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I. Meshkov, A. Sidorin, A. Smirnov, G. Trubnikov 
JINR, Dubna, Russia 

 
A. Fedotov 

BNL, Upton, NY, USA 
 
General goal of the BETACOOL program is to simulate long term processes (in comparison with 
the ion revolution period) leading to variation of the ion distribution function in 6 dimensional 
phase space. The ion beam motion inside a storage ring is assumed to be stable and it is treated in 
linear approximation. 
 
BETACOOL code was developed in collaboration with many scientific centers: 
 
BNL, Upton, USA 
Fermilab, Batavia, USA 
Tech-X, Boulder, USA 
RIKEN, Wako, Japan 
NIRS, Chiba, Japan 
Kyoto Univ., Japan 
CERN, Geneva, Switzerland 
GSI, Darmstadt, Germany 
FZJ, Juelich, Germany 
Erlangen Univ., Germany 
Munich Univ., Germany 
ITEP, Moscow, Russia 
BINP, Novosibirsk, Russia 
Uppsala Univ., Sweden 
Stockholm Univ., Sweden 
 
In general, ion beam dynamics within BETACOOL can be simulated taking into account various 
effects, such as Electron Cooling, Intrabeam Scattering, Rest Gas Scattering, Stochastic Cooling, 
Colliding Beams effects, Recombination, Target Scattering and others. Depending on the task, one 
can use an arbitrary combination of these effects in simulations. 
 
The Physics guide described in this report summarizes only two major effects of Electron Cooling 
and Intrabeam Scattering which are typically used in simulations of electron cooling. The 
description is given as three parts with independent references to sections and equations within each 
of the parts. This guide includes the following parts: 
 
Part I. Numerical algorithms………………………………………………………………………...2 
Part II. Electron cooling……………………………………………………………………………10 
Part III. Intrabeam scattering……………………………………………………………………….44 
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Part I. Numerical algorithms 

 
Introduction 
 
Initially, BETACOOL [1] code was developed as a program for simulation of particle dynamics in 
ion storage rings under the action of electron cooling force. Further development led to addition of 
other effects and numerical algorithms for tracking.  
 
First algorithm of numerical tracking is RMS Dynamics which calculates evolution in time of the 
r.m.s. (root mean square) parameters of the ion beam distribution function and particle number. 
RMS Dynamics algorithm is based on solution of equation for the second order moments of the 
distribution function. Characteristic times of the evolution of the beam parameters for a few general 
effects are calculated under assumption of Gaussian shape of the distribution function. 
 
Second algorithm of tracking is Model Beam approach. It was developed on the basis of 
SIMCOOL code which was originally written by BINP group at Novosibirsk. This algorithm uses a 
few thousands of test particles with an arbitrary distribution. The action from IBS on each of the test 
particles is calculated from the instantaneous distribution of the test particles. This algorithm has a 
good accuracy when the distribution of test particles is close to Gaussian. Some modification of this 
method was made for simulation of IBS in the case of non Gaussian distribution. 
 
Evolution of the ion distribution function is described by the Fokker-Plank equation. In general 
case, the friction and diffusion terms depend on the distribution function. However, in some cases 
when the effects acting on the distribution function do not lead to change of its shape, the Fokker-
Plank equation can be reduced to equation for the second order moments of the distribution 
function.  
 
In a general case, the Fokker-Plank equation can be reduced to the Langevin equation in invariant 
or momentum space. The Model Beam algorithm realizes solution of the Langevin equation in 
momentum space using Monte Carlo method. In the framework of this algorithm the ion beam is 
presented as a particle array. Each particle is presented as a 6 co-ordinate vector: 
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, where x and y are the horizontal and vertical co-ordinates, px and py 

are corresponding momentum components, s-s0 is the distance from the bunch center (in the case of 
coasting beam – distance from a reference particle), ∆p is the particle momentum deviation from 
momentum of reference particle p. Action of each of the effects is simulated as variation of the 
particle momentum according to: 
 
 ( ) ( ) syxsyxsyxinsyxfinsyx TDTpppp ,,,,,,,,,, // ξ∆+∆Λ+= ,  (1.1) 

 
where ps is the particle longitudinal momentum deviation, subscript in corresponds to initial 
momentum value, subscript fin corresponds to final particle momentum after action of the effect, Λ 
and D are the drift and diffusion terms for the corresponding degree of freedom, ∆T is a step of the 
integration over time, ξ is a random number for Gaussian distribution with unit dispersion. 
 
The third algorithm, which is called MD Tracking, uses real particles with arbitrary distribution. 
This special method, named Molecular Dynamics (MD) [2], is used for simulation of Intrabeam 
Scattering (IBS) in the ion beam. This algorithm assumes that particles have periodical distribution 
in the longitudinal direction. Usual number of particles per cell is about 10-100. It can simulate the 
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crystalline state of ion beam for very low temperature in the beam rest frame. MD simulation can be 
used for testing of analytical formulas for IBS effect also. However, it presently works only for 
unbunched ion beam. Therefore, we do not describe this algorithm in this report. 
 
Three different tracking algorithms described above allow to benchmark them against each other 
and to test the validity of action due to different physical effects. If initially the Gaussian 
distribution is chosen then the evolution of r.m.s. parameters should be the same while the shape of 
the distribution doesn't change. 
 
 
1. RMS Dynamics algorithm 
 
1.1. Physical model 
 
The physical model which can be investigated with this algorithm is based on the following general 
assumptions: 
 
1) ion beam has Gaussian distribution over all degrees of freedom, and is not changed during the 
process. 
2) algorithm for analysis of the problem is considered as a solution of the equations for r.m.s. values 
of the beam phase space volumes of three degrees of freedom. 
3) maxima of all the distribution functions coincide with equilibrium orbit. 
 
The evolution of the ion beam parameters during its motion inside the storage ring is described by 
the following system of four differential equations: 
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where N is the number of particles. For the transverse degrees of freedom parameters εhor and εver 
correspond to the horizontal and vertical emittances, for the longitudinal degree of freedom it is 
given by the following expression: 
 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆

Ω
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆

=ε

.,1

;,

2

2

2

2

beambunched
p
p

dt
d

p
p

beamcoasting
p
p

s

lon . (1.3) 

 
In Eq. (1.3) the upper line corresponds to a coasting beam, lower line to a bunched beam with 
constant parameters (for variable synchrotron frequency it is necessary to use adiabatic invariant 
instead of energy; presently a depression of the synchrotron tune due to the action of the beam 
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space charge is not taken into account during dynamics simulation). Ωs – is the synchrotron 
frequency. Therefore, the second expression in Eq. (1.3) corresponds to the square of momentum 
oscillation amplitude.  
 
Characteristic times (τhor, τ ver, τ lon) are functions of all three emittances and particle number, and 
have positive sign for a heating process and negative for cooling. The negative sign of the lifetime 
(τlife) corresponds to the particle loss. The sign of the lifetime can be positive in the presence of 
particle injection, when particle number increases. 
 
Index j in Eq. (1.2) is the number of processes (effects) involved in the calculations. The program 
structure is designed in a way which allows to include any effect into calculation, if the effect can 
be described by cooling or heating rates.  
 
During numerical solution of the system (1.2) the parameters, which characterize beam stability are 
also calculated. They are the incoherent betatron tune shift value, the depression of the synchrotron 
tune, dimensionless parameters describing the beam in the framework of the longitudinal and 
transverse coherent instabilities. 
 

 Start 

Load input file 
Initialization of objects 

Output of emittance 
evolution 

Integration step over  
time with Eq.(1.1) 

Calculation of luminosity, 
stability and so on 

Time step 

End 
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Effect 
 library 

 
 

Fig. 1.1 Block-scheme of the r.m.s. beam parameter evolution simulation 
 
Numerical solution of the system (1.2) is performed using Euler method with automatic step 
variation. In principle, the system can be solved using arbitrary method - for example, one of the 
Runge-Kutta methods. Choice of the procedure for integration is determined by optimization of the 
calculation speed.  Algorithm of numerical integration of the system of equations (1.2) is realized in 
the program as illustrated in the Fig. 1.1. 
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Further development of the code is related to the modifications of this basic model. Such 
improvement is necessary due to several disadvantages of the model. For example, an assumption 
of Gaussian shape of the ion distribution function. This assumption is more or less realistic in an 
equilibrium state of the ion beam when the equilibrium is determined by many processes of 
stochastic nature. If the equilibrium does not exist due to a fast loss of particles or during initial 
stage of the beam cooling, the ion distribution function can be far from Gaussian. The same 
situation takes place in an experiment with internal targets which dimensions are not coinciding 
with the ion beam dimensions. The ionization energy losses of the ion beam in the target can not be 
correctly calculated in the framework of existing model also.  
 
Investigation of the ion beam dynamics for an arbitrary shape of the distribution function can be 
performed using multi particle simulation. The structure of basic objects of the code, such as the 
models of the ion ring and the ion beam, are developed in a way which allows to realize the multi 
particle simulation using Monte Carlo method without any change of the program structure. 
 
 
2. Model Beam algorithm 
 
The Model Beam algorithm was borrowed from the SIMCOOL code. Implementation of this 
algorithm was very useful for the benchmarking of several numerical models between the codes. 
This algorithm was further developed within the BETACOOL code.  
 
2.1. Physical model 
 
Investigation of ion beam dynamics for an arbitrary distribution function is performed using multi 
particle simulation in the framework of Model Beam algorithm. In this algorithm the ion beam is 
represented by an array of modeled particles. The heating and cooling processes involved in 
simulations result in a change of the particle momentum components and number of particles, 
which are calculated in accordance with the time step of dynamic simulation. 
 
Each effect is located in some position of the ring characterized by the ring lattice functions. 
Transformation of the beam inside the ring is provided using linear matrix with random phase 
advance between the locations of the effects.  
 
The numerical realization of the algorithm described by the formula (1.1) has the following 
peculiarity. The regular variation of the particle momentum due to action of drift term can be 
rewritten as 
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case of cooling this term has a negative sign). In this case direct application of the formula (2.1) will 
lead to change in sign of corresponding momentum component and can lead also to increase of its 
absolute value. This situation corresponds to artificial diffusion heating of the beam due to 
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is transformed to the following form 
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which includes the (2.1) as a limiting case for small ∆T.  
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Fig. 2.1. Block scheme of the Model Beam algorithm. 
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The Model Beam algorithm can be illustrated by the scheme presented in the Fig. 2.1, includes the 
following steps: 
- initially the storage ring optic structure is loaded from external file (MAD output file, for 
example), mean ring parameters and RF system parameters are loaded from input BETACOOL file, 
- in the initial position of the ring an array of particles is generated using random number generator 
and matched with the ring lattice functions and synchrotron function, 
- on each cycle over the effects, the transformation matrix between two effects is calculated from its 
lattice functions, phase advance is generated randomly, 
- each particle is rotated according to the transformation matrix, 
- kick procedure from the current effect is applied to each particle. 
 
 
2.2. The beam rotation with the matrix 
 
To avoid the problems related to the beam mismatching and coupling between longitudinal and 
transverse coordinates the beam rotation in the ring is provided in the following steps. 
 
The betatron coordinates are transformed according to the coefficients of the ring matrix in the 
point of the array generation: 
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where notation of the matrix coefficients is explained in the following table: 
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The beam rotation in the longitudinal plane is provided with the usual rotation matrix: 
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where µ value can be arbitrary non-zero, Bs - synchrotron function. 
 
After the beam rotation in the longitudinal plane new values of the particles transverse co-ordinates 
are calculated from the betatron ones and new value of the longitudinal momentum deviation. 
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2.3. Kick procedure for IBS 
 
In the case of IBS calculation based on mean growth rates, the mean growth rates are calculated in 
accordance with one of the analytical models implemented in BETACOOL and the ring structure 
loaded from output MAD file. When the growth rates are known one can calculate mean square of 
the scattering angle taking into account multiplication factor. The mean square angle after one 
revolution in the ring is equal: 
 

 
τβ

ε
=θ revT2 ,  (2.6) 

 
where β is the beta function in the point of the particle array generation, τ is characteristic growth 
time for the corresponding degree of freedom. Here, the angular deviation of the particle trajectory 

means relative momentum components: 
p

p yx
yx

,
, =θ , 

p
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s
∆

=θ . After Nturn revolutions in the ring 

the square of the scattering angle is equal to the sum of the square angles of each revolution: 
 

 turn
rev N

T
τβ

ε
=θ2 .  (2.7) 

 
The variation of the particle trajectory angular deviation is calculated according to 
 

 ξ⋅θ=θ∆ 2   (2.8) 

 
where ξ is the random value with Gaussian distribution of unit dispersion. 
 
