this note, we present the
results of numerical simulations, carried out to evaluate this measurement technique.

1 Introduction

To increase the tune space available for beam-beam generated tune spread, a third order resonance correction
at the current working point (Qx = 28.685, Qy = 29.695) for polarized proton operation in the Relativistic
Heavy Ion Collider (RHIC) is desirable [1]. At the current working point the fractional horizontal tune Qx

is constrained by the third order resonance Qx = 2/3, and the tenth order resonance Qx = 0.7. With Qx
close to 0.7, both luminosity and polarization suffer. A further increase in the bunch intensity requires that
particles in the center of the bunch have tunes closer to Qx = 2/3.

In the 2006 polarized proton run, the 3Qx resonance correction at store was tested with different
schemes [2]. In Ref. [3], it is suggested to correct the 3Qx resonance with 12 sextupole correctors in the
interaction regions (IRs), and to correct the nonlinear chromaticities with the arc sextupole families. The
key point for 3Qx correction is to measure its resonance driving term h30000 [4, 5, 6, 7]. The beam decay in
the vicinity of 3Qx is used to measure the effectiveness of the correction [8].

In Ref. [4], the basic theory of the sextupole first order driving terms is outlined, and an algorithm is
provided to extract first order driving terms from turn-by-turn (TBT) actions Jx(N). With a modified Fast
Fourier Transformation (FFT) technique, the betatron tune Qx in the spectrum of x, and the 3Qx peak in
the spectrum of the action Jx(N), can be precisely calculated [9, 10, 11]. According to Ref. [4], the peak at
3Qx in the spectrum of Jx(N) is linked to the 3Qx resonance.

To be able to extract h30000 from TBT beam position monitor (BPM) data, a long-lasting, coherent, and
large amplitude betatron oscillation is required. At 100 GeV, after 5 consecutive kicks with the tune meter
kicker, the maximum oscillation amplitude of the beam center is about 1.5 mm at BPM rbpm.bo6-bh4. A
disadvantage of the kicked BPM data is its fast decoherence and small amplitude. In addition, too many
kicks increase the emittance significantly.

The AC dipole has been proven to be a powerful tool to produce long-lasting coherent beam oscillations
with large amplitude. If the driving strength of AC dipole is ramped up and down adiabatically, no significant
emittance increase is observed [12]. The TBT BPM data taken at the flattop of AC dipole excitation can be
used for linear as well as nonlinear lattice measurements [13, 6, 7].

In the following, we first review the sextupole driving term theory and the data processing procedure
to extract h30000 from TBT BPM data. Then, we simulate the AC dipole excitation to measure the h30000

under various conditions.
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2 Background

2.1 First order resonance driving terms

Sextupoles give rise to the following first order geometric driving terms,
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They will drive the resonances Qx, 3Qx, Qx, Qx− 2Qy, and Qx + 2Qy, respectively, and are therefore called
resonance driving terms. From Eqs. (1)-(5), each resonance driving term is a complex number,

hijkl0 = Aijkl0e
iφijkl0 . (6)

Aijkl0 and φijkl0 are the amplitude and phase of the driving term hijkl0, respectively.
According to Refs. [4], the perturbed betatron motion with first order resonance driving terms are:

Jx(N) = Jx + A21000(2Jx)3/2
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(8)

where Jx(N) and Jy(N) are the horizontal and vertical actions of the Nth turn. The φx and φy are phases
of the horizontal and vertical betatron oscillations. In Eqs. (7) and (8), Jx and Jy are the average actions.

2.2 Data Processing

According to Eq. (7), we can determine the amplitude and phase of the 3Qx resonance driving term h30000

with an FFT of the TBT action Jx(N). The amplitude and phase of the 3Qx peak in the Jx(N) spectrum
are A3Qx and Φ3Qx , respectively, then:

A30000 = κ ∗ sin(3πQx)/3, (9)

φ30000 = Φ3Qx − 3φx, (10)

where κ is the amplitude ratio of the Qx and 3Qx peaks in the spectrum of Jx(N). Note that the Qx peak
in the spectrum of Jx(N) is located at zero frequency, or at the average of Jx(N). For Eq. (10), we have
assumed that 3Qx ≈ p, with p being an integer.
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On either side of the RHIC IRs, there are two dual-plane BPMs, located between quadrupoles Q3 and
Q4. These two BPMs are separated by a 36.2984 m long drift. A construction of the (x, px) and Jx(N) from
the 1024 turn-by-turn data at the horizontal ’x-position readings’ of the BPM rbpm.bo6-bh3 was done in
both h30000 measurements and in the following simulations. The horizontal Twiss parameters can be derived
with an ellipse fitting, or a harmonic analysis with 1024 TBT (x, px) data.

