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Abstract

Electron cooling that results when a bunch of electrons overlaps a
bunch of ions , with both bunches moving at the same velocity, may
be considered to be an intrabeam scattering process. The process is
similar to the usual intrabeam scattering, where the ions scatter from
each other and usually results in beam growth. An important differ-
ence is that in electron cooling the mass of the ion is different from
and much larger than the mass of the electron. This difference con-
siderably complicates the intrabeam scattering theory. It introduces
a new term in the emittance growth rate, which vanishes when the
particles are identical and their masses are equal, and can give rise to
emittance cooling of the heavier particles . The term that gives rise to
beam growth for the usual intrabeam scattering is also present but is
much smaller than the cooling term when one particle is much heavier
than the other. This paper derives the results found for the emittance
cooling rates due to the scattering of the ions in the ion bunch by the
electons in the electron bunch.

1 Introduction

Electron cooling that results when a bunch of electrons overlaps a bunch of
ions , with both bunches moving at the same velocity, may be considered to
be an intrabeam scattering process. The process is similar to the usual intra-
beam scattering, Ref.[1] where the ions scatter from each other and usually
results in beam growth. An important difference is that in electron cooling



the mass of the ion is different from and much larger than the mass of the
electron. This difference considerably complicates the intrabeam scattering
theory. It introduces a new term in the emittance growth rate, which van-
ishes when the particles are identical and their masses are equal, and can
give rise to emittance cooling of the heavier particles . The term that gives
rise to beam growth for the usual intrabeam scattering is also present but is
much smaller than the cooling term when one particle is much heavier than
the other.

This paper derives the results found for the emittance cooling rates due
to the scattering of the ions in the ion bunch by the electons in the electron
bunch. The derivations given below makes considerable use of the results
found in two previous papers, Ref.[2] and Ref.[3]

2 The f(x,p) distribution and the scattering
rate 0NV

The ions are contained within a bunch and their distibution is given by
fa(Ta, pa) where N, fo(Tq,ps) is the number of ions in d3z,d®p,. N, is the
number of ions in the bunch.

/d3xad3pa fa(xaapa) =1

The distribution of the electrons in the electon bunch is given by fy(zs, ps)
and N, is the number of electrons in the electron bunch. Let §N, be the
number of ions with momentum, p, in d3®p, and space coordinate z in d3x
which are scattered by the electrons with momentum p; in d*p, which are
also in d3z, in the time interval dt , into the solid angle d€)' corresponding to
the direction p,. Then 6N, is given by, Ref.[2],

/dspadspb 3
6Na = ]Va]\[baa,bdQ ~ 7 a(xapa)fb(mapb)F(paapb)d xdt
2 _ n2,2]1/2
DPap mem
F(pa,ps) = (o) ol (1)
mgMmyp

04 1s the scattering cross section for the scattering of the ions from the
electrons.In the expression for F(p,,ps), we have put ¢ = 1. F(p,, py) has
the dimensions of a velocity.



For completeness sake this result is given in the form which is valid in any
CS. For the electron cooling problem for RHIC, one can do all the calclations
in the Rest CS, which is the CS moving along with the two bunches. In the
Rest CS, the central particle in either bunch is at rest and the motion of the
motion of the particles may be treated non-reletavistically.In the Rest CS |
one may put v, =, = 1 and

F(pa,pp) = |V — b

3 Growth rates for < p;,p;, >

Following Bjorken and Mtingwa, Ref.[4], cooling rates will first be given for
< PiePja >- Wwhere the <> indicate an average over all the particles in
the bunch. From these one can compute the growth rates for the average
emittances of the ions, < ¢, >. In a scattering event, where an ion with
momentum p, scatters off an electron with momentum p;, the momenta will
change to p}, and pj. Let dp;, represent the change in p;, in the collision, and
similarly for §(piepja). Then

0pia = Dig — Dia
6(PiaPja) = Dialia — PiaPja (2)

Using the scattering rate given by Eq.(1), one can now compute § <
DiaPja > in the Rest CS,