 
2.4. Kick procedure for Electron Cooling (ECOOL) 

 
In the framework of Model Beam algorithm the action of the electron cooling on the ion 
momentum components is calculated in accordance with the cooler representation as a thin lens. In 
this case the ion angle variation is calculated as 
 

 turncool Nl
Mc

F
γβ

=θ∆ 22 ,  (2.9) 

 
where F is the friction force in laboratory rest frame (LRF), M is the ion mass, lcool is the cooling 
section length, Nturn is the number of revolutions used as a multiplication factor. The ion co-
ordinates change is neglected inside the cooler. The friction force components can be calculated 
using any of the friction force formulae and any of the models of electron beam implemented in the 
BETACOOL. 
 
 
2.5. Kick procedure for effect of Additional Heating 
 
An effect of Additional Heating can be applied for different kind of kicks. An angle variation in 
the case of constant and linear heating (or cooling) is calculated with formula: 
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where θi – angles, i =0÷2 – index of degree of freedoms: i = 0 – horizontal, i = 1 – vertical, i = 2 – 
longitudinal, Trev – revolution period, τi – heating growth rates, Nturn – number of turns, b = 1 for 
any case and b = 2 for longitudinal direction in the case of a bunched beam. In the case of constant 
rates εi = 1. In the case of linear rates ε0 corresponds to horizontal emittance, ε1 corresponds to 
vertical emittance, ε2 corresponds to momentum spread in accordance with Eq.(1.3). 
 
The diffusion heating applies random kicks to momentums of ions. In the case of diffusion heating 
with constant power the kick doesn't depend on the current values of emittances. In other case the 
diffusion heating kick depends on current emittances: 
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where βx, βy are horizontal and vertical beta functions, a = 1 for diffusion heating with constant 
power and a = -1 for diffusion heating which depends on current emittances, ξ is the random value 
with Gaussian distribution of unit dispersion. 
 
 
 
References 
 
[1] I.N. Meshkov, A.O. Sidorin, A.V. Smirnov, E.M. Syresin, G.V. Trubnikov, P.R. Zenkevich, 

"Simulation of Electron Cooling Process in Storage Rings Using BETACOOL Program" , 
Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001. 

[2] V. Avilov, “Calculation of Electrostatic Energy of Planar Lattices”, Solid State 
Communications, v.44, No.4 p.555-558 (1982). 

[3] M. Martini. Intrabeam scattering in the ACOOL-AA machines. CERN PS/84-9 AA, Geneva 
(1984). 

[4] V.V. Parkhomchuk, New insights in the theory of electron cooling, NIM A 441 (2000) 9-17, p.9 
 
 
 

Part I. Numerical algorithms 9



BETACOOL Physics guide, Version 1.1 http://lepta.jinr.ru/betacool.htm Last update: 20 Nov 2006 
___________________________________________________________________________________________________________ 

 
Part II. Electron cooling 

 
1. Introduction 
 
To solve the problems related with the cooling process a hierarchy of objects was developed in the 
framework of the BETACOOL program. Structure of the electron cooling [1] effect permits to 
extract procedures at different levels and to include them into calculation of the cooling process in 
other programs. The cooling simulation is based on a friction force calculation in the particle rest 
frame. The next layer of the simulation is related to cooler representation as a map, transforming 
particle coordinates from the entrance to the exit of the cooling section. The map of the cooler can 
be used directly in the framework of the Molecular Dynamics algorithm, or in other tracking 
procedures. On the basis of the map one can calculate kick of the ion momentum after crossing the 
cooling section which is necessary for simulation of the ion distribution evolution within the Model 
Beam algorithm. The map of the cooler is also used for the calculation of the cooling rate which is 
necessary for RMS dynamics simulation. 
 
In this chapter we describe structure of the electron cooler representation. Briefly we discuss the 
theory of the friction force calculation based on the binary collision model and describe analytical 
models for the friction force calculation used in BETACOOL. Calculation of the cooler map is 
based on a model of electron beam that provides transformation of the ion velocity to the frame 
related with the electron beam and takes into account real geometry of the cooler. There are several 
models of electron beam which are presently available for simulations. Algorithm for calculation of 
the ion momentum kick after crossing of the cooler is described in Section 5. The cooling rate 
calculation can be performed using two models of the ion beam – the cooling rates for “rms 
particle”, or cooling rates for the ion beam with Gaussian distribution in all degrees of freedom (see 
Section 6). 
 
 
2. Structure of the algorithm 
 
The uniform way of the friction force calculation is an application of the corresponding formulae 
given in particle reference frame (PRF), which moves with average particle velocity V0. For analytic 
expressions of the friction force the transformation of the ion velocity into PRF and the force 
components back to the laboratory reference frame (LRF) can be provided also analytically, so that 
one can use in the formulae written in LRF as well. However, direct numerical calculation of the 
friction force is usually provided in PRF. To have a possibility to use the same algorithm for 
analytic expressions and for results of numerical simulations, the transformation between the 
reference frames was realized as a part of the cooling calculation algorithm. 
 
In this case, the calculation procedure requires transformation of certain parameters from LRF to 
PRF and, after the calculation of the friction force components in PRF, their transformation back to 
LRF. The ion velocity components Vx,z in PRF are equal to 

 
 Vx,z = γβcθx,z ,   Vs = βcθs , (2.1) 
 
To transform the friction force components from PRF to LRF the following expressions are used 

 PRFzxLRFzxzx FFF )(1)( ,,, γ
=≡  , Fs ≡ (Fs)LRF = (Fs)PRF . (2.2) 
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Here x, z are the horizontal and vertical co-ordinates, 
P

P zx
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,
, =θ , 

P
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=θ , P=βγMc is the 

longitudinal component of the reference particle momentum, Px,z are the transverse components of 
the ion momentum, ∆P is the longitudinal momentum deviation, s - s0 is the ion longitudinal 
distance from the bunch center (the reference particle), β = V0/c, 21 βγ −= , c is the speed of 
light, V0 – velocity of the reference particle. 
 
In PRF the friction force is a function of two components of the ion velocity: across and along the 
magnetic field line (or electron beam axis in the non-magnetized case) and the force has also only 
two components – transverse and longitudinal. The transverse component of the ion velocity is 
calculated as: 
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, zxi VVv +=⊥ . (2.3) 
The friction force for x and z components is calculated from the transverse component in 
accordance with: 
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Such a model presumes that gradient of the electron beam density is negligible inside a region of 
effective interaction between ion and electrons.  
 
In the present version of the program the friction force components in PRF can be calculated using 
one of the analytic formulae from the friction force library: 
- Budker’s, 
- non magnetized, 
- by Derbenev – Skrinsky – Meshkov, 
- by Parkhomchuk, 
- by Toepffer, 
described in the next chapter. The friction force can be also represented by a numerical Table and 
read into the code from the file containing results of numerical calculations. Such force 
representation is called “Tabulated”. In addition, the method “Electron array” allows one to 
calculate component of the force for an arbitrary electron distribution. The library is realized as a 
set of independent procedures. Each of them obtains at the entrance two components of the ion 
velocity and returns two components of the friction force. Each procedure uses for calculations the 
same list of input parameters. This list includes the following parameters of the ion and electron 
beam: 
 
- the ion atomic and charge numbers, 
- the magnetic field value, 
- local electron transverse and longitudinal velocity spreads, 
- local effective electron velocity spread, 
- local electron density, 
- the ion time of flight the cooling section, 
- electron beam radius. 
 
Each procedure of the friction force calculation does not require a total list of these parameters, but, 
for universal usage of the friction force, all the parameters should be determined before the friction 
force calculation. Transformation of the ion velocity from LRF to PRF, transformation of the 
friction force components from PRF to LRF, and calculation of the list of parameters for friction 
force calculation are provided by a model of the electron beam.  
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A variety of models of the electron beam is available: 
 
- cylinder of round cross-section with uniform density distribution, 
- cylinder of elliptical cross-section and Gaussian density distribution of electrons in the transverse 
planes, 
- ellipsoidal bunch with Gaussian density distribution in all co-ordinates. 
- hollow transverse distribution of electron beam 
- array of particles read from external file 
 
First model of the electron beam corresponds to traditional electron cooling system and this model 
takes into account space charge effects in the electron beam. Second and third models are oriented 
to simulation of the electron cooling in GeV ion energy range. The elliptical cylinder can be used 
for modeling of coasting electron beam circulating in small ring. The Gaussian bunch corresponds 
to RF accelerated electron beam. Each model of the electron beam calculates the local parameters of 
the electron beam in the frame referenced to the electron beam orbit. 
 
To take into account displacement and misalignment of the electron beam and influence of the 
magnetic field line curvature one needs to provide transformation of the ion co-ordinates and 
velocity components from the frame referenced to the ion beam equilibrium orbit to the frame 
referenced to the electron beam orbit and back. In the case of bunched ion and electron beams one 
needs to transform the ion longitudinal co-ordinate measured relatively to the center of the ion 
bunch to the distance from the center of the electron bunch. The model of the electron beam 
provides all these transformations also. 
 
All the models of the electron beam are used in the same way: the model obtains at the entrance the 
ion coordinates in the form of vector: 
 
 ={x, θX

r
x, z, θz, s-s0, θs}, (2.5) 

 
in the laboratory frame referenced to the ion beam equilibrium orbit and returns three components 
of the friction force in the same frame. 
 
The electron cooler representation in the form of a map (which is necessary for tracking procedures) 
is based on the electron beam model. The right hand sides of the motion equation are calculated by 
an addition (to the force components) of the terms describing drift motion of the ion in the cooling 
section. Influence of the magnetic field and space charge fields of the electron beam as well as the 
ion motion distortion at the entrance of the cooling section can be taken into account also. The 
solution of the ion motion equation is provided by one of the numerical methods developed in the 
program. The ion motion equation can be solved in the thin lens approximation or by solution of the 
motion equation using Euler or 4th order Runge-Kutta method. 
 
The map of the cooler obtains at the entrance the initial ion co-ordinates and returns the ion co-
ordinates at the exit of the cooler and probability of the ion loss due to recombination with the 
electrons. The particle loss probability is calculated under assumption that the ion velocity is less 
than the one of electrons. 
 
The map of the cooler is used as a basis for electron cooling representation as an effect acting on the 
ion distribution function. Electron cooling, as an effect, includes two standard procedures. One of 
them provides kick of the momentum components for all ions in the model beam and calculates the 
particle losses due to recombination in the cooling section. Other procedure calculates characteristic 
times of the ion beam rms emittance variation and the beam lifetime. The characteristic times can 
be calculated using two model of the ion beam: single particle cooling times and cooling times for 
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Gaussian beam obtained using Monte-Carlo method. Electron cooling, as an effect, obtains at the 
entrance the ion beam in one of the form using in the program and returns the ion beam in the same 
form with parameters changed by action of the electron cooling. 
 
The described structure of the electron cooling object permits to use uniformly all the models 
developed at the same layer of the hierarchy. Each model at some level can use all the models at the 
lower layers in arbitrary combination. Each layer of the hierarchy can be extracted from the 
BETACOOL and used as an independent object in another program. 
 
 
3. Friction force in the particle rest frame  
 
3.1. Non-magnetized electron beam  
 
3.1.1. Binary collision model   
 
The friction force acting on ion is determined by Coulomb collisions with electrons (Fig. 3.1). The 
electron with velocity vе in the PRF colliding with the ion which has velocity V at impact parameter 
ρ obtains the transverse momentum ∆р⊥ relatively to the vector evVU rrr

−=  : 
 

 
ρevV

Zepp rr
−

=∆≡ ⊥⊥

22 , (3.1) 

 
Ze, e are the charges of the ion and electron. Due to conservation of the total particle momentum pµ 
= const the appearance of the transverse momentum of electron leads to the following change of 
its longitudinal momentum: 

⊥p

 

 
( )

µ
µµ p

p
pppp

2

2
22

||
⊥

⊥

∆
≈∆−−=∆ .  (3.2) 

 
The electron energy changes by the value: 
 

 
m

pEe 2

2
⊥∆

=∆ , (3.3) 

 
which is equal to the change of the ion energy ∆Ei. Here m is the electron mass. 

