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Abstract

We present a new technique to continuously measure and compensate the global difference cou-

pling coefficient through the continuous measurements of eigenmode projection parameters, using a

high resolution phase-locked-loop (PLL) tune meter. First, four eigenmode projection parameters

are defined as the observables for weak difference coupling. Then, their analytical expressions are

obtained using the strict matrix treatment and the Hamiltonian perturbation theory of linear cou-

pling. From these parameters, the complex global coupling coefficient can be fully determined and

compensated. This method was successfully demonstrated in the Relativistic Heavy Ion Collider

(RHIC) 2006 run.
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I. INTRODUCTION

Skew quadrupole strength scan is the conventional method to measure and correct the

global coupling [1–5]. However, it is unsuitable for the coupling measurements and cor-

rections on the ramp of the superconducting Relativistic Heavy Ion Collider (RHIC). As a

logical extension, skew quadrupole modulation technique was proposed to deal with global

decoupling on the ramp, either coupling amplitude or coupling angle can be modulated [6–9].

To track the fast tune changes, a phase-locked-loop (PLL) tune meter [10–13] was used.

In the above methods for coupling measurements and corrections, the fractional eigentune

split is used as the observable. This has been proved to be less sensitive when the accelerator

is working close to the difference coupling resonance line. To detect the minimum of the

fractional eigentune split, additional coupling sources must be introduced into the accelera-

tor. All of the above methods are used in feed-forward mode. In applying tune feedback on

the RHIC ramp, we sometimes experienced a mix-up of the PLL eigentune tracking under

the coupled situation [7, 8]. To solve this problem to ensure a robust PLL tune measurement

system, continuous coupling measurements and corrections are needed [14, 15].

To improve coupling measurements, during the RHIC 2004 run, the PLL was reconfigured

to measure the projections of both eigenmodes onto the x and y axes. In addition, a

formalism was developed to properly parameterize this measurement [15, 16]. According

to this formalism, the global coupling coefficient can be determined from the measurements

of the eigenmode projection parameters.

In the following, we first define four eigenmode projection parameters for the coupled

betatron motion. Then, their analytical expressions are obtained via the strict matrix treat-

ment and the Hamiltonian perturbation theory. From the measurements of these parame-

ters, the complex global coupling coefficient can be fully determined and compensated. This

method was successfully demonstrated in the RHIC 2006 run. The continuous coupling

measurement yields a global decoupling feedback along with a robust tune feedback.
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II. EIEGNMODE PROJECTION PARAMETERS

A. Definitions

At one observation point in the ring, the beam center’s (x, y) coordinates of a free oscil-

lation motion or of a coherently excited motion are given by



xn = AI,x cos[2πQ1(n− 1) + φI,x] + AII,x cos[2πQ2(n− 1) + φII,x]

yn = AI,y cos[2πQ1(n− 1) + φI,y] + AII,y cos[2πQ2(n− 1) + φII,y]
, (1)

where QI and QII are the eigentunes with the coupling sources. Ai,z and φi,z , i = I, II,

z = x, y, are the eigenmode i’s projection amplitude and projection phase onto z axis. Ai,zs

are no-negative numbers.

Besides the fractional eigentune split, we define four eigenmode projection parameters

as the coupling observables. RI and RII are the ratios of eigenmode projection amplitudes

between the horizontal and vertical projections,

RI =
AI,y
AI,x

, (2)

RII =
AII,x
AII,y

. (3)

∆φI and ∆φII are the eigenmode projection phase differences between the horizontal and

vertical projections,

∆φI = φI,y − φI,x, (4)

∆φII = φII,x − φII,y. (5)

Here, we assumed that eigenmode I and II are related to horizontal and vertical planes,

respectively. Therefore, if there is no coupling in the accelerator, RI = RII = 0.

B. Simulation

Before giving the analytical expressions to these eigenmode projection parameters, we

carry out numerical simulations to check their behavior in a 2-D decoupling scan, using a

simplified accelerator model of the RHIC’s linear optics.

The uncoupled tunes are set to (Qx,0, Qy,0) = (28.22, 29.23). Three thin-length skew

quadrupoles are equidistantly inserted into the ring model. The first skew quadrupole’s
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FIG. 1: Eigentune split in a 2-D decoupling scan.

strength is set to (ksdl)1 = 0.005 m−1 to introduce the coupling. The other two skew

quadrupoles are used for scanning. Based on the optics model, the strengths of the global

coupling correction for them are (ksdl)2,3 = 0.005m−1.

