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Abstract— Proton therapy has become an established form of
cancer treatment, but dose calculations and treatment planning
are routinely performed based on X-ray computed tomography
(XRCT), which requires a conversion to proton stopping power. A
more appropriate method to directly measure stopping power and
dose is proton computed tomography (pCT), where high-energy
protons are measured after traversing completely through the
patient. Proton radiographs and pCT have historically been lim-
ited by blurring due to multiple scattering. However, proton-by-
proton track reconstruction techniques, measuring entry positions
and exit positions and energies of each scanning proton, promise
to greatly improve the spatial resolution of proton radiographs.
We use simplified physical models of proton transport (including
Bethe-Bloch energy loss, energy straggling, and multiple Coulomb
scattering) in the 0-300 MeV energy range of interest to analyt-
ically quantify the tradeoffs and scaling between dose, spatial
resolution, density resolution, and scanning voxel size. Monte
Carlo results and comparisons to this scaling are generated with
a small “fast” Monte Carlo code specifically written for proton
transport and pCT (pint).

I. INTRODUCTION

Proton-by-proton data recording is now becoming available
at the accuracy and high rates necessary for proton computed
tomography (pCT), thanks to technology transfer from high
energy and nuclear physics experiments. The exit energy (or
range) of individual protons can now be recorded, as well
as their entrance and exit transverse displacements and an-
gles, for example with the use of segmented calorimeters and
silicon strip detectors. Proton-by-proton track reconstruction
techniques promise to greatly increase the spatial resolution of
proton radiographs, overcoming the multiple scattering prob-
lems that, in the past, have unacceptably blurred conventional
radiographs. When a set of proton radiographs are taken from
many angles, proton Computed Tomography can be performed
in similar fashion to X-ray CT (XRCT), or proton emission
tomography (PET), even though the proton trajectories tend
not to be straight.

A prototype proton-by-proton “camera” has been installed
on the PSI proton therapy gantry, and early operational per-
formance has been reported, albeit without track reconstruc-
tion [1]. For example, Schneider and Pedroni [2] show radio-
graphic projections produced by plotting the average exit range
of protons, versus the transverse x and y coordinates measured
in the entry plane. They also show “edge enhanced” images
taken with the same data, when the RMS exit range variation
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is plotted versus entrance x and y – making use of the multiple
scattering phenomenon and proton range uncertainties [3].

While many imaging techniques can be envisaged, two
particular methods are selected here, to quantify the relationship
between dose, spatial resolution, and density resolution, in the
idealized case of a perfect detection system. They are:

1) Average transmission method: Statistics are accumulated
for each of a bundle of (not necessarily straight) proton
trajectories through the object being imaged. The frac-
tion of protons that is transmitted is measured as the
“transmission” efficiency for each trajectory. This method
is very similar to XRCT, so that it is relatively easy to
compare XRCT and pCT doses in simulation. This has
already been performed, preliminarily, by Satogata and
Dilmanian et al. [4]

2) Average energy loss method: Again, statistics are accu-
mulated for a bundle of trajectories, but in this method
the quantity of interest is the average energy loss through
each trajectory.

In all cases the best spatial resolution will only be obtained
by using the best possible individual track reconstruction tech-
niques, down to a fundamental limit defined by the physical
phenomenon of multiple Coulomb scattering. It does not make
sense to consider a bundle of proton trajectories with a trans-
verse extent smaller than this physical limit.

The minimum transverse resolution through track recon-
struction is considered briefly, below, in the section entitled
“multiple scattering”. However, the spirit of this paper is that
the track reconstruction problem is orthogonal to the dose
versus sensitivity problem – so long as it is implicitly assumed
that the spatial accuracy of track reconstruction is known, and
that no attempt is made to exceed it.

II. SIMPLIFIED PHYSICAL MODEL

A. Linear energy transfer, range, and dose

The average rate of loss of energy (or Linear Energy Trans-
fer, LET) for a single proton of instantaneous kinetic energy
K, passing through water, is well-approximated by
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[MeV/(g/cm2)] ≈ 1

0.098k + 0.0277
(1)

in the energy range of medical interest, 0 < K[MeV] < 300,
with k ≡ K/100 [MeV]. The dimensions of λ are [g/cm2], so
that in passage through a thickness ∆s [cm] of water of density
ρ = 1 [g/cm3],

∆λ = ρ∆s (2)
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Fig. 1. Linear energy transfer |dK/dλ| and mean range 〈R〉 for protons in
water, versus local kinetic energy K or initial kinetic energy K0. Data are
shown for NIST PSTAR reference data, pint Monte Carlo simulation, and the
approximations of Eqs. 1 and 3.