 

µU
r

 
θ

⊥p

||pr

ρ 

 
Fig. 3.1. Two-body problem 
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Integration over impact parameter ρ gives us the ion energy loss per unit of the length:  
 

 dE
ds

n E di
e i= ∫2π

ρ

ρ

∆
min

max

ρ ρ , (3.4) 

 
Here ne is the electron density, ρmax,  ρmin – minimum and maximum impact parameters of the 
collision. The minimal impact parameter ρmin approximately corresponds to electron scattering by 
the angle of π/2. The maximum impact parameter corresponds to the distance between particles 
when the effective interaction is possible. The friction force in the extremely cold electron beam is 
equal to: 
 

 
min

max
2

42

ln
4

ρ
ρπ

mV
enZ

ds
dE

F ei −=−= . (3.5) 

 
 
3.1.2. Numerical integration 
 
When the electrons are distributed over velocities in accordance with the function f(ve) the friction 
force can be evaluated by numerical integration of the following formula [2-5]: 
 

 ee

e

ee vdvf
vV

vV
m

Zen
F 3

3
min

max
24

)(ln
4

∫
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= rr

rr
r

ρ
ρπ

. (3.6) 

 

The Coulomb logarithm 
min

maxln
ρ
ρ

 is kept under the integral because the minimal impact parameter 

depends on electron velocity: 
 

 2

2

min
1

evVm
Ze

rr
−

=ρ . (3.7) 

 
In the case of uniform velocity distribution of electrons, the electron beam can be described by the 
temperature Te and r.m.s. electron velocity spread e∆  over each of the three dimensions, that are 
connected with each other in accordance with  
 
  (3.8). 2

ee mT ∆=
 
For a given value of the ion velocity the maximum impact parameter is constant and it is 
determined by dynamic shielding radius or the ion time of flight through the electron cloud. Radius 
of the dynamic shielding sphere coincides with Debay radius: 
 

 
p

e
D ω

ρ
∆

= , (3.9) 

when the ion velocity is less than the electron r.m.s velocity spread ∆e. The plasma frequency ωp is 
equal to 
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m

ene
p

24π
ω = . (3.10) 

 
When the ion velocity is sufficiently larger than the electron velocity spread it determines the 
shielding radius  
 

 
p

sh
V
ω

ρ = . (3.11) 

 
Both of the formulas (3.9) and (3.11) can be combined together to have a smooth dependence of the 
shielding radius on the ion velocity: 
 

 
p

e
sh

V
ω

ρ
22 ∆+

= . (3.12) 

 
In the case, when the shielding sphere does not contain sufficient number of electrons to 
compensate the ion charge (such a situation may take place in the case of magnetized electron beam 
with low longitudinal velocity spread) it has to be increased in accordance with the electron beam 
density and the ion charge. In the program this radius is estimated from the expression 
 
 . (3.13) Zne 3~3ρ
 
As a result, the maximum impact parameter is calculated as a minimum from three values: 

 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= τρρ V

n
Z

e
sh ,3,maxmin 3max . (3.14) 

 
The second term describes the distance, which the ion passes inside the electron beam. Here τ is the 
ion time of flight the cooling section in the PRF: 
 

 
c

lcool

βγ
=τ . (3.15) 

 
In the case of axial symmetry the electron distribution function can be written in the following 
form: 
 

 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆
−

∆
−

∆∆
⎟
⎠
⎞

⎜
⎝
⎛=

⊥

⊥

⊥
2
||

2
||

2

2

||
2

2/3

22
exp1

2
1 vvvf e π

, (3.16) 

 
where ∆⊥ and ∆|| are the electron rms velocity spreads in the transverse and longitudinal direction 
correspondingly.  
 
Asymmetry of the electron distribution function can appear, for instance, due to electrostatic 
acceleration of the electron beam. In this case the temperatures of transverse and longitudinal 
degrees of freedom are different (see details in [4]): 
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 T⊥ ≈ Tcathode + Toptics,         3/12
222

2
,

|| e
effcathode ne

mc
T

T +=
γβ

, (3.17) 

 
where Tcathode is the cathode temperature, Toptics describes an additional transverse velocity spread 
due to distortions during electron beam transportation to the cooling section (this temperature 
includes also the incoherent drift motion in the crossed fields (see chapter 4.2.)). The effective 
cathode temperature used for longitudinal temperature calculation includes a term determined by 
amplitude of the accelerating voltage ripple. 
 
In the general case, for example for RF electron beam acceleration, the temperatures of the 
transverse and longitudinal degrees of freedom can be calculated from electron beam parameters as 
follows: 
 

2222 θγβmcT =⊥ , 

 
2

22
|| ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∆
=

p
pmcT β , (3.18) 

 
where θ is r.m.s. angular spread and ∆p/p – r.m.s. momentum spread of electrons in the cooling 
section. The angular spread can be a function of radial co-ordinates due to the drift motion of 
electrons or oscillations of the beam envelope. The relation between temperatures and 
corresponding rms velocity spread in particle rest frame (PRF) is determined similarly to formula 
(3.8): 
 

2
|||| ∆= mT , 

 . (3.19) 2
⊥⊥ ∆= mT

 
The shielding cloud in the case of non uniform distribution has an ellipsoidal shape which can be 
approximated by the sphere of radius calculated using effective electron velocity spread: 
 
 . (3.20) 2

||
22 ∆+∆=∆ ⊥e

  
The components of the friction force (3.1) can be calculated in cylindrical co-ordinate system as 
follows: 
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.     (3.21) 

 
 
In numerical calculations, within an accuracy of about 2% the upper limit of the integrals over 
velocity components can be replaced from infinity to three corresponding rms values and 
integration over ϕ can be performed from 0 to π due to symmetry of the formulae. In this case the 
friction force components can be calculated as: 
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where the normalization factor is calculated in accordance with: 
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The minimal impact parameter is the following function of the electron velocity components: 
 

 ( ) ( ) ϕϕ
ρ

2222
||||

2

min sincos
1
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=

vvVvVm
Ze

e

. (3.24) 

 
At the ion velocity ⊥∆∆>> ,||V  the minimal impact parameter becomes to be constant: 
 

 2
||

2

2

min
1

VVm
Ze

e +
=

⊥

ρ , (3.25) 

 
and Coulomb logarithm can be removed from the integral. At extremely small ion velocity the 
calculation of the minimal impact parameter in accordance with the formula (3.25) leads to zero 
friction force value, when maxmin ρρ > . One can avoid this problem introducing mean minimal 
impact parameter in accordance with 
 

 2
||

22
||

2

2

min
1

∆+∆++
=

⊥⊥ VVm
Ze

e

ρ . (3.26) 

 
When the Coulomb logarithm LC is constant the two of three integrals in (3.21) can be calculated 
analytically, and the friction force components can be written in accordance with Binney’s formulae 
[3]: 
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where Int⊥ and Int|| are the following integrals: 
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In the case of uniform Maxwellian distribution (when e∆=∆=∆ ⊥|| ) the integrals (3.28) coincide 
with each other and can be evaluated analytically, which was first done by Chandrasekhar [2].  This 
formula is implemented in BETACOOL under notation of Budker’s formula for electron cooling 
time. The friction force in this case is given by: 
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The formulae (3.22) give the same result when the logarithm is taken out of the integrals. 
 
 
3.1.3. Asymptotic representations for flattened velocity distribution 
 
For fast simulation of the cooling process one can use different asymptotic formulae. For example, 
the asymptotic formulas can be derived based on the Coulomb analogy (see Refs. [4]-[5]). 
 
In the case, when transverse velocity spread of electrons is substantially larger than longitudinal one 
the friction force can be approximated in three ranges of the ion velocity. In accordance with 
Meshkov’s asymptotes [4] the force components are calculated with the following formulae. 
  
I. High velocity V ≥ ∆⊥, here longitudinal and transverse components of the friction force are equal: 
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424
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−= , (3.30) 

 
and in this range the friction force shape coincides with formula (3.29). 
 
II. Low velocity ∆|| ≤ V < ∆⊥. Here, the transverse component of the friction force is given by the 
following expression: 
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and longitudinal one: 
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III. Superlow velocity V < ∆||. Here the transverse component of the friction force is equal to zero, 
the longitudinal component is given by: 
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The minimal impact parameter in the Coulomb logarithm is equal to: 
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where  is given by the formula (3.20). e∆
 
The asymptotes by Ya. Derbenev for the longitudinal component of the force have the following 
form: 
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Here the Coulomb logarithms are calculated in accordance with the following formulae: 
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In order to provide uniform usage of the formulae in the program the friction force calculation is 
realized in three ranges of the ion velocity similarly to Meshkov’s asymptotes. 
 
I. High velocity V ≥ ∆⊥, here longitudinal and transverse components of the friction force are equal: 
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II. Low velocity ∆|| ≤ V < ∆⊥. Here the transverse component of the friction force is given by the 
following expression: 
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and longitudinal one: 
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III. Superlow velocity V < ∆||. Here the transverse component of the friction force is equal to zero, 
the longitudinal component is given by: 
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These formulae in the case of V⊥ = 0 give the correct result for the longitudinal component of the 
friction force (3.45), (3.46) and have a correct asymptotes at high ion velocity. The transverse 
component of the force is calculated in accordance with Meshkov’s representation. 
 
 
3.2. Magnetized electron beam. 
 
In the magnetized electron beam, when the maximum impact parameter (3.14) is larger than radius 
of electron Larmor rotation so called “magnetized collisions” between ion and electron take place. 
In this case the electron is attracted by the ion, which pulls it along the magnetic field line [5]. In 
different ranges of the ion velocity and impact parameter three type of collisions are possible: fast, 
adiabatic and magnetized.  
 
 
3.2.1. Magnetized collisions 
 
Practical analytic expressions for the friction force in strong magnetic field were worked out by Ya. 
Derbenev and A. Skrinsky [5]. For ion collisions with electrons at the impact parameter higher than 
the mean radius of electron Larmor rotation 
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=ρ  (3.44) 

  
the friction force in the particle rest frame can be expressed as follows [5]: 
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where ( )2||

2
evVVU −+= ⊥  - the relative velocity of the ion and electron “Larmor circle”. f(ve) is 

the electron distribution over longitudinal velocity, in the case of Maxwellian distribution with rms 
velocity spread of ∆|| it is expressed as 
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Maximum impact parameter in the Coulomb logarithm for magnetized collisions 
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is calculated as usual (3.14). 
  
The formula (3.45) has asymptotes in the region of small and large ion velocities. When V >> ∆|| 
the electron distribution can be approximated by delta-function ( ) ( ee vvf )δ= , and integration in 
(3.45) gives: 
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When the ion velocity is sufficiently less then electron velocity spread V << ∆|| the friction force 
can be expressed as [5]: 
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In the general case the friction force components can be calculated numerically as the following 1-
dimensional integrals (see Eq. (3.45)): 
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Note, that Eq. (3.45) was derived using the approach of dielectric linear plasma response. The 
resulting non-logarithmic term in Eq. (3.45) and (3.52) is due to collective plasma waves. It should 
be taken into account only at large ion velocity V >> ∆||. In the region of small ion velocity the 
longitudinal component of the friction force is 
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General problem in numerical integration of (3.52, 3.53, 3.54) is singularity of the integrants at  
V⊥, V|| -> 0. In the integral (3.54) V⊥ can be moved out from the integration 
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but one gets singularity at V⊥ = 0. However, the friction force at zero ion transverse velocity has a 
finite value given by the formula: 
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To avoid numerical difficulties the integrals (3.52, 3.54) can be replaced by their asymptotes (3.50, 
3.51) at the ion velocity region   V << ∆||   and integral (3.54) can be replaced by its accurate value    
(3.56) at   V⊥ << ∆||.  
 
One can avoid numerical problems in integration of (3.52, 3.54) at small ion velocity and provide 
calculations without usage of analytic asymptotes using algorithm proposed by D. Pestrikov [6]. 
The integral (3.55) can be rewritten in the following form: 
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Using (3.56) and substitutions
||∆

= evx , 
||
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∆
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V
y , 
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= ⊥Vz  one can write these integrals in the 

following form: 
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Changing the integration variable by α+= tanzyx  one can reduce these integrals to the form with 
nonsingular integrant: 
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Integral (3.61) at z = 0 can be calculated analytically [6] and gives the formula (3.56).   
 
 
3.2.2. Friction force at small impact parameters 
 
When the impact parameter is less than the radius of the electron Larmor rotation ρ < ρ⊥  the 
influence of the magnetic field can be neglected and the friction force can be calculated in 
accordance with: 
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The range of impact parameters from ρmin to ρ⊥ in (3.63) is divided by two regions: the region 
where 
 

ρmin < ρ < ρF
 
corresponds to so called “fast collisions” and in the region of 
 

ρF  < ρ < ρ⊥
   
the ion can collide with the same electron a few times during its movement through the cooling 
section. The last region corresponds to so called “adiabatic” or “cycling” collisions. The 
intermediate impact parameter ρF  can be estimated as the following: 
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and corresponding Coulomb logarithms are: 
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The number of multiple adiabatic collisions of the ion with the same electron is [4]: 
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The minimum impact parameter is calculated as usual: 
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3.2.3. Asymptotic representation [4] 
 
Summarizing asymptotic presentations for all types of collisions one can write [4]:  
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Ion velocity domains I, II = IIa +IIb, and III are shown in Fig. 3.3.  
 
