Analysis and Design of Cold Helium Gas Warm Up for the 2K Experiment

A. Sidi-Yekhlef
November 2005
\section*{Collider Accelerator Department}
Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Analysis and Design of Cold Helium Gas Warm Up for the 2K Experiment

Olive Stohlman - Carnegie Melon University

John Krupczak, Jr. - Hope College
Ahmed Sidi-Yekhlef - Brookhaven National Laboratory

Collider-Accelerator Department Brookhaven National Laboratory

Upton, NY 11973

Analysis and Design of Cold Helium Gas Warm Up for the 2K Experiment

Olive Stohlman
Carnegie Melon University
John Krupczak, Jr.
Hope College
Ahmed Sidi-Yekhlef
Brookhaven National Laboratory

November 11, 2005

Overview

This file models the heating of helium gas from 11 K to a goal of at least 280 K . The purpose is to demonstrate the feasibility of an ambient vaporizer for this application, given the low pressure drop available.

The setup is a 100 -foot Schedule 2010 " steel pipe leading into a vaporizer with some number of parallel, finned 1 " pipes.

Results suggest that the proposed setup with 18 parallel vaporizer tubes will suffice, under the condition that about half of the leading 10 " pipe be ice-free and open to natural convection. This section is pipe is valuable for the larger part of the heating operation and requires little pressure drop to maintain an acceptable flow rate. It is still advantageous to have a significant portion of the warm-up occur in the ambient vaporizer bank, because the cold gas demands less pressure drop to move through the pipe- thus, the more heating done at the end of the gas's travel, the less pressure drop needed.

System Schematic

Model Structure

There are currently four submodels to this simulation: one fluid submodel (containing two HX macros), and three thermal submodels- the 10 " tube, an ambient vaporizer tube, and a fin.

BigFlow

The fluid submodel, "BigFlow," defines the starting conditions and pumping conditions of the helium. Currently, the pump is modeled as a defined mass flow rate, rather than any complex pumping relationship between pressure and volume flow rate. This allows us to find plausible steady-state combinations of pressure drop, temperature, and mass flow.

| $s o$ BIGFLOW Network | | Fost Processing | FLUINT Input Check Help | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Create/Edit Select Layout Print/Export | | | | |

The "HX-1" macro is the 10 " pipe with natural convection. The "HX-2" macro is a single pipe of the ambient vaporizer; a duplication factor is applied at both ends to represent a bank of some number of pipes.
 is calculated by FLUINT.

Axial and radial conduction within the pipe wall model are calculated with standard formulas. The subroutine "NCHCT" calculates a separate convection coefficient for each out-layer lump of the wall. (This subroutine is based on natural convection from a horizontal cylinder.)

Simulations showed that the outer layer of the metal, if open to free convection, was generally above 200 K in temperature.

HX-2, SmPipe01, and vapfin01

The HX-2 macro is duplicated according to the register "sp_rep." it represents a single pipe of the ambient vaporizer, made of aluminum.

No convection directly off the pipe wall is included. All heat exchanged with the environment is done through the fin model "vapfin01," and the heat exchange seen by the tube is multiplied by the number of fins defined by the register "fins_per."

Vapfin01 represents five long, vertical stripes of metal along the fin. Because heat exchange from a vertical plate is not a linear function of height, it is unfortunately necessary to assume a single temperature along each of these stripes. The five subdivisions exist because SINDA has no subroutine for fin efficiency. Each fin is assumed to be standing alone in the ambient environment. Calculations of the netual convection off the fins are done is "Variables 1 " of the fin submodel.

Assumptions

- no losses in fittings
- identical parallel tubes is ambient vaporizer
- identical fins
- fins are free standing flat plates with vertical stripes of constant temperature
- pump represented as constant mass or volume flow rate
- ice either completely blocks a give section of pipe or has no effect at all.

Future Improvements

K factor of pipe splitting

- from pg. A-29, Crane: 60ft for a sharp 90-degree bend
- from pg. A-29, Crane: $\mathrm{f}_{\mathrm{T}}=0.014$ for 10 -inch pipe
- K=0.84

Could be included in the "FK" field of the entrance path to the HX submodel for the ambient vaporizer

- Other loss factors
- More complex feed system model
- More fluid properties down to correct start temperature (Complete property tables were only available down to 11 K , with an always-gas assumptions) (Current properties from Cullimore \& Ring)
- account for interaction between fins

Registers

sp_{-}^{*} : Registers related to the pipes in the ambient vaporizer
k^{*} : Equations for conduction factors (A/x, radial conduction)
fin_*: Fin properties
T*: Temperatures