This clearly illustrates Bragg peak behavior, in which most of
the proton energy (and dose) is delivered just before it stops.

The average range 〈R〉 [g/cm2] of a proton of incident kinetic
energy K [MeV] in water is approximately

〈R〉 ≈ 4.90k2 + 2.77k . (3)

Eqns. 1 and 3 are related, since

d 〈R〉
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(4)

when the instantaneous energy is the maximum K = K0, and
λ is associated with the range 〈R〉. For example, a 200 MeV
proton has an LET of about 4.47 [MeV/(g/cm2)], increasing
dramatically just before it stops at the end of its mean range
of about 26 g/cm2 in water. This is illustrated in Fig. 1. Note
that higher-order approximations can be applied to improve the
low-energy behavior of the LET fit, Eqn. 1.

The dose in Grays is the energy deposition per unit mass,
measured locally in Joules per kilogram. Thus, the average dose
due to N protons passing through the face of a square pixel of
size a is

D ≡ N

ρa2∆s
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or, more conveniently,

D[Gy] = 1.6× 10−10
N

a2[cm2]
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[MeV/(g/cm2)] (6)

For example, a single 200 MeV proton passing through a square
pixel (or a cubic voxel) of size 0.1 cm delivers an average dose
of about 7.2× 10−8 Gy.

B. Straggling

The rate of energy loss of protons due to collisions with
atomic electrons is a statistical process. Hence it is also
necessary to consider “straggling”, the accumulation of an RMS

spread in energy loss and range, in addition to the average
quantities considered above.

A proton beam passing through a material thickness ∆λ
acquires an additional mean square energy spread of

∆σ2

K = 0.6
Z

A
(mec

2)2γ

(

1 − β2

2

)

∆λ (7)

where me is the rest mass of an electron, Z and A are
the atomic number and weight of the (pure) element being
traversed, and β and γ are relativistic factors [5]. The growth
rate is constant to a very good approximation in the medical
energy range of interest, so that for water

σ2

K [MeV2] ≈ 0.089λ[g/cm2] (8)

By the time it reaches the Bragg peak, when λ ≈ 〈R〉 just
before stopping, a monochromatic beam has acquired a total
RMS energy “straggle” of

σKT [MeV] = 0.30
√

〈R〉 [g/cm2] (9)

This corresponds to an RMS range spread of

σR =
d 〈R〉
dK

σKT (10)

or approximately

σR[g/cm2] ≈ 0.30 (.098k + .028)
(

4.90k2 + 2.77k
)1/2

.
(11)

For example, a monochromatic 200 MeV proton beam has an
RMS kinetic energy spread of about 1.53 MeV at the end of
its range of 26 g/cm2, and an RMS range spread of about 0.34
g/cm2 (0.34 cm in water).

C. Multiple Coulomb scattering

Independently of the energy loss process, the incident proton
beam acquires an increasing transverse angular spread, and
hence also transverse size, through the process of multiple
Coulomb scattering (MCS). Even if the incoming beam has zero
size and zero angular spread (zero emittance), the transverse
size of the beam soon becomes significant. Fig. 2 shows, for
example, that a 200 MeV beam acquires an RMS transverse
size of 0.65 cm by the end of its range in water. The spatial
resolution of the radiographic image is defined by the RMS size
of the beam on exit, if proton-by-proton track reconstruction
is not possible, or is not performed. Typically this is a few
millimeters, unacceptably large in comparison with the sub-
millimeter resolution possible with XRCT, MRI, or even with
PET imaging. This is the physical root cause of the poor
reputation that proton radiography has historically acquired, due
to the inevitable blurring in simple transmission images.

However, the acquisition of proton-by-proton displacements
and angles at entry and exit means that the internal trajectory of
each proton is known in a statistical sense at the sub-millimeter
level, in typical cases. This is calculated analytically in [6],
[7] and illustrated in Fig. 3, where 200 MeV protons enter
with zero displacement and zero angle, but exit with at different
displacements measured by a single detector layer with a crude
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Fig. 2. Transverse proton beam size (due to MCS) versus depth in water for
various energy incident protons, as calculated by pint Monte Carlo.
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Fig. 3. Illustration of most likely paths and 1σ RMS envelopes, simulated
for 200 MeV protons by pint Monte Carlo. The entrance position and angle
are assumed known to sub-mm accuracy, and the exit displacement is assumed
known to a 1 mm detector resolution.

resolution of 1 mm. The displacement angle is not measured.
The solid lines indicate the most probable internal trajectory for
each proton, with the dashed lines representing the one sigma
statistical certainty. In the simple case of a water phantom,
it is possible to answer these questions analytically [?]. Even
with a crude exit displacement measurement, and no exit angle
measurement, the internal trajectory is known to sub-millimeter
accuracy.