6 < Garia) > = Ny [ dadpdpifalw,pa) flw, w7 5
UabdQI 6(piapja) dt
§(piaPja) = (PiaPja — PiaPja) (3)
The 11-dimensional integral in Eq.3 can be reduced to a 3-dimenional
integral for gaussian distributions, if one notes that in the Rest CS oy
depends on v, — v and one transforms from the momentum variables p,, p

to two new variables one of which is v, — v;. This can be done by the
transformation

Dia = VVi‘i‘iAz’

a

_ 1
by = Wi——A4;
my
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Pia + Div

W. =
’ ’70ﬂ0 (ma + mb)c
_ _ Via — U
Ai = Pia—Pip= "
YoBoc
Epd’py, = WA
p. — Dia
" YoBomac
P = Div
' YoBommic
1 1
2 Mg myp

Ep. Py, = dEWdEA
(4)
A; is proportional to the relative velocity, v, —v, when the velocities are
non-relativistic. A similar transformation is used in Ref.1 and Ref.4 except

that for them the particles are identical and the transformation is simpler.
d(piaPja) can be written as

8(PiaPja) = DPiaGja T Pjalia + Gialja
Gia = Dig — Pia (5)
This result can written as
6(PiaPja) = [(Wigja + Wj%’a)mia] + [(mia)Q(Az’Qja + AjGia + GiaGja)]
Gia = Gia/ (YoBopc)

(6)

Eq.3 can be rewritten in terms of W, A as

<O(pubia) > = Ny [ ddWdALu(w,p) fo(w p0)|5: — G|
0abdSY  §(piapja) dt
0(Piabja) = [(WiGja + chim)mﬁa] + [(mﬁa)?(Ai«ija + AjGia + GiaGja)]
(7)
One may note that o,, depends only on A and not on W. In the expression
for §(piapja) the second term will be seen to depend only on A and gives rise
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to the usual intrabeam scattering growth rate, while the first term depends
on W and will be seen to vanish for identical particles and gives rise to the
cooling rates for ion electron scattering.

The transformation from py, py to W, A allows us to do the integral over
d€Y. Eq.7 holds in any CS where the particle motion is non-relativistic. For
each p,,p, one can define a center of mass CS, called the CMS, in which
Pa + Pp = 0. In the CMS

A; = Pia — Pivb = Pia/ (YoBoc)

In the CMS, A and p, have the same direction, and p, is scattered by the
electrons to p, ' which is along the direction given by the polar angles 6, ¢
relative to the direction of pj or A.

In Eq.7, only the ¢;, depend on the scattering angles 6,¢ . To do the
integral over d€2' in the Rest CS one has to evaluate the integrals

di = /dQlaaqu
Cij = /dQlaab[(Aina + AjGia) + Gialjal
(8)

dY o4 is an invariant and 5, (o are both the same in the CMS and the Rest
CS as they are both the difference of 2 vectors that are proportional to a
velocity. d;, c;; are tensors in 3-space. If these integrals are evaluated in the
CMS and the result is written in terms of tensors in 3-space then the result
will also hold in the Rest CS.

In the CMS, we introduce a polar coordinate system 6, ¢ where 6 is mea-
sured relative to the direction of p; or A and we assume that oaw(0,0) is a
fumction of # only. we can then write

A = (0,0,1)[4]

o = (0,0,1)|&|(v0800)

P’ (sin 0 cos ¢, sin B sin ¢, cos B)| A | (7oBopuc)

G. = (sinfcos@,sinBsing,cosd — 1)|A|(voBopc) 9)

In the CMS, using Eq.9, one finds

d; = —27r/d03in0(1 — ¢050)54,(0,0,1)|A]
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i (10 0
cij = 7r/ dfsin® 0o |[AP] 0 1 0
0 00 —2

(10)

In computing c;; one may note that the A;g;, + A;gi, term in Eq.8 only con-
tributes to c33 while the g;,g;, term contributes to to all 3 diagonal elements
of Cij-

These results for d;, ¢;; in the CMS can be rewritten in terms of tensors
in 3-space as

d;, = —27T/d08in0(1 — cos8)ogp\;
Cij = ’7'('/7r d05in3 90’ab (|A|2(5,] - 3AZA])
0
(11)

In this form the results will also hold in the Rest CS. Eq. 7 can now be
rewritten as