In these formulae the Coulomb logarithms are defined as follows: 
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Note that if argument of the logarithm is less than 1, then the logarithm value has to be set to zero. 
It means that the corresponding type of collisions is absent at given parameters. The minimum 
impact parameter is given by the formula 
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and dynamic shielding radius in the formula (3.12) for the maximum impact parameter is 
determined by the electron longitudinal velocity spread: 
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IIb

III ∆|| 
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V|| 

V⊥ 

 
Fig.3.3. Domains in the velocity space for the friction force calculation. V⊥, V|| are the ion velocity 
components in PRF; ∆⊥ is the transverse electron velocity spread, ∆|| is the longitudinal one. 
 
Coefficient k in the formulae (3.70) was introduced to smooth the friction force shape. In the 
original paper it was chosen to be 2, in the program now it is used as an additional input parameter.  
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3.2.4. Formula by Erlangen University 
 
The BETACOOL code also includes the friction force formula calculated by C. Toepffer (Erlangen 
Univ.) in the framework of binary collision model [13]. The unperturbed motion of electron is a 
helix with the Larmor radius: 
 

 
eB

cmv⊥
⊥ =ρ  (3.73) 

 
and the pitch determined by longitudinal velocity. The ion velocity variation is calculated iteratively 
and at impact parameters larger than the Larmor radius one can obtain solution in a closed form for 
two limiting cases: 
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and δ << ρ⊥, where δ is the pitch of the helix as seen from the ion. 
 
Correspondingly, the friction force includes three components related to different types of collision: 

- fast collisions at impact parameters less than radius of electron rotation 
- collisions with “tight” helices, 
- collisions with “stretched” helices. 

 
In the case of axial symmetry the electron distribution function is described by (3.16). For the fast 
collisions the formula is analogous to the non-magnetized collisions. The components of the friction 
force for fast collisions can be calculated in cylindrical coordinate system by Formulae (3.21). 
However, here both impact parameters – minimum and maximum – are now the functions of the 
electron velocity: 
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The friction force in collisions with tight helices [13]: 
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where 
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For stretched helices [13]: 
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When V >> ∆|| the electron distribution can be approximated by delta-function ( ) ( )|||| vvf δ= . In this 
case integration over electron velocity components can be provided independently. The friction 
force components for tight helices can be expressed in the following form: 
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Here, the Coulomb logarithm is determined by the expression 
 

LM = ( ) ⊥⊥
⊥

⊥
∞

⊥⊥
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆ ∫ dvvv

2

2

0

max
2 2

exp
,max

ln1
δρ

ρ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈

⊥ρ
ρmaxln , 

 

at 
eB

VVcm 2
||

2 +
= ⊥δ . Within an accuracy of definition of the logarithm these formulae coincide 

with the one derived in the limit of an infinite magnetic field using binary collision approach by V. 
Parkhomchuk [14]. Note, that apart from the non-logarithmic term, which comes from collective 
plasma response and thus is absent in the binary collision approach, Eq. (3.80)-(3.81) are similar to 
Eqs. (3.48)-(3.49) obtained via dielectric plasma approach [5]. The remaining difference is 
attributed to different cutoff parameters being used in two different approaches [16]. 
 
In the same approximation V >> ∆|| the formulae for collisions with stretched helices can be 
rewritten in the form: 
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where ωp, ωB are the plasma and cyclotron frequencies. This formula is valid at 1>>
∆⊥

V  and its 

structure is similar to semi-empirical formula by Parkhomchuk [7]. 
 
 
3.2.5. Semi-empirical formula by Parkhomchuk 
 
A semi-empirical formula for calculation of the friction force in magnetized electron beam can be 
written as [7]:  
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where ∆e,eff is the effective electron velocity spread with taking into account variations of the 
magnetic field line displacement (“oscillation”) in the transverse direction. The Coulomb logarithm 
is given by the expression: 
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Here the minimum impact parameter is calculated in accordance with  
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Maximum impact parameter in accordance with original formula is calculated as: 
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where τflight is the ion time of flight the cooling section (3.15), ωp is the plasma frequency (3.10).  
 
This formula presumes that 
 

⊥∆<<∆ effe, . 
 

Recently, the accuracy of available analytic representations of the magnetized friction force was 
explored in detail via direct numerical simulations. The results and conclusions about available 
formulas are summarized in Ref. [8]. 
 
 
3.3.   3-D non-magnetized force and arbitrary distribution 
 
3.3.1.  3-D force 
 
In addition to analytic formulae for the non-magnetized and magnetized friction force which can be 
used in BETACCOL (described in Sections 3.1-3.2), a numerical algorithm was recently 
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implemented in BETACOOL which allows to calculated friction force for an arbitrary distribution 
of electrons, represented by an array of particles. 
 
In the absence of longitudinal magnetic field in the cooling section the electron motion in transverse 
planes is uncoupled. Correspondingly, the electron bunch can have different velocity spreads in 
horizontal and vertical planes. In this case the friction force can not be presented as a sum of radial 
and longitudinal components, but it is a vector with all three different components. The components 
of 3D friction force can be calculated as an integral over electron velocity for a given distribution 
function. In the case of Gaussian electron bunch the distribution function in velocity can be 
approximated as 
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where ∆x,y,|| are the electron velocity spreads in horizontal, vertical and longitudinal planes. 
 
The friction force is calculated in accordance with the definition: 
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where minimum impact parameter is a function of the electron velocity vr : 
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The maximum impact parameter is calculated as usual: 
 
 { }τρρ Vsh ,minmax = , (3.90) 
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∆e is the total electron velocity spread: 
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and the plasma frequency is described by Formula (3.10): 
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In the case when undulator option is enabled the minimum impact parameter is calculated as: 
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where B is the undulator field, λ - its wavelength. 
 
The 3D model of the friction force implemented in BETACOOL can be used correctly only in the 
case when electron beam is represented as an array of particles. 
 
 
3.3.2. Electron beam as an array of particles 
 
For the friction force calculation the program uses local parameters of the electron bunch calculated 
as functions of the ion co-ordinates. In the electron array the program finds Nloc electrons having 
minimum distance to the ion position. The value of Nloc is input in the edit window “Number of 
nearest particles”. For obtained array of Nloc electrons the program calculates mean and root mean 
square parameters for all the coordinates and velocity components. 
 
The density and the velocity spreads evaluated for the local array can be used for the friction force 
calculation in accordance with the analytical formulae or asymptotic representation of the friction 
force. Usage of approximate formulae sufficiently speeds up the simulations but does not take into 
account asymmetry of the distribution function in the transverse plane. If the asymmetry is 
significant one can use formulae for 3D friction force. The corresponding electron rms velocity 
spreads are calculated as: 
 
 yxyx c ′′=∆ ,, βγσ , (3.94) 
 
where yx ′′,σ  are the rms angular spreads of the local electrons. 
 
Another possibility is to calculate the friction force using velocity components of the local electrons 
directly. For this purpose, the velocities of the local electrons are recalculated into the Particle Rest 
Frame. The distribution function of the local electrons in the velocity space is given as a series of δ 
- functions: 
 

 ( ) (∑
=

−=
locN

j
j

loc

vv
N

vf
1

1 rrδ ). (3.95) 

 
Also, in the friction force expression, the integral over the distribution function is transformed into 
series. In this case the friction force components are calculated as follows: 
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where Vα  are the components of ion velocity in the particle rest frame, vj,α – the velocity 
components of j-th electron (α = x, y, z). The minimum impact parameter in the Coulomb logarithm 
LC,j is calculated via velocity of j-th electron: 
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Ze
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There is a possibility to compare the cooling process dynamics for real (6-D) and Gaussian 
distribution of the electrons. BETACOOL generates an array with Gaussian distribution in all 
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degrees of freedom, when the radio button “From file – Gaussian” is in the position “Gaussian” in 
the visual form. In this case, the rms values of electron co-ordinates and momentum components 
from the corresponding edit windows of the visual form are used as input parameters, as well as the 
number of particles in array, which determines dimension of the created array. 
 
 
3.4. Probability of the particle loss 
 
Probability in PRF of the electron capture by the ion during its passage in the cooling section is 
expressed by the following formula: 
 

 2γ
α

= erloss n
dt

dP
, (3.98) 

 
where ne is the local electron density in LRF. Under assumption that ion velocity in PRF is 
substantially less than the one of the electrons and for the flattened electron velocity distribution, 
the recombination coefficient αr is [9, 12]: 
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In the case when the electron velocity spread depends on position inside the electron beam (for 
example, if space-charge effects in the electron beam are essential, or, when one uses results of the 
electron dynamics simulation performed using external program), the recombination coefficient as 
well as the local electron density is a function of the ion coordinates. Correspondingly, the particle 
loss probability after crossing the cooling section is calculated by numerical integration along the 
ion trajectory. This integration is performed together with solution of the ion motion equation in the 
cooling section, which is provided by a model of the electron beam. The algorithm is described in 
more details in the next sections. 
 
 
3.4.1. Simulation of ion-electron recombination in the presence of undulator field 
 
Electron cooling at RHIC [15] using non-magnetized electron beam sufficiently simplifies the 
cooler design. Generation and acceleration of the electron bunch without longitudinal magnetic 
field permits to reach low value of emittance in the cooling section. General problem of such a 
scheme is high recombination rate at low electron temperature. Suppression of the ion 
recombination with electrons in the cooling section using helical undulator field was proposed for 
RHIC in [11]. In the presence of the undulator field, trajectories of all electrons have the same 
coherent azimuth angle θ, determined by the undulator period λ and field value B at the axis: 
 

 
pc

eB
π
λ

=θ
2

, (3.100) 

 
where p is the electron momentum. Since the recombination cross section is approximately 
inversely proportional to the electron energy in PRF, the ion beam life time can be sufficiently 
improved.  
 
One can expect that at impact parameters significantly larger than electron rotation radius in helical 
undulator 
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kinematics of a binary collision will be similar to Rutherford scattering of a free electron. Thus the 
minimum impact parameter ρmin in presence of the undulator field has to be replaced by r0 value. At 
larger impact parameters the friction force can be calculated without taking into account coherent 
electron velocity. 
 
The recombination coefficient is determined via recombination cross section σ as 
 

 , (3.102) ( ) ( ) ( )∫ −−= eeeieir vdvfvVvV 3σα

 
And has to be calculated taking into account the coherent transverse electron velocity. For the 
recombination rate calculation one can use the distribution function 
 

 
( )

II
TmvTvvm

II

dvdvve
TT

mvdvf IIIIund
⊥⊥

−+−

⊥

⊥⊥⎟
⎠
⎞

⎜
⎝
⎛= π

π
21

2
)( 2/2/

2/3
3 22

, (3.103) 

 
where vund is the electron azimuth velocity due to rotation in the undulator field: 
 
 βγθcvund = .  (3.104) 
 
The ion beam life time due to recombination in the cooling section is calculated via recombination 
coefficient αr by the following formula: 
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here C is the ring circumference. Under assumption that ion velocity in PRF is substantially less 
than electron one the αr is calculated in PRF by averaging of the recombination cross section over 
electron distribution function: 
 
 ( )vvr σα =  (3.106) 
where v is the velocity of electrons. 
 
The recombination cross section can be calculated with good accuracy using the following formula 
[9, 12]: 
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where ( )2322/34 /32 cmheA e
−=  = 2.11×10-22 cm2,  eV is the ion ground state binding 

energy. The electron kinetic energy 

2
0 6.13 Zh ⋅=ν

2

2
eevm

E = . In presence of the undulator field it has to be 

calculated as: 
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The formula for flattened distribution can be rewritten in the form adopted for numerical 
integration: 
 

 ( ) ( )
⊥⊥

∆ ∆

∆− ⊥

⊥
⊥∫ ∫

⊥

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆
−

∆
+

−++= dvdvv
vvvvvvE

Int
und

undr ||

3

0

3

3
2
||

2
||

2

2
2
||

2
||

||
22

exp)(1 σα . (3.109) 

 
The normalization factor is calculated as: 
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To avoid overflow in calculation of the exponents, at vund > 6⋅∆⊥ the recombination coefficient is 
calculated directly from the coherent velocity: 
 
 ( )undundr vv σ=α , (3.111) 
 
that corresponds to electron distribution in the form of delta function. 
 
In the absence of the undulator field the recombination coefficient αr for flattened electron velocity 
distribution is calculated using formula (3.102). 
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4. Map of the cooling section 
 
The map of the cooler provides transformation of the ion co-ordinates from the entrance to the end 
of the cooling section. This transformation is based on the solution of the ion motion equation in the 
cooling section. The ion motion inside a storage ring is described in the canonically conjugated 
variables: 
 
 ={x, θX

r
x, z, θz, s-s0, θs}, (4.1) 

 

where x, z are the horizontal and vertical co-ordinates, 
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longitudinal component of the reference particle momentum, Px,z are the transverse components of 
the ion momentum, ∆P is the longitudinal momentum deviation, s - s0 is the ion longitudinal 
distance from the bunch center (the reference particle), β = V0/c, 21 βγ −= , c is the speed of 
light, V0 – velocity of the reference particle. 
 