Without betatron coupling, the coordinates (x, px) and the normalized coordinates (xn, pxn) are linked
by a matrix A: (

x
px

)
= A

(
xn
pxn

)
= A

( √
2Jx cos Φx

−√2Jx sin Φx

)
, (11)

where
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√
βx 1/

√
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(
1/
√
βx 0

αx/
√
βx

√
βx

)
. (12)

In Eq. (12), Φx = 2π(N−1)+φx. After transforming the coordinates (x, px) into the normalized coordinates
(xn, pxn), the TBT action Jx(N) can be constructed. The frequencies of Qx in spectrum of x and 3Qx in
spectrum of Jx(N) are precisely calculated with a modified FFT.

2.3 AC dipole excitation

The AC dipole has become a powerful diagnostic tool in the linear optics measurement. By exciting the
beam with an AC dipole at a frequency in the vicinity of the betatron frequency, a coherent beam oscillation
with large amplitude can be generated at the drive frequency. If the amplitude of the AC dipole strength is
ramped up and down adiabatically, there is no significant emittance increase.

In RHIC, the AC dipole drive tune is typically Qd = Qx ± 0.01. The AC dipole strength ramps from
zero to its maximum value in about 6000 turns, or 76 ms. The TBT BPM data are taken at the flattop of
the AC dipole excitation. The AC dipole kick strength ∆θ(N) at the Nth turn is given by

∆θ(N) =

{
Ad ∗ cos(2πNQd + φd) ∗N/Nramp, N ≤ Nramp
Ad ∗ cos(2πNQd + φd), N > Nramp

(13)

Nramp is the number of turns for the AC dipole strength to ramp from zero to its maximum strength Ad.
Qd and φd are the AC dipole drive tune and initial phase.

3 Simulation Results

The driving term h30000 simulation of the measurements with the AC dipole excitation is obtained by the
simulation code Tracy-II [14]. The used optics model is the same as the one prepared for the next polarized
proton run [15]. In the model, the multipole errors in the interaction regions are not included. The first
order chromaticities are calculated with a two family correction scheme only. Tab. 1 lists the beam and
optics parameters used in the simulation.

Table 1: The beam and optics parameters used in the simulations.

quantity unit value
energy GeV 100
normalized emittances εn, 95% mm.mrad 15
tunes (Qx,0, Qy,0) ... (28.685,29.695)

chromaticities (ξ
(0)
x , ξ

(0)
y ) ... (1.0,1.0)

lattice functions β∗x,y at IP6 and IP8 m 0.9
lattice functions β∗x,y at IP10, IP12, IP2, IP4 m 5.0
rms beam size σx at IP6 and IP8 mm 0.15
lattice fuction βx at rbpm.bo6-bh3 m 503.94
lattice function αx at rbpm.bo6-bh3 ... 16.65
rms beam size σx at rbpm.bo6-bh3 mm 3.45
lattice function βx at AC dipole m 10.95
lattice function αx at AC dipole ... 1.10
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3.1 An example

In this example, we choose Qd = Qx + 0.01 = 0.695, Nramp = 6000 turns, and Ad = 5 µrad. At the flattop
of the AC dipole excitation, we obtain a maximum oscillation amplitude of about 3 mm at rbpm.bo6-bh3,
equal to approximately one rms beam size σx there. Tab. 2 summarizes the AC dipole excitation parameters
for this case.