If the exit angle is also measured, the most likely path
envelope is further constrained as shown in Fig. 4. Clearly there
is a limiting case even when exit angle and position are known
to perfect accuracy. However, with realistic proton measurement
resolutions the one-sigma proton envelope can be reduced to
below 0.5 mm. We suggest that these Monte-Carlo simulations
may be used as backprojection kernels for pCT reconstruction.
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Fig. 4. A comparison of most likely paths and 1σ RMS envelopes, simulated
for 200 MeV protons by pint Monte Carlo, with no knowledge of the exit
proton angle and with exit proton angle known to 1 mrad. Exit angle constraints
improve the most likely path uncertainty by up to 40%.

III. AVERAGE TRANSMISSION OBSERVATION

Fig. 5 illustrates the average transmission method suggested
by Satogata and Dilmanian [4], in which the energy of the
incoming beam and the profile of the bowtie filter are adjusted
so that the Bragg peak falls at the distal edge of the bowtie,
simultaneously minimizing the dose to the patient while maxi-
mizing the measurement sensitivity. The total straight line linear
density, given by

λ(x, y) =

∫ B

A

ρ(s) ds +

∫ D

C

ρbowtie ds (12)

is a function of the transverse co-ordinates x and y at entrance.
The fraction of the proton beam transmitted is a function of λ
and the initial kinetic energy K0, T = T (λ, K0) as sketched
in Fig. 6. Transmission is measured for each square entrance
pixel of size a as

Tmeas =
Nout

N
(13)

where N protons enter each pixel, but only Nout exit (any-
where) from the bowtie, into a downstream counter. The
accuracy with which Tmeas represents T increases with the
number of incident protons N as follows

Tmeas = T ±
√

Nout

N
= T ±

√

T

N
(14)

How many incident protons are needed to resolve a fractional
density variation of δ ≡ ∆ρ/ρ0 in a cubic voxel of size a? To
detect such a variation the transmission T must be measured
with an accuracy

∆T =
dT

dλ
∆λ =

dT

dλ
ρ0aδ (15)

Eqn. 14 shows that approximately

N ' T

∆T 2
(16)
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Fig. 6. Sketch of the transmission T versus linear density λ, for different
incident proton kinetic energy K. The constant-angle losses are from inelastic
nuclear scattering.

incident protons are needed per pixel. This leads to the principal
result that for a single radiographic projection

Nδ2a2 =
T

(dT/dλ)
2
ρ2
0

(17)

Note that this expression can readily be applied to photons in
X-ray imaging.

A. The optimum dose-sensitivity solution

Fig. 6 suggests that the right hand side of Eqn. 17 is
minimized (for the highest sensitivity δ and the least dose D on
the left hand side) by adjusting the incident kinetic energy K0 to
maximize the transmission slope dT/dλ. The range distribution
φ(R) has a significant Landau tail. Nonetheless, for current

purposes it is convenient to assume that the range distribution
is Gaussian

φ(R) =
1√

2πσR

exp
(R − 〈R〉)2

2σ2

R

(18)

In that case, if nuclear losses are ignored, then

dT

dλ
= −φ(λ) (19)

and the steepest transmission slope, which occurs when λ =
〈R〉 and T = 0.5, is given by
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dT

dλ
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max

=
1√

2πσR

(20)

Thus, when the initial kinetic energy K0 is tuned so that half of
the protons penetrate the object and the bow tie, then according
to Eqn. 17

Nδ2a2 =
πσ2

R

ρ2
0

(21)

The local dose D that is delivered by this flux of protons
depends on the local energy K, as well as the initial energy
K0, since by invoking Eqn. 5

Dδ2a4 =
πσ2

R

ρ2
0

∣

∣

∣

∣

dK

dλ

∣

∣

∣

∣

(22)

In particular, when K = K0 at the surface of the patient, then
applying Eqns. 4, 9, and 10 gives

Dδ2a4 =
0.089π

ρ2
0

〈R〉 d 〈R〉
dK

(23)

Substituting Eqns. 1 and 11 gives the convenient approxima-
tions

Nδ2a2[cm2] ≈ 0.28

ρ2
0

(4.9k2 + 2.8k)(0.10k + 0.03)2 (24)

and

Da4δ2[Gy cm4] ≈ 4.5× 10−11

ρ2
0

(4.9k2 +2.8k)(0.10k+0.03)

(25)
where, as usual, k ≡ K/100 [MeV], and ρ0 ≈ 1.0 g/cm3.
For example, consider a 200 MeV proton beam being used in
water to detect a δ = 0.01 density fluctuation in voxels of
size a = 0.1 cm. In this case Nδ2a2 ≈ 0.37, N = 370, 000
protons are needed for every pixel, and the surface dose (when
K = 200 MeV) is D = 26 mGy.