Under assumption, that transverse components of the particle momentum are substantially less than 
longitudinal one, the ion motion equations can be presented in the following form: 
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 (4.2) 

 
where Fx,z,s are the force components in the laboratory reference frame.  
 
The force acting on the ion inside the cooling section is the sum of Lorenz force from solenoid 
magnetic field, the electron beam space charge force, the friction force and the force randomly 
distributed around zero value, which determines the diffusion in the electron beam. The influence of 
the electron beam space charge and longitudinal magnetic field on the ion motion can be described 
in a standard way and here we will discuss only calculation of the friction force.  
 
The friction force components are calculated in PRF using the standard list of parameters. Model of 
electron beam has to transform the ion velocity components to PRF and calculate all the parameters 
required for the friction force calculation. After calculation of the friction force in PRF the electron 
beam model calculates the force components in LRF that can be used in the right hand side of the 
system (4.2). 
 
In presence of transverse components of the guiding magnetic field at the axis of the cooler solenoid 
the electron beam is characterized by co-ordinates of its center and angle between electron beam 
axis and ion equilibrium orbit. In this case the ion transverse angles in the frame referenced to the 
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electron beam orbit have to be corrected by the values of the angular misalignment δθ between 
electron and ion beams: 
  
 , α = x, z, (4.3) )(* sααα δθθθ −=
 
where θ* is the ion angle in the electron beam reference frame.  
 
The space charge of the electron beam determines the electron average velocity and electron 
velocity spread as functions of co-ordinates inside the electron beam. Electron beam density in a 
general case is also a function of co-ordinates. To calculate the ion position inside the electron beam 
one needs to introduce transverse co-ordinates of the electron bunch center (xc, zc) and distance 
between the centers of the electron and ion bunches sc. Under assumption that δθ⋅ lbunch << a the ion 
co-ordinates inside the electron beam are: 
 
 x* = x + xc, z* = z + zc, (s -s0)* = (s - s0) + sc.  (4.4) 
 
The transformation of the ion co-ordinates in accordance with the magnetic field line curvature, 
choice of the numerical algorithm for integration of the system (4.2) and calculation of the particle 
loss probability are provided by the model of the cooler. The particle loss probability is calculated 
by integration of expression (3.39):  
 

 ∫ βγ
α

=
cooll

er
loss ds

c
n

P
0

2 , (4.5) 

 
which is performed along the particle trajectory during numerical integration of the ion motion 
equations.  
 
The model of the cooler is realized as a procedure which obtains at the entrance the 6D vector of 
initial particle co-ordinates, transforms components of this vector in accordance with solution of the 
system (4.2) and returns the value of the ion loss probability. 
 
All stages of the algorithm are presented in the Fig. 4.1.  
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Fig. 4.1. Block scheme of the particle propagation through the cooling section. 

 
 

4.1. Models of electron beam 
 
The model of electron beam calculates list of parameters required for friction force procedure, 
transforms the ion velocity from LRF to PRF, makes a choice of the friction force procedure from 
library and transforms the force components from PRF to LRF. These parameters depend on the 
electron beam model: 
the local density of electrons, 
the electron velocity spread in transverse plane, 
the electron longitudinal velocity spread. 
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The local electron beam density is determined by geometry of the electron beam. The local velocity 
spread is the function of co-ordinates inside the electron beam if the space charge effects are taken 
into account. The space charge effects can also lead to shift of the electron mean velocity. The last 
effect does not change the beam velocity spread and it is taken into account by required correction 
of the longitudinal component of the ion velocity. 
 
In the present version of the program various models of the electron beam are realized: 
 
1. Uniform round cylinder, 
2. Gaussian bunch of round (or elliptical) cross-section, 
3. Uniform bunch, 
4. Cylinder with round (or elliptical) cross-section with Gaussian distribution in transverse plane. 
5. Hollow beam 
6. Electron Array 
 
The first model corresponds to electron beam of usual electron cooling system. For this model the 
input parameters are electron beam current and radius and electron beam density is assumed to be 
independent on the ion co-ordinates inside the electron beam. The local electron beam density in 
LRF is constant determined by the expression: 
 
   (4.6) )/( 2 caeIn ee βπ=
 
For this model the space charge effects in the electron beam are taken into account as described in 
the Chapter 4.2. 
 
Input parameters for the Gaussian bunch model are the following: 
- r.m.s. bunch dimensions, 
- offset between electron and ion bunch centres, 
- number of electrons in the bunch Ne. 
 
For this model the local electron density in PRF in the point (x, z, s - s0) is calculated as follows: 
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where σx σz are r.m.s. transverse bunch dimensions, s - s0 is calculated taking into account offset 
between electron and ion bunch centers. 
 
As an output parameter the program calculates electron peak current as: 
 

 
πσ

β
=
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e
e

ceN
I , (4.8) 

 
where σs is r.m.s. bunch length. 
 
The Uniform bunch model presumes that the electron bunch has a uniform density in transverse 
direction and Gaussian distribution along longitudinal co-ordinate. Correspondingly the input 
parameters for are the following: 
- the bunch transverse dimensions, 
- the rms bunch length, 

Part II. Electron cooling 36



BETACOOL Physics guide, Version 1.1 http://lepta.jinr.ru/betacool.htm Last update: 20 Nov 2006 
___________________________________________________________________________________________________________ 

- offset between electron and ion bunch centres, 
- number of electrons in the bunch Ne. 
 
For this model the local electron density in PRF in the point (s - s0) is determined as follows: 
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where ax az are the transverse bunch dimensions, s - s0 is calculated taking into account offset 
between electron and ion bunch centers. 
 
As an output parameter the program calculates electron peak current in accordance with the formula 
(4.8). 
 
The model of Gaussian cylinder can be used for cooling time calculation in the case when short 
electron bunch moves forward and back along a long ion bunch during the time shorter than cooling 
time. This model is more realistic in the case of electron cooling with magnetized circulating 
electron beam. The model input parameters are: 
- r.m.s. dimensions of the cylinder cross-section, 
- number of electrons per unit of length λe. 
 
Local electron beam density in PRF in a position (x, z) is calculated in accordance with: 
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Electron beam current for this model is given by the formula: 
 
 ceI ee βλ= . (4.11) 
 
The last two models of the electron beam do not take into account the space charge effects in the 
electron beam. However, the expressions for the self-fields of the electron beam are introduced into 
the program as described in the next chapter and can be introduced into calculation if necessary. 
 
The model Electron Array is the most recent and general model of electron beam representation. In 
this model the 6-D distribution of electron beam is generated by some other code. This distribution 
can be read into the BETACOOL. In this case, the friction force can be calculated for an arbitrary 
distribution of electrons. 
 
 
4.2. Model of the cooler  
 
The model of electron cooler provides a choice of the numerical integration for the system (4.2) and 
takes into account displacements of the electron beam position in the cooling section. The system 
can be solved by assuming two different models of the cooler: 
 
1. Electron cooler as a thin lens, 
2. Electron cooler as a system of non-zero length. 
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In the case, when the friction force variation along the cooling section is negligible and relative 
change of the particle momentum is small, the electron cooling section can be treated as a thin lens. 
This model presumes also that the ion transverse co-ordinates do not change during motion inside 
the cooler. Thus, the ion angle variation is calculated as following 
 

 cooll
Mc

F
γβ

=θ∆ 22 , (4.12) 

 
where lcool is the cooling section length, F is the friction force in LRF. The ion co-ordinates are not 
changed inside the cooler.  
 
For the non-zero length of the cooler the ion motion equation can be solved using one of the 
numerical methods: Euler or Runge-Kutta. Numerical integration of the ion motion equations is 
necessary also in the case, when electron beam trajectory does not coincide with the ion equilibrium 
orbit.  
 
One of the options in the program is to introduce the electron beam trajectory position from an 
external file. In this file the transverse coordinates of the electron trajectory are specified in a few 
points along the cooling section. In this case, the cooling section is divided by a few sub intervals in 
longitudinal direction. In each interval the electron trajectory assumed to be a straight line displaced 
from the ion trajectory and having some angle with it. Position of the electron beam trajectory is 
determined by its transverse co-ordinates at the entrance and at the exit of the sub interval.  
 
The ion transverse co-ordinates relatively to the electron beam trajectory are calculated as functions 
of its longitudinal co-ordinate (independent variable in the system 4.2) in accordance with the 
angles between electron and ion beam axis: 
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where xf, x0 are initial and final horizontal co-ordinates of the electron beam trajectory in the sub 
interval correspondingly, calculated from the ion equilibrium orbit. lSI is the length of corresponding 
sub interval. The same is for vertical position. The ion velocity components in the frame referenced 
to the electron beam trajectory are corrected by these angles. We assume that the angles between 
the electron beam trajectory and the ion equilibrium orbit are sufficiently less than unit. In this case 
correction of the ion longitudinal velocity is not necessary. 
 
Under assumption that the both angles are sufficiently less than the ion angle the ion co-ordinates in 
the sub interval are calculated as: 
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 ziezz ,,θ+θ=θ ,  (4.14) 
 
where co-ordinate s is calculated from the entrance of corresponding sub interval. 
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5. Kick of the ion momentum components in the electron cooling section 
 
The Model Beam algorithm presumes that the ion geometrical co-ordinates do not change after 
crossing the cooling section and action of the cooling leads to change of the ion momentum 
components only (the thin lens approximation). The kick in the ion beam momentum after crossing 
the cooler is calculated on the basis of the map of the cooling section. The map transforms the 
initial ion co-ordinates in 6D phase space to the final ones: 
 
 inX

r
={xin, θx,in, zin, θz,in, (s-s0)in, θs,in} -> fX

r
={xf, θx,f, zf, θz,f, (s-s0)f, θs,f}, (5.1) 

 
The Model Beam algorithm ignores the ion geometry co-ordinate variation (x, z, s-s0) and multiplies 
the ion momentum components by the factor: 
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where ξ = x, z, s – s0, ∆t – step over time in the dynamics simulation. 
 
The particle losses after crossing the cooler are calculated separately for total beam and for Model 
Beam. In the total beam the ion number is decreased in accordance with: 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
−×=

revMB

loss

T
t

N
P

NN exp0 , (5.3) 

 
where Ploss is the particle loss probability calculated by the map of the cooling section in accordance 
with (4.5), NMB is the particle number in the Model Beam. For the particle in the Model Beam the 
program generates random number uniformly distributed in the range from 0 to 1, if this number is 
smaller than Ploss for this particle new co-ordinates are generated in accordance with current ion 
distribution as it described in the Chapter 2. If the random number is larger than Ploss the particle is 
alive and its co-ordinates are not changed. 
 
 
6. Algorithm of the electron cooling time calculation  
 
For rms dynamics simulation one needs to calculate characteristic cooling times and the lifetime 
due to recombination in the cooling section. In the present version of the program the cooling times 
can be calculated for two models of the ion beam. In the frame of the first model (“single particle”) 
the ion beam is presented by an ion having invariants of the motion corresponded to r.m.s. beam 
emittances. In this case a change of the ion motion invariants after crossing the cooling section is 
averaged over the phases of the ion betatron and synchrotron oscillations in the ring. In the second 
model (“Monte-Carlo”) the ion beam is presented as an array of particles. The particle distribution 
over co-ordinates is Gaussian at corresponding r.m.s. parameters and matched with the lattice 
parameters of the ring in the cooling section. The beam is propagated through the cooling section 
particle by particle and r.m.s. parameters of the particle distribution function at the exit of the cooler 
are used for the cooling time calculation. 
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6.1. Calculation of the characteristic times of the ion motion invariants 
 

The ion co-ordinates at the entrance of the cooling section can be expressed as functions of the 
motion invariants and phases of the betatron and synchrotron oscillations. The ion “betatron” 
coordinates and momentum inside the cooling section can be calculated in accordance with 
 

 ( ϕα+ϕ
β

=ϕβ= ββ sincos,sin /
x

x

x
xx

I
xIx ). (6.1) 

 
where ϕ - is the phase of the horizontal betatron oscillation, αx and βx are alpha and beta functions 
at the entrance of the cooling section. The same expressions are used for z co-ordinate with 
substitution of corresponding alpha and beta function values, where we introduced the notation 

p
p

x x=′ . For r.m.s. particle the mean square of the co-ordinates have to be equal corresponding 

standard deviations: 
 
 xxx βε=σ , xxx γε=σ ′ , (6.2) 
 

where εx is r.m.s. emittance and gamma function is calculated as usual 
x

x
x β

α+
=γ

21
. To satisfy this 

equation the invariant of the motion Ix is to be equal to two sigma emittance Ix = 2εx.  
 