< 8(PiaPja) > = Nb/ Fad®WdP A fo(w,pa) fo(2, ps)| 0 — 3|
([—QWmi(I/VZ-A]- + W,A;) / dfsinf (1 — cost)og)t
Hr (B[P0 — 30:;) [ dbsin®bow]s)
(12)

Eq.12 can be used to compute either intrabeam scattering for identical
particles or electron cooling. If the a and b particles are identical, then the
second term indicated by | ], and called the A-term gives the growth rates
for intrabeam scattering. In this case, the first term, indicated by [ |; and
called the W-term, will vanish. This is shown below for gaussian distributions
and also can be shown to hold for any distribution because of the symmetry
of the a and b particles. If the b particle is much lighter than the a particle,
the W-term gives rise to cooling of the a particles and the A-term is smaller
than the W-term by the factor my/m,. This is shown below for gaussian
distributions. Eq. 12 holds for any distibutions, f,(x,p.), fs(z,ps). In the
next section, we will specialize to gaussian distributions.
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it is often assumed that oy, is given by the Coulonb cross-section in the
CMS CS for the a and b particles. This is given by

Tabyo 1
Oab ( 2(;) (1 — cosh)?
ZaZb€2
Tab = 2
pc
Bac = |0a— 1%

(13)

The integrals over € in Eq.12 can then be written as

y 1 ﬁgbbma:cab 2
/d&smﬁ(l—cos@)m = In|l+ (T
, 1 B2 bomasas ) 1
dhsin®0——— = 2 |in |14 (Caimazab) |
[ im0 oy [” ( ra ) T ] (Boybrnasan)
Tab

tan(Opin) = ———

( ) ﬂgbbmawab

(14)

bmazap 1 the maximun allowed impact parameter in the CMS. 6,,;, is the
smallest allowed scattering angle in the CMS.

It will be seen below that to compute the cooling rates for the emittances
one will also need the cooling rates for < z;,p;, >. When the a and b particles
are identical, the < x;,p;, > are zero , but not zero when the particles are
different. Using Eq.7, one finds

<Oladia) > = Ny [ WAL (w,pa)folw,p)IT — 5
O'abdQI 5(.%‘1',1]3]'(1) dt
_ _ o
5($ipja) = $i5pja inq]'aﬁa
From Eq.11 one has
/dQ'Jabcjja = —27r/d05in9(1 — cos0)oapA\;

which gives



<O(wipi) > = Ny [ Eod WD folw,pa) fo(w, p) 7 — 1)
. 7
[—27r/d03m9(1—0050)0ab xiAjE] dt
(15)

Eq.15 shows that < 6(z;pj,) > gives rise to a cooling term which vanishes
when the particles are identical , or when «; = 0 for the ion partcle for a
gaussian distribution.

4 Cooling rates for < p;,p;, > in the Rest CS
for Gaussian distributions

In this section, we will find the cooling rates due to the scattering of the ions
by the electrons in the cooling section when the ion and electron bunches
have gaussian distributions. In Eq.12 , we will keep only the W-term as the
A—term , discussed later, is smaller by the factor m,/m, In this paper, it
will be assumed that the dispersion is zero in the cooling section.

For a gaussian distribution, f,(z,p,) is given for the ion bunch for zero
dispersion by Ref.[3],

1

fa(xapa) = F_exp[_sa(xapa)]
r, = /d3xd3p exp[—Sa (2, pa)]
r, = 7r3€za€sa€ya

(16)

Sa = Sza + Sya + Ssa

1
Sma = Teza(xa .T;) ,’E; = pza/pOa
Ta
€za (xa :L‘;) = [xZ + (/Bw$; + azax)Z]//B;ca
1 ' '
Sya = Teya(yu ya) Yo = pya/pOa
€ya
€yaly,Y,) = [Z/2 + (Byya + O‘yay)Q]/ﬁya

8



1
SS = Tes(saps/pOa)
€s

€5(5,Ps/Poa) = s* M

ch 207
63(8;Ps/p0a) = é(S)Z + ﬁs(ps/pOuL)2
65)’(Saps/pm1.) = [(5)2 + (ﬂs(ps/pﬂa))Q]//Bs
Bs = US/UP
€ = 2050, (17)

A longitudinal emittance has been introduced so that the longitudinal motion
and the transverse motions can be treated in a similar manner. [, in the
Rest CS is larger than (3, in the Laboratory CS by the factor 73. s,ps are
the paricle longitudinal position and momentum in the Rest CS.