Table 2: AC dipole excitation parameters in the simulation

quantity unit value
drive tune Qd ... 0.695
ramp-up time Nramp turns 6000
maximum strength Ad µrad 5
initial phase φd degrees 0

Fig. 1 shows the TBT x data at rbpm.bo6-bh3. In the data processing, we only take 1024 turns of (x, px)
data at the flattop of AC dipole excitation. Fig. 2 shows the TBT (x, px) data at rbpm.bo6-bh3. After
fitting the TBT (x, px) points to an ellipse, we obtain the Twiss parameters at rbpm.bo6-bh3: βx(meas.) =
476.077 m, αx(meas.) = 15.5784. Then, according to Eq. (11), we transfer the coordinates (x, px) into
normalized coordinates (xn, pxn). Fig. 3 shows the TBT normalized coordinates (xn, pxn).

The spectrum of xn obtained with a FFT is shown in Fig. (4). The two largest peaks, at tunes 0.305 and
0.39, correspond to Qd and 2Qd, respectively. From the modified FFT, we get Qd(meas.)= 0.694999, which
is exactly the given AC dipole drive tune. A peak at the betatron tune 1− 0.685 = 0.315 in Fig. (4) is not
observed since the obtained spectrum comes from a driven oscillation at tune Qd, after ramp-up to the full
strength.

Fig. (5) shows 2Jx(N) turn-by-turn. The small modulations of Jx are a consequence of the lattice
nonlinearities. The spectrum of 2Jx(N) obtained with a FFT is shown in Fig. 6. The peak of 3Qd is located
at tune 3 × 0.695− 3 = 0.085, which corresponds to h30000. Its amplitude is 2 order of magnitude smaller
than the amplitude of the average Jx. Other peaks in Fig. 6 are related to other resonance driving terms.

The measurement results from the simulation are summarized in Tab. 3. With the optics model, according
to Eq. (2), The analytical calculation of the driving term and phase from the model are: A30000(analy.)=6.40
and phase φ30000(analy.)= 149.3◦, respectively. Comparison with the measurement from the predication
gives an relative error for A30000 of 22.5%, and 2.7% for φ30000.

Table 3: Measurement results from the simulation.

quantity unit value
time of data analysis turns 1024
measured βx m 476.077
measured αx ... 15.5784
measured drive tune Qd from xn ... 0.694999
measured tune 3Qd from 2Jx(N) ... 0.0849981
average 2Jx m.rad 1.73 ×10−8

amplitude A3Qd from 2Jx(N) m.rad 2.02732×10−10

amplitude A30000 ... 7.84
phase φ30000 degrees 145.32

3.2 Measurement with different AC dipole excitation strengths

In the following, we present simulations to evaluate impacts of a number of the AC dipole excitation pa-
rameters. In beam experiments, a ramp-up period of 6000 turns was shown to be slow enough to avoid
measurable emittance growth. This value was kept constant in the following simulations.

The maximum oscillation amplitude of the beam center is determined by the drive tune Qd and kicking
strength Ad. In the beam experiment, Ad has to be chosen properly. If Ad is too small, the h30000 measure-
ment will have a large error. If Ad is too large, the beam lifetime will deteriorate. The maximum kicking
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strength Ad is given by the physical and dynamic apertures. The simulation measurement results of h30000

with different AC dipole kick strengths are shown in Tab. 4. In the simulation, Qd = 0.695.

Table 4: Measurement results with different AC dipole kick strengths.

Ad xmax Average Jx A3Qd A30000 φ30000

from Jx(N) spectrum measured measured
[µrad] [mm] [m.rad] [m.rad] [...] [degrees]

2.5 1.38 4.33× 10−9 2.54× 10−11 7.83 150.6
5 2.87 1.73× 10−8 2.03× 10−10 7.84 145.3
10 5.76 6.89× 10−8 1.62× 10−9 7.87 142.7

3.3 Measurement with different AC dipole drive tunes

The optimum drive tune of the AC dipole was found experimentally to be Qd = Qx ± 0.01. The maximum
oscillation amplitude of the beam center is proportional to 1/|Qd−Qx|. The simulation measurement results
of h30000 with different AC dipole drive tunes are shown in Tab. 5. In the simulation, Ad = 5 µrad.

From Tab. 5, the measured phase of h30000 has not changed much when the drive tune is chosen between
Qx − 0.015 and Qx + 0.015. However, the measured amplitude A30000 at Qd = Qx + 0.015 = 0.700 is rather
different from that measured with Qd = Qx ± 0.01.