Longitudinal emittance of the ion beam is determined in the program as a mean square of the 
particle momentum deviation: 
 
 2δ=ε l .  (6.3) 
 
Here to simplify the notation the ion relative longitudinal momentum deviation is denoted as 

p
p∆

=δ . In the case of coasting beam the cooling time is calculated by averaging over two values of 

the momentum deviation: 
 
 lε±=δ . (6.4) 
 
For the bunched ion beam one can express the particle momentum deviation and its longitudinal co-
ordinate (distance from the bunch center) as a function of the phase of synchrotron oscillations: 
 
 ψ=δ coslI , ψβ=− sin0 ll Iss , (6.5) 
 
here the "synchrotron function" is determined as: 
 

 
s

l Q
Rη

=β  , (6.6) 

 
where R is the mean ring radius, η - off momentum factor, Qs is the synchrotron tune. The standard 
deviations for longitudinal degree of freedom are calculated in accordance with the longitudinal 
emittance definition: 
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 lε=σδ , δσβ=σ ls  (6.7) 
 
and as in the case of transverse motion to satisfy this equation the invariant of the motion Il is equal 
to two sigma emittance Il = 2εl. 
 
The total values of the ion x-co-ordinates are equal to: 
 
 δ+= β xDxx , , (6.8) δ+=′ β

//
xDxx

 
where D and D/ are dispersion and its derivative in the cooling section. For the vertical plane all the 
procedures are provided by the same way. 
 
Using these formulae at given values of the phases of betatron and synchrotron oscillations one can 
calculate particle co-ordinates and velocity components at the entrance of the cooling section. The 
map of the electron cooling section transforms the ion coordinates to the exit of the cooler and 
returns the probability of the ion loss. New values of the particle motion invariants are calculated in 
accordance with the following formulae. Invariant of the particle longitudinal motion for a coasting 
beam is calculated simply as a square of the relative momentum deviation, for a bunched beam  
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⎞
⎜⎜
⎝

⎛
β
−

+δ=
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02 )(

l
l

ss
I . (6.9) 

The Courant – Snider invariants of the particle betatron motion are calculated from the "betatron" 
particle co-ordinates: 
 δ−=β xDxx , . (6.10) δ−=β

///
xDxx

 
The invariant calculated in accordance with 
 ( )2/2/ 2 ββββ γ+α+β= xxxxI xxxx  (6.11) 
 
corresponds to 2-sigma emittance of the beam. The invariant of vertical motion is calculated with 
substitution z instead x.  
 
When the electron cooler is treated as a thin lens, the lattice parameters at the exit of the cooler 
coincide with that ones at the entrance. For the cooler model taking into account finite length of the 
cooling section the tracking of the lattice parameters through the cooler is necessary. Neglecting the 
influence of the cooler magnetic field on the ion motion the lattice parameters at the exit of the 
cooling section are calculated as: 
 , 2

, 2 coolxcoolxxxf ll γ+α−β=β coolxxxf lγ−α=α , .  (6.12) 
 
The characteristic time of change of the rms particle invariant is calculated in accordance with: 

 
revcool T
I

I
δ

τ
11

= , (6.13) 

 
where Trev is the particle revolution period in the storage ring, the brackets mean averaging over the 
phases of betatron and synchrotron oscillations:  
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 ( ) szxszx dddIII ϕϕϕϕϕϕδ
π

=δ ∫ ∫ ∫
π

,

2

0
3 ,,

8
1 rrr

. (6.14) 

 
The formula (6.13) gives the cooling time for single particle, which invariants of the motion 
correspond to the beam r.m.s. emittances.  
 
The ion beam life time is calculated by averaging over the phases the ion loss probability: 

 
rev

loss

life T
P

=
τ
1 , (6.15) 

 
where the averaging is performed by the same way as for invariants: 
 

 ( ) szxszxlossloss dddIPP ϕϕϕϕϕϕ
π

= ∫ ∫ ∫
π

,

2

0
3 ,,

8
1 r

. (6.16) 

 
 
6.2. Calculation of the characteristic times of emittance variation using Monte 
Carlo method 
 
Calculation of the characteristic times of the beam emittance variation is performed in the program 
using Monte Carlo method, which includes the following steps. 
 
1. Generation of the beam as an array of the particles matched with the optics structure of the ring at 
the entrance of the cooler. 
2. Propagation of the beam through the cooler particle by particle using the map of the cooling 
section. 
3. Calculation of the new values of the beam emittances after crossing the cooler. 
4. Calculation of the cooling time in accordance with the formula: 

 
revcool T
ε∆

ε
=

τ
11 . (6.17) 

The beam generation is performed as described in the Chapter 2. For the beam emittance calculation 
one can use one of the procedures described in the Chapter 2. The result of the calculation can 
slightly depends on the procedure used for the emittance calculation. This fact can be illustrated on 
example of simplest model of the cooler. One can treat the cooling section as a thin lens – in this 
case the particle co-ordinates keep their initial values and components of momentum are changed in 
accordance with the friction force value. Therefore the beam Twiss parameters are changed in the 
same time when the lattice parameters are constant due to zero length of the cooler according to this 
model. This leads to the mismatch of the beam with the ring optics structure and, as a result, to an 
additional emittance growth if the emittance is calculated through rms co-ordinates of the beam.  
 
When the electron cooler is treated as a system of non-zero length the program provides tracking of 
the lattice parameters through the cooling section as in the case of single particle cooling time 
calculation. 
 
The ion beam lifetime is calculated with the same formula as in this case of single particle model: 
 

 
rev

loss

life T
P

=
τ

1 , (6.18) 
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however, here, the averaging of the loss probability is provided over the particles.  
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Part III. Intrabeam scattering 

 
1. Introduction 
 
Intrabeam scattering (IBS) in the ion beam causes two processes: relaxation of the beam to a 
thermal equilibrium between degrees of freedom and diffusion growth of 6D phase volume of the 
beam due to variation of lattice parameters along ring circumference. 

 
For Gaussian distribution of ions over velocity, four models for IBS calculation are realized within 
the BETACOOL: – Piwinski [1], Martini (extended Piwinski) [2], Bjorken-Mtingwa [3] and Jie 
Wei [4] models. The Martini model does not require additional assumptions for calculation of the 
beam emittance growth times. Piwinski’s model can be deduced from Martini’s model neglecting a 
variation of dispersion and beta function along the ring orbit. In the model proposed by Jie Wei 
characteristic times of emittance variation are calculated for real lattice parameters of the ring under 
a few additional assumptions, which correspond to storage rings with ion energy higher than the 
transition energy (for example, RHIC operation at collision energy). The description of the models 
is presented in following Sections in accordance with the notation of the original papers [1 – 4]. 
 
For non-Gaussian distributions, a variety of approximate models were developed which are 
described in Section 5.2. A more rigorous treatment of IBS for an arbitrary distribution function via 
diffusion and friction coefficients is presently under development. 
 
 
2. Structure of the effect 
 
Simulation of the intrabeam scattering (IBS) process is based on calculation of the particle 
momentum variation due to coulomb interactions with other particles of the beam. In the 
BETACOOL the particle momentum variation can be calculated using analytical expressions for 
diffusion coefficients or, for coasting ion beam, using Molecular Dynamics (MD) technique. On the 
basis of both approaches each optic element of the ring is presented as a map for IBS process.  
 
The map of the IBS process based on direct calculation of the ion coulomb interaction can be 
combined with the transformation map of optic element calculated from external focusing fields. In 
such a form the IBS process is simulated in the frame of tracking algorithm based on MD technique. 
This algorithm uses as input parameters the particle array presenting the ion beam and 
characteristics of external focusing fields. 
 
The map of IBS process based on analytical theory calculates the growth rates for three degrees of 
freedom by numerical evaluation of integrals over ion distribution function assuming that the 
distribution function has Gaussian shape. The values of the growth rates are used for calculation of 
the individual particle momentum variation. The calculation of the growth rates requires as input 
parameters the rms beam emittance and lattice functions of the ring in given optic element.  
 
In the frame of rms dynamics simulation the growth rates calculated in each optic element are 
averaged over the ring circumference. This procedure requires as input parameters the rms beam 
emittances and description of the ring optic structure. The ring optic structure can be presented in 
both variants: as a specification of the optic elements or as dependencies of the lattice functions on 
the longitudinal co-ordinate along the ring circumference. In the first case the program initially 
provides tracking of Twiss parameters along the ring and transforms the ring model to the form of 
the lattice functions. 

Part III. Intrabeam scattering 44



BETACOOL Physics guide, Version 1.1 http://lepta.jinr.ru/betacool.htm Last update: 20 Nov 2006 
___________________________________________________________________________________________________________ 

 
In the frame of a few models for the IBS growth rates calculation one needs mean parameters of the 
ring only. In this case detail description of the ring optic structure is not necessary and the IBS 
process can not be presented by a transformation map. Such models of the IBS can be used only in 
Model Beam algorithm and rms dynamics simulation.  
 
For Model Beam algorithm a few “detailed” models of the IBS process were developed. In the 
“detailed” models the kick of the particle momentum components is calculated as a function of the 
particle co-ordinates in 6D phase space.  
 
 
3. Models of IBS 
 
When particles in a beam scatter within each other one needs to consider both large and small angle 
scattering. The effect when particles can be lost as a result of a single collision event (large-angle 
scattering) is called Touschek effect. When the scattering angles are small, random addition of such 
small scattering events can lead to a growth of beam dimensions. Such a multiple Coulomb 
scattering was first applied to explain emittance growth in electron beams (Bruck, Le Duff) and was 
called "multiple Touschek effect".  
 
Typically, in electron machines the longitudinal beam temperature is much smaller than the 
transverse, an assumption which was used in original studies of the Touschek effect. Multiple 
Coulomb scattering was later generalized by Piwinski for proton machines without making any 
restrictions on the magnitude of beam temperatures, thus making it possible to transfer energy from 
the longitudinal into transverse via collisions. The generalized treatment of multiple small-angle 
Coulomb scattering was then renamed as the Intrabeam Scattering (IBS). The IBS theory was later 
extended to include variations of the betatron functions and momentum dispersion function along 
the lattice, and was summarized by Martini (referred in this report as Martini's model).  
 
The different approach to IBS using the scattering matrix formalism from quantum electrodynamics 
was used by Bjorken and Mtingwa (B-M model). Both B-M and Martini's models are in good 
agreement with one another. In what way IBS in particle beams is different from similar scattering 
of gas molecules? In circular accelerators, the curvature of the orbit produces a dispersion. Because 
of the dispersion, a change of energy leads to change in the betatron amplitude. In other words, we 
have coupling of the longitudinal and transverse motion.  
 
Another consequence of this curvature effect is the negative-mass behavior of particles so that 
conservation law of beam temperature leads to a simple conclusion that below transition energy one 
can have an equilibrium between the transverse and longitudinal temperatures while above 
transition (in the "negative-mass" regime) there is a continuous emittance increase in both 
transverse and longitudinal directions. Is this coupling effect always important in circular 
accelerator and one always needs to use standard IBS approach rather than the gas-relaxation 
formula? This question was studied in detail by Sorensen. He found that the IBS growth rates can 
be simply represented by a universal curve. When plotted against parameter  (where 2)//( pp∆ε ε  
in the rms beam emittance) such a universal curve shows a minimum ("brake-up") point. To the left 
of such a minimum the transverse growth rate dominates, while to the right - the growth rate is 
dominated by the longitudinal growth rate. This was explained by a collapse of the longitudinal 
velocity distribution with energy. The longitudinal and transverse velocities spread in the beam rest 
frame are given by: 

m
pv

γ
∆

=∆ || ,   p
m

v
x

x β
ε

=∆
1 , 
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which gives 

22)/( γ
ε

=
∆

ε
pp

 

 
As a result, for a high energy trγ>γ , the effect of collapsed velocity distribution dominates over 
coupling, and the longitudinal IBS can be described by the gas-relaxation formula, independent of 
the ring lattice (with some degree of accuracy). 
 
 
3.1. Analytical model of the multiple particle collisions 
 
According to Piwinski [1], the relative changes of momenta after a collision between two particles 
labeled by 1 and 2 are (for the longitudinal and radial axis): 
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with the notation 
 

 
p
p

p
p 21 ∆∆

γξ −=  , 21 xx ′−′=θ , 21 zz ′−′=ς  (3.2) 

 
γ - is the particle Lorenz factor. 
ψ  and φ  denote the scattering axial and azimuthal angles in the center of mass (C.M.) between the 

particles after the collision. 
2α  << 1 is the angle between the momentum vectors of the colliding particles in the laboratory 

reference frame; this angle can be evaluated by taking the scalar product of the particle 
momentum vectors (Fig. 3.1). 

 
 1 

2α 

2

Pc.m.

1 
 
   
 

a b 
Fig. 3.1. Two particles collision scheme (non-relativistic case) 

a) – LRF;             b) C.M. reference frame 
 
The change of particle momentum after collision leads to the corresponding change of the particle 
motion invariant. It can be calculated under assumption that the radial position of the particle is not 
changed during the interaction, which is sufficiently short. 
 