Fig. 1 shows the eigentune splits in the 2-D scan, and Fig. 2 shows the projection am-

plitude ratios RI,II . The projection ratios are much more sensitive than the eigentune split

while scanning close to the globally uncoupled point.

Fig. 3 shows the projection phase difference ∆φI , where ∆φI remains constant if the

direction of the decoupling scan points towards the globally uncoupled point. We also found

that there is a sudden π phase jump in ∆φI when the scanning crosses the uncoupled point.

In the following, we will show that ∆φI actually is the phase of the global difference coupling

coefficient C−.

More detailed simulations are given in [16–18]. In [17], comparisons of the projection

parameters between three different approaches, together with the numerical simulations, are

presented.
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FIG. 2: Projection amplitude ratios RI,II in a 2-D decoupling scan.
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III. ANALYTICAL SOLUTIONS

In this section, we give the analytical expressions to the eigenmode projection parameters.

The approach with strict matrix treatment of linear coupling is presented, followed by the

Hamiltonian perturbation approach.

A. Strict approach with action-angle parameterization

With the action-angle parameterization of linear coupling [19, 20], a single particle’s

motion is represented by




x

x′

y

y′




= P ·




√
2J1 cos Φ1

−√2J1 sin Φ1
√

2J2 cos Φ2

−√2J2 sin Φ2



, (6)

where JI,II , ΦI,II are the actions and betatron phases of the two eigenmode motions re-

spectively. P can be numerically calculated from the eigenvectors of the one-turn 4 × 4

transfer map. It can also be expressed in the Twiss and coupling parameters defined in

Edwards-Teng’s parameterization,

P =




r
√
βI 0 c11

√
βII − c12αII√

βII

c12√
βII

− αIr√
βI

r√
βI

c21

√
βII − c22αII√

βII

c22√
βII

− c12αI√
βI
− c22

√
βI

c12√
βI

r
√
βII 0

c11αI√
βI

+ c21

√
βI − c11√

βI
− αIIr√

βII

r√
βII



. (7)

Expanding Eq. (6) gives




x = p11

√
2J1 cos Φ1 + p13

√
2J2 cos Φ2 − p14

√
2J2 sin Φ2

y = p31

√
2J1 cos Φ1 − p32

√
2J1 sin Φ1 + p33

√
2J2 cos Φ2

. (8)

Therefore, 



RI =
√

p2
31+p2

32

p11

RII =
√

p2
13+p2

14

p33

, (9)





∆φI = arctan(p32

p31
)

∆φII = arctan(p14

p13
)
. (10)
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or, in the Twiss and coupling parameters, according to Eq. (7),





RI =
√

βIc
2
22+2αIc22c12+γIc

2
12

r
√
βI

RII =
√

βIIc
2
11−2αIIc11c12+γIIc

2
12

r
√
βII

, (11)





∆φI = arctan( −c12

αIc12+βIc22
)

∆φII = arctan( c12

−αIIc12+βIIc11
)
. (12)

B. Perturbation approach with the Hamiltonian perturbation theory

The Hamiltonian perturbation theory of weak linear difference coupling gives the isolated

linear difference coupling Hamiltonian as [4]

H2 = |C−|√axay cos(Ψx −Ψy + ∆ · ϕ+ χ), (13)

where ax,y and Ψx,y are the coupled motion’s amplitudes and phases respectively. ∆ is the

fractional uncoupled tune split, ∆ = Qx,0−Qy,0−p. The linear difference coupling coefficient

C− is defined as

C− = |C−|eiχ =
1

2π

∫ L

0

√
βxβykse

i[φx−φy−2π∆·s/L]dl, (14)

where βx,y are the uncoupled betatron amplitude functions, φx and φy are the uncoupled

betatron phase advances, ks is individual skew quadrupole’s strength, L is the ring cir-

cumference, and s is the distance between the skew quadruple and the reference point to

calculate the coupling coefficient.