Table 5: Measurement results with different AC dipole drive tunes.

Qd A30000 φ30000

measured measured
[...] [...] [degrees]

0.700 14.31 148.9
0.695 7.84 145.3
0.675 8.72 151.8
0.300 14.31 149.0
0.305 7.89 145.1
0.325 8.72 151.9

3.4 Measurement with different first order chromaticities

The h30000 measurement results, under different first order chromaticity settings, are shown in Tab. 6. The
analytical results of h30000 are also listed. Except for the first order chromaticities, other optics and the AC
dipole excitation parameters are same as that in Tab. 1 and Tab. 2. From Tab. 6, when slightly changing
the first order chromaticities, the phase of h30000 is almost constant while the amplitude of h30000 exhibits
tolerable changes.

If the first order chromaticities is varied by several units, the strengths of all the chromatic sextupoles are
scaled up or down simultaneously. Since the betatron phase advances between the sextupoles are unchanged,
the phase of h30000 doesn’t change and the amplitude of h30000 scales up or down.

Table 6: Measurements with different chromaticities.

(Qx,Qy) (ξ
(0)
x ,ξ

(0)
y ) A30000 φ30000 A30000 φ30000

measured measured analytical analytical
[...] [...] [...] [degrees] [...] [degrees]

(28.685,29.695) (0.5,0.5) 7.79 145.4 6.36 149.3
(28.685,29.695) (1.0,1.0) 7.84 145.3 6.40 149.3
(28.685,29.695) (2.0,2.0) 7.93 145.3 6.48 149.3
(28.685,29.695) (3.0,3.0) 8.03 145.2 6.56 149.3
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3.5 Measurement in the vicinity of the 3Qx resonance

The h30000 measurement results in the vicinity of third order resonance lineQx = 2/3 are shown in Tab. 7. For
each case, we only match Qx while keeping the sextupole strengths unchanged. These sextupole strengths
are calculated at tunes (28.685, 29.695). Therefore the first order chromaticities presented in Tab. 7, at
different Qx are slightly different from 1. The AC dipole drive tune is always Qx + 0.01.

The variations of predicated φ30000 ( obtained from the analytical calculation based on Eq. (2) ) for
different Qx in the vicinity of 3Qx resonance line, are small, as shown in Tab. 7. And the measured φ30000

agrees well with its prections, except at Qx = 28.675 and 28.6725. At these two working points, the difference
in φ30000 between the measurement and the prediction is larger than 20◦.

The measurements of h30000 in the vicinity of the third order resonance line Qx = 2/3, with adjustment
of the first order chromaticities are shown in Tab. 8. At each Qx, the first order chromaticities are set to

(ξ
(0)
x , ξ

(0)
y ) = (1, 1). A comparison between the measured and analytically calculated h30000s for the same

values of Qx with and without the first order chromaticity adjustment, presented in Tab. 7 and Tab. 8, shows
a close agreement.

The analytical estimate for h300000 in Eq.(2) is obtained by the first order perturbation theory. However,
when Qx is close to the 3Qx resonance and the higher order terms will contribute. Therefore, in the vicinity
of the 3Qx resonance there is a relatively large discrepancy in φ30000 between the measurement and the
prediction as shown in Tab. 7 and Tab. 8.

Table 7: Measurements in the vicinity of 3Qx without adjustment of first order chromaticities.

(Qx,Qy) (ξ
(0)
x ,ξ

(0)
y ) A30000 φ30000 A30000 φ30000

measured measured analytical analytical
[...] [...] [...] [degrees] [...] [degrees]

(28.690,29.695) (0.66,0.87) 11.69 147.7 6.46 153.7
(28.685,29.695) (1.00,1.00) 7.84 145.3 6.40 149.3
(28.680,29.695) (1.35,1.12) 12.57 133.0 6.34 146.2
(28.675,29.695) (1.72,1.24) 6.74 113.6 6.29 143.1
(28.6725,29.695) (1.90,1.30) 10.20 165.5 6.26 142.5
(28.670,29.695) (2.08,1.36) 9.73 131.5 6.24 140.1

Table 8: Measurements in the vicinity of 3Qx with adjustment of first order chromaticities.