The radial displacement of the particle from the closed orbit is equal to the sum of the betatron and 
momentum change contributions, which is, to the first order in ∆p/p, described as: 
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 ⎟
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⎝
⎛∆+= p

pDxx β , (3.3) 

 
where D(s) is the dispersion function. The derivative of x with respect to the co-ordinate s along the 
equilibrium orbit is equal to the small angle the particle makes with s-axis: 
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where px is the x-component of the momentum. 
 
The Courant and Snyder invariant of a particle transverse motion is described as the following: 
 
 ,  (3.5) 22 2 ββββ ′β+′α+γ= xxxxI xxxx

 
where  and 12 =α−γβ xxx xx α−=β′ 2 . 
 
The change of the Courant and Snyder invariant I is given by: 
 
 ( )( ) ( ) ( )2222 2221 ββββββββββββ ′δ+′δ′β+′δδ+′δ+δ′βα+δ+δα+=δβ xxxxxxxxxxxxI xxxxxx .  (3.6) 
 
In accordance with the assumption x = constant one finds: 
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since pppp δ=∆δ , where δp is the full particle momentum change in the collision, it means that 
variation of the longitudinal component of the particle momentum leads to a change of the 
horizontal motion invariant, when dispersion is not equal to zero: 
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where DDD xx ′+= βα~ . The changes of vertical and longitudinal invariants are equal: 
 

 ( )
2

,2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ δ
β+

δ
α+θβ=δ ββ p

p
p
pzI z

z
z

xzzz ,  

 
2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ δ
+

∆δ
=δ

p
pm

p
p

p
pmI s , (3.9) 

 
Here we assume that D and D’ have zero value in the vertical plane. In this case zβ = z. 
 
The dependence of the horizontal invariant changes on a longitudinal momentum change leads to 
heating of the ion beam due to the multiple particle collisions: the particle momentum components 
are changed in accordance with momentum conservation law, however in the presence of dispersion 
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the sum of the particle motion invariants can increase or decrease depending on collision 
parameters. Therefore in the frame of this model, IBS in a linear transport line leads only to 
relaxation between degrees of freedom of the ion beam, where the six dimensional phase space is 
constant (the energy source producing the heating is large value of the longitudinal component of 
the ion momentum in LRF). In cycling accelerators IBS leads to two effects: relaxation between 
degrees of freedom and change of six dimensional phase space volume of the beam in presence of 
dispersion.  
 
The variation of the beam phase space volume can be calculated by averaging of the particle 
invariant change over the collisions in accordance with the particle distribution function. A.Piwinski 
introduces the time derivative in the C.M. system of the average radial emittance for all particles 
(denoted < >) by means of the integral: ε
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where the outer brackets <…> indicate the average value around the ring. The first integral extends 
over all phase space betatron co-ordinates, momentum spread values and azimuthal location of two 
interacting particles (denoted 1 and 2). P is the probability density function for the betatron 
amplitudes and angles, the momentum errors and the azimuthal positions of the interacting 
particles. P  is the probability written in terms of the C.M variables, while P is the same probability 
written for the laboratory frame variables. Henceforth the bar indicates the values in the C.M. 
reference frame. Ωσ dd  is the differential cross-section in the C.M. system for the scattering into 
the element of solid angle Ωd  at given angles ψ  and φ . td  is the C.M time interval which is 
related to the laboratory time by the equation tddt ⋅γ= . P may be written according to independent 
probability density law: 
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τd  is the infinitesimal element of the phase space 21...

11
dsdsxddx ββ ′ . 

 
At the time when the interaction takes place we have sss == 21 , 21 zz =  and  where  
satisfies the equation (3.4). 

21 xx = 2,1x

 
The collision cross-section can be calculated by the following way. We approximately find for 
α<<1: 
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Let's consider now the distribution of the scattering angle ψ , which results from the Coulomb 
interaction of two charged particles considering the case of non-relativistic particles in the C.M. 
system one can use the Rutherford formula: 
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T is the kinetic energy of each colliding particle in the C.M. system. 
 
Let mψ  be the smallest scattering angle, its corresponding impact parameter b  is given by the 
equation: 
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Alternatively, equation (3.13) may be expressed as follows: 
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where 2

22

cAm
eZr
p

p =  is the ion classical radius, mp is the proton mass, Z and A are the ion charge and 

atomic numbers, cβ  is the particle velocity in the C.M. system and β <<1 by our assumption. In a 
similar fashion one gets: 
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To evaluate β  we express the two particle momenta difference, which is roughly equal to cmiβ2 , 
in terms of their components in the C.M. reference frame. Then, using the Lorentz transformation 
for the momenta, we come back to the LRF. With all the calculations done we find in a first 
approximation: 
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where cβ  is the average particle velocity in the LRF and γ is the associated Lorenz factor, P 
corresponds to the particle with the velocity of βc. The integral required for calculation of formula 
(3.10) can be written as following: 
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It is evaluated by substitution of the expressions given in equations (3.1, 3.2, 3.8, 3.15), which leads 
to the following result: 
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The definite integrals over the scattering angle ψ  can be calculated analytically: 
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since ( ) ( )( )21/22cos1 22 ψ+ψ=ψ− tgtg  and tgψm with the Formula (3.16). 
 
In a similar way one finds: 
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under the assumption 2

0
244 rbβ >>1. 

 
Taking advantage of these results one gets: 
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Let us perform the substitutions into (3.22) (in full accordance with Formula (3.2)): 
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(Note that η  is not here the usual eta function )//()/( ppff ∆∆− ). 
 
Hence, by virtue of the theorem on functions of random variables, the joint probability density law 
P expressed in terms of these new variables takes the following form: 
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and γ=J , where J is the Jacobian of the transformation (3.23). 
 
In accordance with calculations carried out earlier (eq.3.22), we obtain: 
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where ζ⋅θ⋅ξ⋅⋅η⋅=τ ββ ddddsddzdzdxdxd '' . 
 
Clearly, P is symmetrical with respect to θξ,  and ζ . Therefore, the integral vanishes for the linear 
terms in ζθξ ,,  of the integrand. Consequently, we are left with: 
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This formula is obtained without an assumption about particle distribution, hence this integral can 
be calculated for an arbitrary distribution function. All the analytical models described below are 
based on an assumption that all betatron amplitudes and angles as well as the momentum deviations 
obey Gaussian distribution, while the particle distribution in the longitudinal direction is assumed to 
be uniform if the beam is unbunched, otherwise it is assumed to be Gaussian as well. 
 
 
4. Analytical models of IBS 
 
4.1. Piwinski model 
 
In his model [1], A. Piwinski derives the formulae for the variations of the mean radial and vertical 
emittances and the mean momentum spread per unit time due to a scattering event, neglecting the 
derivative of the beta and dispersion functions with respect to the longitudinal beam axis. For the 
smoothed focusing approximation only the mean values of the lattice functions are used and they 
are determined as follows: 
 

 
vh

vh Q
R

,
, =β , 

2
hQ

RD = , 0,0, =′=α Dvh , (4.1) 

 
where R is the ring mean radius, Qh,v are horizontal and vertical betatron tunes. In this model the 
growth rates are calculated in accordance with the following expressions: 
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where n = 1 for a bunched beam and n = 2 for an coasting beam, 
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The standard deviations are determined here as follows: 
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and σp is the r.m.s. momentum spread. The function f(a,b,c) is the following integral: 
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The following relations determine normalized parameters used in the Formula (4.5): 
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and the maximum impact parameter ρmax is about 0.5 beam vertical size. Integral (4.5) is calculated 
numerically. 
 
In the article [2] it was shown that the integrals (4.9) under assumptions (4.1) are reduced to the 
Piwinski integral (4.5) and Piwinski’s model [1] is one of the simplifications of a more general 
model [2]. 
 
 
4.2. Martini model 
 
In accordance with the Martini model [2] for Gaussian probability law the r.m.s parameter growth 
rates can be inserted into the calculations in the form of the corresponding characteristic times: 
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where angular brackets mean averaging over the ring circumference, n = 1 for a bunched beam and 
n = 2 for coasting beam, 
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λ is the linear ion density: 
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The functions fi are integrals of the following form: 
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with the coefficients k1 = 1/c2, k2 = a2/c2, k3 = b2/c2, and 
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The normalized parameters are to be calculated from the following expressions: 
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The integration over z - variable can be performed numerically or one can use one of the simplified 
results. If the integration is approximately performed as: 
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where LC is the Coulomb logarithm, which is approximately equal to 20, this model is reduced to 
the Bjorken – Mtingwa model [3]. Other possible way is to use a few first terms of the integral 
expansion into series. For instance in accordance with the book by Abramowitz & Stegun the 
integral: 
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at D ≥ 1 can be approximated by the expression 
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here a1 = 42.242855, a2 = 302.757865, a3 = 352.018498, a4 = 21.821899, b1 = 48.196927,  
b2 = 482.485984, b3 = 1114.978885, b4 = 449.690326. 
 
And at D < 1 
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here am = -2.0E, a0 = π, a1 = -1.5 + E, a2 = -π/6.0, a3 = (25.0 - 12.0E)/144.0, a4 = π/120.0,  
a5 = (-49.0 + 20.0 * E)/7200.0, a6 = -0.818π/5040.0, bm = -2.0, b1 = 1.0, b3 = -12.0/144.0,  
b5 = 20.0/7200.0 and E = 0.57721566490153286061 is the Euler constant. 
 
In any case, the integral is approximately proportional to 1/D(µ,ν), and numerical integration over µ 
and ν - variables has to be performed accurately because the D(µ,ν) value can be close to zero for 
some beam parameters. Correspondingly, number of the integration steps required to obtain good 
accuracy of the calculation depends on a specific task. 
 
 
4.3. Jie Wei model  
 
The simplified model proposed by Jie Wei [4] is based on the same model of the interparticle 
collisions as Piwinski and Martini models (section {4.1}). In the notation of [5] the characteristic 
times of r.m.s. beam parameter variation are expressed as follows [4, 5]: 
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The actual growth rate, observed over a time which is long compared to the revolution period, is 
calculated by averaging over the circumference. 
 
Apart from the different notation, the expression (4.17) coincides with the expression (4.6). The 
following simplifications of the (4.17) were proposed in [4]: 
 
- the quantity ln(1 +C4z2) can be substituted by a constant 2LC, where LC is about 20 (this 
simplification is common for Jie Wei and Bjorken – Mtingwa models), 
- for accelerator consisting of regular cells the variation in  is small along the ring 
circumference, thus the terms including 

2/1/ xpD β

pD  and d  can be neglected, 
- for simplification of the integration over θ and ϕ the sin2ϕ and cos2ϕ are replaced by their average 
value of 1/2. 
 
Then the formula (4.17) can be reduced to the following form: 
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To calculate characteristic times one needs to average the expressions (4.18) over the ring 
circumference. 
 
In terms of the normalized transverse emittance and longitudinal bunch area 

 in phase space, Eq.(4.18) can be rewritten as cAcmS ps
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Except for the beam factors χ, d, a and b that depend on the ratio of the beam amplitudes in 
different dimension, the rates are linearly proportional to the density in the six-dimensional phase 
space, and are strongly dependent on the charge state of the particle. 
 
The coupling between the horizontal and vertical motion averages the growth rates in the transverse 
dimension. If the motion is fully coupled within time periods much shorter than the IBS diffusion 
time, the average rates become: 
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In a typically circular accelerator, the transition energy γT is approximately equal to the average 
value of in the regular cells. When the beam energy is high γ >> γpx D/β T , the growth in horizontal 
direction results mostly from the variation of the betatron closed orbit during the exchange of the 
particle momentum ( ). The growths in horizontal and longitudinal amplitudes are therefore 
proportional to each other. 

22 da <<

 
In a typical storage ring like the Relativistic Heavy Ion Collider (RHIC) the beams are stored at 
energies much higher than the transition energy. Due to the coupling and injection conditions, the 
horizontal and vertical betatron amplitudes are about the same. The growth rates can be explicitly 
written from Eq. (4.18) using the expression for )(χF : 
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Their dependence on the energy of the beam, which appears only in the form factor d, is usually 
weak. After the initial stage of the storage, the asymptotic configuration 
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will be approximately reached ))1/(( cbcb nnnnd +≈ . 
 
 
4.4. Bjorken – Mtingwa model 
 
To take into account dispersion in vertical plane as well as in horizontal the IBS growth rates are 
calculated in accordance with [7]: 
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where ,  and iiiiBi DD βα+=φ // 2/2 2' iiiiiii DDDD γ+α+β=Η iii γβα ,,  - lattice functions in the 
horizontal (i=x) and vertical (i=y) plane, εx,y are the horizontal and vertical emittances, σp – rms 
momentum spread. Angular brackets mean averaging over the ring circumference. At zero vertical 
dispersion these formulae coincide with original Bjorken-Mtingwa theory [3]. The diffusion 
coefficients Iij are calculated in each position of the ring by numerical evaluation of the following 
integrals  
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where the matrix LI += λΛ , I – unit matrix, and matrix L is calculated via beam rms parameters 
and ring lattice functions in accordance with: 
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The IBS constant A is determined as in other IBS models: 
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Here β and γ0 are the Lorenz parameters, ri is the ion classical radius, N is the ion number, Lc is the 
Coulomb logarithm, which is introduced as an input parameter. 
 