Eqns. 22 and 25 record the dose for a single radiograph
projection. In a computed tomograph over a field of view of
width W , approximately

M =
W

a
(26)

angles are required. Thus, the total CT dose scales like

D ∼ W

a5δ2
(27)

with a very strong fifth power dependence on a, the voxel size.



IV. PROTON-BY-PROTON ENERGY LOSS OBSERVATION

Instead of simply counting the fraction of protons that exit, in
a transmission measurement, it is now assumed that the energy
of each individual proton is measured, and that the goal is to
reconstruct the density of each voxel by accurately recording
the energy loss there. A perfect energy detector (for example
a calorimeter) is assumed, so that the dose-sensitivity relation
derived below is a fundamental limit. As before, it is assumed
that the track reconstruction is accurate enough that it is known
through which voxels each proton passes.

The total energy deposited when N protons pass through a
basis trajectory of square dimension a is

∆K = N

∫
∣

∣

∣

∣

dK

dλ

∣

∣

∣

∣

ρ(s)ds ± N1/2σKT (28)

where the second term represents the measurement error that
is present, due to the total straggling fluctuations,

σKT =

(
∫

dσ2

K

dλ
ρ(s)ds

)1/2

(29)

even for a perfect calorimeter. Clearly, the error in the measure-
ment of the average energy loss per proton (∆K/N ) decreases
statistically like 1/

√
N . This is why more protons are needed

to resolve smaller fluctuations in density, in a single radiograph
projection. For example, if the density of a single voxel in this
trajectory deviates in density by δ = ∆ρ/ρ0, then the average
total energy loss changes by

δ∆K = N

∣
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dK

dλ

∣

∣

∣

∣

δρ0a (30)

where |dK/dλ| must be evaluated at the instantaneous kinetic
energy K corresponding to that particular voxel. Thus the
condition for detection of this density deviation is just

N

∣

∣

∣

∣

dK

dλ

∣

∣

∣

∣

δρ0a > N1/2σKT (31)

or, leaving just the intensity and sensitivity terms on the left
hand side, the detection threshold is at

Nδ2a2 =
1

ρ2
0

σ2

KT

|dK/dλ|2
(32)

This is converted to a dose-sensitivity relationship by invoking
Eqn. 5 to give

Dδ2a4 =
1

ρ2
0

σ2

KT

|dK/dλ| (33)

In a more convenient form for quantification,

Nδ2a2[cm2] ≈ 0.089λ

ρ2
0

(.10k + .03)
2 (34)

and

Dδ2a4[Gycm4] ≈ 1.4 × 10−11λ

ρ2
0

(.10k + .03) (35)

where λ is the total thickness of the patient, the instantaneous
energy k ≡ K/100 is, as ever, measured in MeV, and
ρ0 ≈ 1.0 g/cm3. Consider again the surface dose delivered

by a 200 MeV proton beam being used in water to detect a
δ = 0.01 density fluctuation in voxels of size a = 0.1 cm,
but now with a thickness of λ = 20 g/cm2, and no bow tie
filter. Since now Naδ2 ≈ 0.094, about 94,000 protons are
needed to penetrate each pixel, and the local dose is about 6.6
mGy, per radiographic projection. Superficially, this is about
half an order of magnitude less than the the dose received
using the average transmission method. However, these results
neglects the increased dose necessary due to imperfect energy
measurement detectors, and due to other imperfections in both
approaches.

These results, and the results from the average transmission
method, show the same scaling with a, since with about W/a
radiographic projections for each CT the total dose goes like

D ∼ W

a5δ2
(36)

V. CONCLUSIONS

We have reviewed the relationships, scalings, and energy-
appropriate approximations for pCT models. These include
linear energy transfer, proton range, and dose (material energy
deposition) from Bethe-Bloch energy losses, energy straggling,
and multiple coulomb scattering. These approximations have
been compared to a simple, fast Monte Carlo code pint, written
by the author and used for simulations of pCT for detector
and experiment development. Spatial track resolution of pCT
is sub-millimeter when entrance and exit positions and angles
are measured as accurately as possible. Scaling arguments
have shown that dose D vary with voxel size a and required
density resolution δ as D ∝ a−5δ−2, demonstrating a very
strong dependence on voxel size. Further Monte Carlo work
and reconstruction techniques, including most-likely envelope
backprojection, are in development to demonstrate this scaling.
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