(Qx,Qy) (ξ
(0)
x ,ξ

(0)
y ) A30000 φ30000 A30000 φ30000

measured measured analytical analytical
[...] [...] [...] [degrees] [...] [degrees]

(28.690,29.695) (1.00,1.00) 11.72 147.6 6.48 152.2
(28.685,29.695) (1.00,1.00) 7.84 145.3 6.40 149.3
(28.680,29.695) (1.00,1.00) 12.54 133.0 6.32 146.1
(28.675,29.695) (1.00,1.00) 6.69 113.3 6.24 143.1
(28.6725,29.695) (1.00,1.00) 10.12 165.7 6.21 141.5
(28.670,29.695) (1.00,1.00) 9.63 131.4 6.17 140.1

3.6 Measurement after h30000 correction with 12 IR sextupoles

The h30000 correction with the 12 sextupoles in the interaction regions is applied. The correction scheme
is given in Ref. [3]. Tab. 9 lists all the first order resonance driving terms before and after the h30000

correction. The correction strengths for these 12 sextupoles are also listed. After correction of the h30000

term, the simulation measurement shows that the amplitude and phase of h30000 are 0.702 and 202.0◦,
respectively. The spectrum of 2Jx(N) before and after h30000 correction is shown in Fig. 7. The peak of
3Qx after correction is about one order of magnitude smaller than that without correction. The amplitudes
of other peaks have no significant change before and after h30000 correction.
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Table 9: Analytical first order sextupole resonance driving terms before and after correction.

Before correction: (real part, imaginary part)
h21000 ( 2.07, -3.59 )
h30000 ( -5.50, 3.27 )
h10110 ( 9.22, -0.87 )
h10020 ( 1.45, 6.85 )
h10200 ( -0.59, 9.61 )
After correction: (real part, imaginary part)
h21000 ( 2.07, -3.59 )
h30000 ( 0.00, 0.00 )
h10110 ( 9.22, -0.87 )
h10020 ( 1.45, 6.85 )
h10200 ( -0.59, 9.61 )
Strengths after correction:
B2M06C3B 0.00051
B2M07C3B -0.00065
B2M08C3B -0.00182
B2M09C3B 0.00578
B2M10C3B 0.00389
B2M11C3B 0.00811
B2M12C3B -0.00833
B2M01C3B -0.00754
B2M02C3B -0.00704
B2M03C3B 0.02376
B2M04C3B 0.01704
B2M05C3B 9.5e-05

3.7 Local and global observations

The measurement simulation and correction of the h30000 as presented above, was performed only at BPM
rbpm.bo6-bh3. But h30000 may vary along the ring. The values of the A30000 obtained by analytical
calculation along the ring before and after the correction arre shown in Fig. 8. The A30000 is almost
constant in each interaction region (Fig. 8). In the arcs, regular fluctuations in A30000 are seen. These
fluctuations indicate that perhaps contributions from arc sextupoles to h30000 do not cancel very well. After
the correction, A30000 is smaller in most parts of the ring, especially in the region between the interaction
regions IP4 and IP8.

4 Conclusion

We have simulated the measurement of third order resonance driving term h30000 with the AC dipole excita-
tion. The simulations confirm that the AC dipole is a promising tool for the h30000 measurement. The theory
of third order resonance driving terms and the BPM data processing algorithms were reviewed. Influence
of AC dipole parameters variations, first order chromaticities, and horizontal set tunes Qx on the h30000

measurement result has been evaluated. In addition the h30000 driving term was estimated both globally
and locally, after correction with 12 IR sextupole correctors.
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Figure 2: Turn-by-turn data (x, px) at rbpm.bo6-bh3 taken at the flattop of AC dipole excitation.
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Figure 3: Turn-by-turn normalized data (xn, pxn) at rbpm.bo6-bh3 taken at the flattop of AC dipole exci-
tation.
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Figure 4: Spectrum of xn(N) obtained with a FFT.
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Figure 5: Turn-by-turn data 2Jx(N) with AC dipole excitation.
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Figure 6: Spectrum of 2Jx(N) obtaine with a FFT.
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Figure 7: Spectrum of 2Jx(N) before and after h30000 correction.
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Figure 8: Analytically calculated A30000 along the ring before and after h30000 correction.
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