After some algebraic calculations, a single particle’s motion can be shown [16] to be given

by




x(s) =

√
2βx{a cos[Ψx + (ν −∆/2)ϕ− χ/2)] + b cos[Ψx − (ν + ∆/2)ϕ− χ/2)]}

y(s) =
√

2βy{c cos[Ψy + (ν + ∆/2)ϕ+ χ/2)] + d cos[Ψy − (ν −∆/2)ϕ+ χ/2)]}
, (15)

ν =
1

2

√
∆2 + |C−|2, (16)





c
a =

|C−|
2ν + ∆

b
d

= − |C
−|

2ν + ∆

, (17)

where a,b,c,and d are decided by the initial conditions.
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There are two eigentunes from Eq. (15),





QI = Qx,0 − 1
2
∆ + 1

2

√
∆2 + |C−|2

QII = Qy,0 + 1
2
∆− 1

2

√
∆2 + |C−|2

, (18)

with the fractional eigentune split given by

|QI −QII − p| =
√

∆2 + |C−|2 . (19)

Comparing Eq. (15) to Eq. (1) and considering Eqs. (2)-(5) one obtains





RI =

√
βy
βx
· |C−|√

∆2 + |C−|2 + ∆

RII =

√
βx
βy
· |C−|√

∆2 + |C−|2 + ∆

, (20)





∆φI = χ

∆φII = π − χ
. (21)

C. Interpretations

The action-angle parameterization approach gives the strict expressions for the projec-

tion amplitude ratios and the projection phase differences. It can be used to numerically

calculate the four observables. However, for weak linear difference coupling, the analytical

expressions Eq. (19)-(21) from the Hamiltonian perturbation theory are more convenient

and straightforward for interpreting RI,II and ∆φI,II .

According to Eq. (19), the fractional eigentune split |QI − QII − p| is determined by

the fractional uncoupled tune split ∆ and the amplitude of coupling coefficient |C−|. The

minimum fractional eigentune split is given by the the fractional uncoupled tune split when

the coupling coefficient C− is completely compensated.

According to Eq. (20), knowing only the measured eigentune split and RI , RII , the

uncoupled tune split ∆ and the coupling coefficient amplitude |C−| can be determined.

Following Eqs. (19), (20), we obtain

|C−| = 2
√
RIRII

1 +RIRII
|QI −QII − p|, (22)

∆ =
1− RIRII

1 +RIRII
(QI −QII − p). (23)
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The fractional uncoupled tunes Qx,y,0 are

Qx,0 =
QI +QII

2
+

∆

2
, (24)

Qy,0 =
QI +QII

2
− ∆

2
. (25)

Here, we assumed that the horizontal fractional tune is higher than the vertical fractional

tune.

According to Eq. (21), the phase difference of the coupling coefficient C− is given by ∆φI .

From Eq. (14), the phase χ of the coupling coefficient is determined only by the strength

combination ratios of the skew quadrupoles. Therefore if ∆φI can be measured, then the

right decoupling direction is known.

In summary, RIRII together with the eigentune split |QI−QII−p| determines the residual

coupling coefficient’s amplitude, while ∆φI reveals the residual coupling coefficient’s phase.

IV. APPLICATION TO THE RHIC RINGS

In the following paragraphs, the eigenmode projection parameters are obtained using

the RHIC PLL tune meter. A detailed description of the PLL setup for this measurement

are given in our other paper, which also presents the successful use of decoupling and tune

feedbacks on the RHIC ramps [21].

A. Global decoupling scheme in the RHIC

Each RHIC ring has three correction skew quadrupole families, F1, F2, and F3. The

contributions to the coupling coefficient from each skew quadrupole in one family are almost

the same due to the six-fold lattice structure. The coupling contributions from these three

skew quadrupole families are about 120◦ apart when they are powered with the same strength

and proper polarities. In our study, we combined F1 and F3 with the same strength to

produce a family F13 whose contribution to the total coupling coefficient is approximately

orthogonal to that from family F2.

Knowing the coupling coefficient C− from the measurements of the eigenmode projec-

tion parameters, the global decoupling strengths for these two orthogonal families can be
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calculated using the accelerator optics model,

∆(ksdl)F2 = −|C−| cos(χ− φF2) ∗ kF2, (26)

∆(ksdl)F13 = −|C−| cos(χ− φF13) ∗ kF13, (27)

where |C−| and χ are the residual coupling coefficient’s amplitude and phase measured

at the observation point. φF2 and φF13 are the angles contributed to the global coupling

coefficient at the observation point by families F2 and F13 respectively, while kF2 and kF13

are the scaling factors between the skew quadrupole strengths and the coupling coefficient

for families F2 and F13 respectively. All of them can be obtained based on the ideal optics

model.

B. PLL I/Q data processing

The four eigenmode projections onto the x and y axes are continuously measured through

a phase-synchronous I/Q demodulation in the PLL tune measurement system. If the eigen-

tunes are well tracked, the phases φI,x and φII,y in Eq. (1) from PLL tune meter are close

to zero. Actually, for each projection in Eq. (1), data sets of (Ii,z, Qi,z) are delivered from

the PLL system at about 300Hz.