In Eq.12 we will now do the integration over d3zd*W using the above
gaussian ditributions. Because there is no dispersion in the cooling section
the integral over dzdW, or dsdW, or dydW, can each be treated in a similar
way. Eq.12 can now be written using the Coulomb cross-section as

N,
6 < (pubia) > = i | dodWdDeap[~(S, + S\ —
alb
p r B2,b >
_V_VZ Taby2 l 1 abVUmazab dt
Ma J(gb) ! +< Tab
Wy = —20(Wd;+ WA as)
We rewrite S, + Sy as
Sa + Sb = EZ(SZ(L + Szb) Z = .T, y’ S
1 xzza 1/2 Qi Tiq
Sia = a l@ + (ﬂia Dia + /2 )2
1 xlza 1/2 I QiaLia 9
S = ;[E"‘(ﬂm W+ L)+ 2y

Sia+ S = Az + AW + 2A12:Wi + (Aroizs + AoiWi) Ai + Agoi A



L €; m e;
QEQ] Agoi = l(ﬁ)ﬂ“]
m € m’ & |,

(19)

The symbols [( )]y and [( )]- are defined by

[l =0Jat( Do
[C)l==CJa=C D

We will now make a transformation to eliminate the 2A49;2;W; term in S;, +
Sip. We rewrite S;, + Sy as

Sia + Sip

A1} + Ao W7 + 2A102 Wi + (Argizi + Aot Wi) Ai + Agoi A
[A11$2 + A22W2 + 2A123§W + (Al()l' + A()lW)A + AooAQ]i

Az, 1/2 A o
Ay A
[ ( 1 = A22) ( 22 W+A;ég )
+(A1()l‘ + A()lW)A + A()()AQ]Z'
LW”] lA” i ]
22 A 22 g
[A11A22 %2]1
[wonli Wi = [(Wyn + Wp,pn)l;
[/_11/2 dndpn] i
A’ Ay 1
A1/2 i Wi = [_ A1/2L Wp,: = Aééz i

[772 + p% =+ (A10$ =+ A()lW)A + A()()AZ]Z'
[7° + P2 + (Bion + Bowpy) A + AgA?);
[Avozy + AaWyli  Bou = [AnWp, ]
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A2 Ay 1
Bigi A10A1/2 Amm | By = lAmEl
VT/U = _27[( nh + anpn) A + (Wnn + anpn)in]

(20)

In the expression for S;, + S given at the end of Eq.19, the linear terms
in 7, p, can be eliminated by the transformation

B B
= el m e

2
Sia+ S = (17 +py° + (Aw — Biy/4 — Bf, [4)A?);
_ B B
Wy = 2l - DA, + W, - D2,
_ B B
RPN + Wy (7~ 22 A))A)
(21)
Eq.17 can now be rewritten as
O(PiaD _ N dad3p, d3A S, + S
< (PiaPja) > = FFbAl/Q/ na“py exp[—(Sa + S)][va — vp
2 2
Sz ufos (3]
myg ab T'ab
_ B B
Wy = 2l Wy~ DOAA, + W, (5~ A,
_ By B
+[Wy (7 — 7A)]jA,~ + (W, (P — %A)]jAZ]
A2 = QYA AV
(22)

Using Eq.20 for S;, + Si, and for V_Vij , one can do the integral over d377d3p_n
and get

11



0 < (ﬁiaﬁja) >

Eq.23 is our final result for the cooling rates for < p;,pj, > in the Rest
CS, for two overlapping gaussian bunches , with no dispersion in the cooling
section. For this case one gets zero results when ¢ # j. The remaining 3-

No 1 55 Mo

3
2
1+ (ﬁgbbm(wab>

AiA;

In dt

ab
Tab

BlO BOl

BlO BOl
2 ey

2 [(Wn )i + (W, + WPWT)J-

)
2 2 2\1/2
’YOﬂO(Aa: + Ay + As) /
By, By, 2]
A — (2202 _ (20
4w — (52— (57,
[A11A22 - A%Q]Z

A2 712 312

[ A2 A 1
A2 | Wy = [_A1/2L W, = A%Q i
[A1ozy + A Wyli By = [AOIan]i

Ap Au
az A

AlO

1
By = lA(n F]z

i 22

1 2 .
o ] Aggi = [@]
+ +

| BiE €

%] Aroi = [Qﬁ%]
+ -

L € m €;

-Qﬁ@]_ Agoi = l(ﬁ)Q@]

| ™€ m’° €
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dimensional integral over d®A is an integral over the relative velocities of the
ions and electrons.