 
4.5. Gas Relaxation model 
 
Diffusion coefficients for a spatially uniform gas of density n and isotropic Maxwellian distribution 
are well known. The rate of such diffusion can be written as  
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where ∆ is the one-dimensional rms velocity and Λ is the Coulomb logarithm. The heating rate is 
determined by the 6-D phase-space density of the gas , where n is the spatial density. 
Similarly, the diffusion coefficients can be derived for a longitudinally collapsed velocity 
distribution: 
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with . The resulting coefficient is [8]: ⊥∆<<∆ ||
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Due to a slow decrease of function in the square brackets with its argument, one can replace 
expression in the square brackets by 1. As a result, one gets 
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The growth rate in the longitudinal directions is then given by  
 

Part III. Intrabeam scattering 58



BETACOOL Physics guide, Version 1.1 http://lepta.jinr.ru/betacool.htm Last update: 20 Nov 2006 
___________________________________________________________________________________________________________ 

 
||

4
2

2
||

1
|| )(41

∆
∆

Λµπ=
∆

=τ ⊥− Zem
dt
vd z
r

,  (4.33) 

 
where the 6-D phase-space density µis defined as . )/( ||

23 ∆∆=µ ⊥mn
One can rewrite diffusion coefficient 
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in terms of beam parameters. In the laboratory system it becomes [9]: 
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where for the 6-D phase-space density we used , with the 6-D volume 

being . Here, the formula is written for coasting beam with C being the 
ring circumference. Note that the normalization factor in velocity space was already taken into 
account in the derivation of (4.34). One then needs only the 3-D spatial contribution to the 
normalization coefficient to get (4.35). Expression given in (4.35) was used in the original version 
of the SimCool code to represent diffusion rate due to the IBS. The longitudinal heating rate for a 
bunched beam with C being replaced by 
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sσπ2  (following the standard definition in the IBS 
theory, which corresponds to 92% of a Gaussian beam in longitudinal direction) is then [9]: 
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The transverse growth rate can be simply expressed through the longitudinal growth rate as 
 

 1
||

222
1 )'( −−
⊥ τ

β
α+β+

ε

σ
=τ

x

xxxxx

x

p DDD ,  (4.37) 

 
where  is an average value of the ring lattice. For the RHIC lattice the contribution of the term 
with dispersion derivatives and alpha-function is small (smooth lattice) and can be neglected so that 
only xxD β/2 may be considered. The transverse heating rate based on (4.37) were implemented in 
the version of the SimCool code updated by the BNL group and in BETACOOL code. They were 
benchmarked vs standard IBS formalism for the RHIC parameters. 
 
4.5.1. High energy approach 
 
For high energies at RHIC (when approximation of flattened velocity distribution in the beam rest 
frame becomes valid), simple gas-relaxation formula gives reasonable approximation for 
description of the longitudinal heating rate, compared to the involved IBS treatment with 
complicated dependence on the lattice parameters [9]. 
 
The standard IBS formulas can be simplified for the high-energy case. For example, Bjorken-
Mtingwa (B-M) model can be approximated for a round beam at high-energy as 
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The high-energy approximation of B-M agrees very well with the one obtained using the Gas-
Relaxation model in Eq. (4.36). This confirms that the main effect in IBS diffusion at high energy is 
determined by a degree of a collapse of velocity distribution in the beam moving frame of 
reference. Treatment of the IBS in such a case is then extremely simplified. To describe 
applicability region of the high-energy approximation one typically introduces parameter  which 
describes a degree of a collapse of ion velocity distribution, and is defined as 
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For typical parameters of Au ions at RHIC store energy  is in the range 0.1-0.2 which justifies 
the use of high-energy approximation treatment of the IBS for simple estimates. 

fg

 
 
4.6. Calculations of IBS in the case of transverse coupling 
 
In the case when transverse motion is completely coupled within one revolution over the ring the 
invariant change after interparticle collision has to be calculated using bilinear forms of the lattice 
in the collision position instead of formulae (3.8) and (3.9). Theory of the IBS for coupled motion 
was done by Piwinski in [6]. When transverse coupling in the ring has small value the IBS rates can 
be calculated using formulae for uncoupled motion. At RHIC parameters IBS growth times are 
rather long - a few tens of minutes. At such a long time the transverse emittances are connected 
together even at a small coupling. If the motion is completely coupled within time period much 
shorter than IBS diffusion time it is possible to use average value of the transverse rates for both 
degrees of freedom: 
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Such a manner of the coupling insertion into calculation is used in our code for all the models of 
IBS. For instance, in Jie Wei model the average rates become: 
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5. Kick of the ion momentum components due to IBS 
 
5.1. Mean growth rates 
 
In the case of IBS calculation using mean growth rates, the mean growth rates are calculated in 
accordance with one of the analytical model developed in BETACOOL and the ring structure 
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loaded from output MAD file. When the growth rates are known one can calculate mean square of 
the scattering angle taking into account multiplication factor. The mean square angle after one 
revolution in the ring can be calculated under assumption that the alpha function and dispersion in 
the position of calculation are zero. In this case initial beam emittance is equal to: 
 

 ( ) ( )22 xxxxx ′−′−=ε . (5.1) 

 
After the scattering of all the particles on the randomly distributed angle θ the new emittance value 
is 
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New r.m.s. angular spread value can be calculated as follows 
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The second is equal zero because x/ and θ are independent random values, therefore the emittance 
can be expressed as: 
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Assuming that the square scattering angle is less than the beam r.m.s. angular spread one can 
expand this expression into Tailor series with accuracy to the first term. It gives for the scattering 
angle such an equality: 
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Using the rate value definition one can writes for the scattering angle: 
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where β is the beta function in the point of the particle array generation, τ is characteristic growth 
time in corresponding degree of freedom. Here the angular deviation of the particle trajectory 

means relative momentum components: 
p
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=θ . After Nturn revolutions in the ring 

the square of the scattering angle is equal to the sum of the square angles at each revolution: 
 

 turn
rev N

T
τβ

ε
=θ 22 . (5.6) 

 
The variation of the particle trajectory angular deviation is calculated in accordance with 
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 ξθ=θ∆ 2  (5.7) 

 
where ξ is the random value with Gaussian distribution at unit dispersion. 
 
 
5.2. Detailed calculation of the momentum kick 
 
5.2.1. Burov’s model 
 
In the case of a detailed calculation of the growth rates the algorithm is similar to the previous case. 
However, the characteristic times are calculated for each particle individually. For this purpose one 
needs to know not only the r.m.s. parameters of the particle array distribution function, but the 
amplitudes of the betatron and synchrotron oscillations of the particle. The inverse growth times for 
each particle can be calculated by numerical evaluation of the scattering integrals. Under some 
additional assumption the integration can be performed analytically for one degree of freedom. For 
instance, in the frame of Burov’s model of detailed IBS calculation, the longitudinal IBS rate is 
presented as [10]: 
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Here ux are rms velocities in PRF, sx,y – rms beam sizes. zm – amplitude of the ion oscillations over 
longitudinal co-ordinate, Vxm,ym are the amplitudes of oscillations over transverse velocities, I0 – 
modified Bessel function. The form-factor Φ is given by the expression: 
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Horizontal IBS rate relates to the longitudinal rate as: 
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where the bar stands for averaging over the ring. 
 
The formula (5.8) is derived on the basis of plasma relaxation model and does not contain averaging 
over the ring lattice parameters. The formula is based under assumption of Gaussian distribution of 
the ions flattened in velocity space. To test the model at the same model of IBS process at initial 
step of the simulations in the program the following combination of r.m.s. rates calculation and 
detailed formula is used. Square of the particle scattering angle is calculated as 
 
 ( )ymxmzmmean VVVF ,,22 θθ = , (5.11) 
 
where 2

meanθ  is calculated using analytical model of IBS in accordance with expression (2.24). The 
form factor F is calculated accordingly to (5.8) as 
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Normalization constant C is calculated numerically to satisfy the condition: variation of r.m.s. beam 
parameters with time has no depends on the way of IBS calculation – mean or detailed. 
 
 
5.2.2. Core-tail model 
 
Model Beam algorithm can simulate beam dynamics with the distribution of model particles.  
Standard models of IBS assume that the beam has Gaussian distribution. In the case of Model Beam 
algorithm in BETACOOL the particles can have an arbitrary distribution. 
 
To address this problem, the “core-tail” approach was introduced [11]. In this approach, the 
parameters of the core and tails of the distribution could be defined based on either FWHM model 
or by fitting two Gaussians. The corresponding methods in BETACOOL are called “FWHM” and 
“bi-Gaussian”, respectively. 
 
When the distribution function can be accurately presented as a sum of two Gaussian functions for 
core and tail particles, the “bi-Gaussian” model provides an accurate fit. In this case 
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where atail, acore, σtail, σcore – amplitudes and widths of beam profile, i – corresponds to degrees of 
freedom: 1 – horizontal, 2 - vertical, 3 - longitudinal. Powell method [12] is used in the code to find 
of Gaussian function parameters. This method minimizes the deviation between the model beam 
profile and Bi-Gaussian distribution: 
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where (xi, yi) – points of the beam profile distribution, N is the total particle number. RMS 
parameters of ion beam  (emittances and momentum spread) are calculated in the suggestion 
that distribution of model particles has Gaussian shape. Beam parameters and particle number for 
Bi-Gaussian distributions are: 
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i ,τ  and ii  of Bi-Gaussian distributions are calculates 

with standard procedure as described above in section {4} on the base of choosen IBS model for 
Gaussian distribution. Model particles in the tail get the kick with standard procedure as described 
in Section 5.1 using of tail heating growth rates.  
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where ε1,2 – horizontal and vertical emittances, β1,2 – horizontal and vertical beta-functions, (∆p/p) – 
momentum spread, Trev – revolution period, Nturn – number of turns, ξ – the random value with 
Gaussian distribution at unit dispersion. Particles in the core get the kick from core and tail heating 
rates: 
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5.2.3. Parzen’s model for rms rates of bi-Gaussian distribution 
 
The model for IBS growth rates calculation proposed by G. Parzen [13] is based on presentation of 
the ion distribution function as a sum of two Gaussian distributions. gives the number of 
particles in , where  is the number of particles in a bunch. For a bi-Gaussian distribution, 
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Here Nc and Nt are the particle number in the first (corresponding tu the core of total distribution) 
and second Gaussian (describing the tail of the total distribution). ( )( )∫ −=Γ pxddpxS tctc

33
,, ,exp  

are the corresponding normalization factors, 
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where 
 

 
i

i
i

I
S

ε
= , i = x, y, s (5.20) 

 
is the ratio of the particle invariant of the motion I to 2-sigma emittance ε in the corresponding 
plane.  
 
Because of Nc + Nt = N the distribution (5.18) is described by 7 independent parameters: 

 and Ntstytxcscycx ,,,,,, ,,,,, εεεεεε c. To find these parameters for arbitrary array of particles one 
needs to solve 7-D optimization problem, which looks unrealistic. To avoid this difficulty the 7-D 
optimization problem was replaced by solution of 3 independent 3-D optimization problem. For 
each degree of freedom from smoothed beam profile the program calculates rms emittances for core 
and tail of distribution function using Powel method [12]. As a result of the calculations one has a 
set of 9 parameters: 
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 cxtxcx N ,,, ,, εε ,  
 cytycy N ,,, ,, εε , (5.21) 
 cstscs N ,,, ,, εε ,  
 
the emittances are used as corresponding parameters of Bi-Gaussian distribution, and intensity of 
core Gaussian is calculated as: 
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Thereafter the program calculates additional four parameters, required for evaluation of growth 
rates for total beam: 
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The diffusion coefficients for core and tail Gaussians are calculated in accordance with Bjorken-
Mtingwa model: 
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where matrixes  are calculated in accordance with (4.27) with substitution of 
corresponding emittances. The IBS constants are calculated as usual: 

cttc ΛΛΛ ,,

 

 
isipiyix

cii
i

LNcr
A

,,,,
2
0

3

2

8 σσεεγπβ
= . (5.27) 

 
Diffusion coefficients for the total beam are calculated as: 
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This procedure is repeated in each optics element of the ring, and resulting heating rates are 
averaged over the ring circumference. 
 
The described algorithm does not coincide exactly with the original paper [13]. However, it uses the 
same final formula (5.28) and is based on the same modification of the Bjorken-Mtingwa model, 
which simplifies benchmarking of the model.  
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