The projection amplitude and phase for one projection is given by

Ai,z =
√
I2
i,z +Q2

i,z , (28)

φi,z = arctan2 (Qi,z, Ii,z). (29)

Knowing Ai,z and φi,z, according to Eqs. (2)-(5), the eigenmode projection parameters are

calculated.

C. A beam experiment test example

The measurement of the eigenmode projection amplitude ratio was verified in the RHIC

2005 run with the 245MHz PLL system reported in [15]. Knowing only RIRII and the

eigentune split |QI −QII − p|, we can calculate the residual coupling coefficient’s amplitude

|C−|, the uncoupled tune split ∆, and the uncoupled tunes Qx,y,0.
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In the startup of the RHIC run’06, with the base-band PLL system [13], the measurement

of the projection phase was confirmed. Then, with the measurements of the four eigenmode

projection parameters, together with the fractional eigentune split, both the global coupling’s

amplitude and phase are determined and global decoupling is possible.

In the following, we present one example of a beam experiment. We first introduced

∆(ksdl)2 = −2 × 10−4m−1 into a well decoupled RHIC Blue ring at injection. The left

part in the top plot of Fig. 4 shows that the extra coupling source pushed the eigentunes

farther, while the left part in the bottom plot of Fig. 4 shows the required decoupling

strengths were ∆(ksdl)2 = 7 × 10−5m−1, ∆(ksdl)1,3 = 1 × 10−4m−1. These strengths were

calculated based on Eqs. (28)-(29) with the coupling coefficient through the measurements of

eigenmode projection parameters. When we set these required coupling correction strengths,

the eigentunes moved back and the required decoupling strengths became almost zero.

The right part of Fig. 4 shows the result when we repeated this test but with different

initial coupling sources. We introduced ∆(ksdl)3 = −2 × 10−4m−1 into the above well

decoupled accelereator. The required decoupling strengths were then ∆(ksdl)2 = −1 ×
10−4m−1, ∆(ksdl)1,3 = 1 × 10−4m−1. After setting them, the ring returned to the globally

uncoupled state.

The top plot of Fig. 5 shows the measured fractional eigentunes QI,II and the calculated

fraction uncoupled tunes Qx,y,0 during these tests. It reveals that the uncoupled tunes were

almost kept constant when changing the settings of the skew quadrupole strengths. When

the accelerator is globally decoupled, the eigentunes and the uncoupled set tunes merged.

This can be interpreted according to Eq. (18) and (19). The bottom plot of Fig. 5 shows the

fractional eigentune split |QI−QII−p|, the calculated uncoupled tune split |Qx,0−Qy,0−p|,
and the coupling coefficient’s |C−| in the above tests.

V. DISCUSSION

The projection phase, ∆φI , plays a important role in correcting the global coupling. Its

measurement is the basis of the global decoupling feedback, as it reveals the right strength

combination ratios of the existing correction skew quadrupoles to compensate the residual

coupling coefficient. RIRII determines the decoupling depth.

In the RHIC beam experiment, we assumed two orthogonal skew quadrupole families F2
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and F13. For correction families which are not strictly orthogonal, iterations of the above

corrections may be neded. However, having such correction families does not greatly affect

the operation of the decoupling feedback.

The above analytical solutions are based on a single particle’s free oscillation or coherent

driven oscillation. Thus, they are also suitable for global decoupling with turn-by-turn

dual-plane beam position monitor (BPM) data.

In [22], a Hamiltonian approximation approach to the driven beam’s response was derived

through the beam transfer function (BTF). It also showed that the response of the vertical

phase difference due to coherent driving in the horizontal plane gives the coupling coefficient’s

phase.

VI. CONCLUSION

We presented a new technique to continuously measure and compensate the global differ-

ence coupling coefficient via the continuous measurement of eigenmode projection parame-

ters, using a high resolution phase-locked-loop (PLL) tune meter. The analytical interpre-

tations to the four eigenmode projection parameters are obtained with both strict matrix

treatment and Hamiltonian perturbation theory of linear coupling. Based on measurements

of the eigenmode projection parameters, the complex global coupling coefficient can be fully

determined and compensated. This technique was successfully demonstrated in the RHIC

2006 run and yielded a global decoupling feedback along with a robust tune feedback.
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