It will be seen below that to compute the cooling rates for the emittances
one will also need the cooling rates for < z;,p;, >. For gaussian distribu-
tioins, using the coulomb cross section and Eq.15, Eq.18 is replaced by

N,
§ < (xiPja) > = T I?b / d>vd®Wd? Aexp[—(S, + Sp)]|vs — 0|
2 2 2
ﬁjij lr—(;b] n|l-+ <7ab mamb) ] dt
mg ab Tab
fz'ij = —27T,’131'Aj (24)

After going from the z, W coordinates to 7, p, and integrating over n, p,
Eq.23 is replaced by

No 1 535 1

6 < (.’L‘Zﬁ]a) > = ﬁﬁ’ﬂ' ’I"abcm—aii'z'j
—(Ag A2 + X\, AZ + )\, A2
/ dgAexp[ ( T - Y=y S)]AZA]
ab
2 2
In |1+ (M) dt
Tab
B
wy = om[m |
[ A3 Ay 1
T =\ ' Wi = [_WL Wow = [E]

Bioi = [Awz,+AaWyli  Bou = [AnWy, i
1/2
As) A Arz

BlOi = Alom— 01@

1
Bou’ - lAm F]Z

22

2

(25)

5 Emittance growth rates

One can compute growth rates for the average emittances, < ¢, > in the
Laboratory Coordinate System, from the growth rates for < p;,p;, > in the
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Rest Coordinate System. In the following , dt¢ is the time interval in the
Laboratory System and dt is the time interval in the Rest System. dt = ~ydt.
The final results are, for zero dispersion,

ﬂz’a d 2 2aia d

d R _ :
%<€ia> = 75<pm>+ d_£<xipia> t=x,Y9,8

(26)

To derive the above results, the simplest case to treat is that of the vertical
emittance. The verical emmitance is given by

gya(ya y;) = [3/2 + (ﬂyayfz + ayay)Q]/ﬂya y; = Dya
06y = ﬂya(s(ﬁ;a) + 5(2ayay(ﬁya)
o d 200, d B
— < Eya > By <Pl > L — < YPye >

dt y di e v di

(27)

In Eq.(27), Y., = Dya, 0€yq is the change in €, in a scattering event. Similar
results will hold for €., and €,, for zero dispersion.

The A term in electron cooling

In the previous section it was assumed that in Eq.12 one could drop the
second term or A term compared to the first term or W term.This is true
when my, << m, and p, =~ p, in the Rest CS. Using Eq.4, one can write
_ ma _ mb
W; = +
7 pama+mb pbma+mb .
A = [P — Do

Wi >~ [Pa)i
A; = [pa — Dy
(28)
Thus W and A are both of the same order as p, . If the motion is non-

relativistic in the Rest CS, ¢, ~ A ~ p,. From this it follows that the A
term in Eq.12 is smaller than the W term by the factor m;,/m,,.

14



It has also been assumed that the motion in the Rest CS is non-relativistic.
In the Laboratory CS, the rms spread in the relative momentum is given by

c. 1/2
Opi = [ﬁ] 1=2x,Y,8
2

(29)
For gold ions in RHIC at v = 100
€& =€ =50—8,0,=0,=50 and op, = 0py =2.24e -5

€ = 1.8¢ — 4,3, =300m and 0,5 = .55e—3

In the Rest CS oy, 0y are unchanged at 2.24e-5 And oy, is reduced by the
factor v to .55e-5 The spread in each of the momenta in the Rest CS is of
the order of le — 3m,c since v = 100 and the ion velocities are of the order
of le-3c. Similar numbers hold for the electrons in the electron bunch.
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