AFLOW	$\mathrm{Pl} / 4^{*} \mathrm{I}^{\wedge} 2$
CAVVOL	
DRATIO	
FINS_PER	
FIN_HEI	
FIN_LEN	
FIN_SUBD	
FIN_WID	
HEATING	
ID	
KAX_IM	2*PI*LN(((MD1+MD2)/2)/ID)*LENGTH/NUM
KAX_MO	2*PI*LN(OD/((MD1+MD2)/2))*LENGTH/NUM
KLONG_I	PI/4*(MD1^2-ID^2)/(LENGTH/NUM)
KLONG_M	PI/4*(MD2^2-MD1^2)/(LENGTH/NUM)
KLONG_O	Pl/4*(OD^2-MD2^2)/(LENGTH/NUM)
LENGTH	
MD1	1/(2+DRATIO)*(OD+(1+DRATIO)*ID)
MD2	OD+ID-MD1
MFLOW	
INT:NUM	
OD	
PCAV	
PDENS	
PFEED	PCAV
PIE	PI
PLAB	
PSUCT	PFEED-266
PWROUGH	0.00005/ID
P_A	PFEED
SP_CSA	Pl/4*(SP_OD^2-SP_ID^2)
SP_DENS	
SP_DIV	
SP_FLOWA	Pl/4*SP_ID^2
SP_ID	
SP_KLONG	PI/4*(SP_OD^2-SP_ID^2)/(2*SP_LEN/SP_DIV)
SP_KRAD	2*PI*LN(SP_OD/SP_ID)*SP_LEN/SP_DIV
SP_LEN	FIN_HEI
SP_OD	
SP_REP	
SP_ROUGH	0.0000015/SP_ID
TFEED	
TFINISH	
TLAB	
TSTART_I	
TSTART_M	
TSTART_O	
T_A	
VFLOW	
VIN	PI/4*(MD1^2-ID^2)/NUM
VMID	PI/4*(MD2^2-MD1^2)/NUM
VOUTER	$\mathrm{Pl} / 4^{*}\left(\mathrm{OD}^{\wedge} 2-\mathrm{MD} 2^{\wedge} 2\right) / \mathrm{NUM}$

Flow area

1 Volume of experiment-cooling tank
Ratio of middle lump wall thickness to inner/outer lump wall
8 thickness
4 number of fins per tube section
4.572 vertical height of fins (longest dimension)
0.1016 radial extension of fins

5 number of lumps to represent fin
0.0025 width of fins (smallest dimension)

Heat produced by experiment in tank (W)

0.2545 Inner diameter of pipe

Radial conduction from inner to middle ring
Radial conduction from middle to outer ring longitudinal conduction along inner ring longitudinal conduction along middle ring of pipe longitudinal conduction along outer ring of pipe

constant mass flow rate

number of longitudinal subdivisions
Outer diameter of pipe
Start pressure of experiment tank
density of pipe material

pi

Pressure in room outside pipe
Suction pressure
Relative wall roughness
Pressure after 1st heat exchanger metal cross-section of finned pipes density of small pipe material

Inner diameter of small pipe (pipe with fins) axial conduction k factor
Radial conduction k factor length of small pipe
Outer diameter of small pipe (pipe with fins)
total number of parallel finned pipes

Temperature of final plenum
Temperature of room outside pipe start temperature of inner pipe layer start temperature of middle of pipe start temperature of outside of pipe Temperature after first heat exchanger constant volume flow rate volume of each inner pipe lump volume of each middle pipe lump volume of each outer pipe lump

AFLOW: Cross-section flow area on 10 " pipe
ID: The inner diameter (in meters) of the 10" pipe
DRATIO: The ratio of the thickness of the inner and outer layers of the 10 " pipe to the center layer. The outer layers were made thinner for temperature accuracy.
HEATING: Not currently in use; would be the steady-state rate of heat generation by the experiment. (A previous model had an experiment tank connected to a feed plenum; these were removed to simply the model.)
KAX_IM: $=2 \pi \cdot \ln \left(\frac{M D 1+M D 2}{2 \cdot I D}\right)$ This is the standard formula for conduction between two radial levels. It calculates this for the inner two levels of the 10" pipe
LENGTH: Length of 10 " tube (assumed to be 100 feet).
MFLOW: When the final path (21022) in the BigPipe model is a mass flow rate-defining path, this value can be used to specify the mass flow rate (in kg / s)
NUM: The number of axial lumps on the BigPipe model (this cannot be changed dynamically; the lumps must be added or removed by hand to match this number if it is changed!)
OD: The outer diameter (in meters) of the 10 " pipe
$\mathbf{P}_{-} \mathbf{A}$: The pressure in the source plenum
PCAV: In a previous version of the model, this was the pressure in the experimental cavity.
PFEED: In a previous version of the model, this was the pressure of the helium source feeding into the experiment cavity.
PIE: FORTRAN doesn't understand "pi."
PLAB: The ambient pressure is used in natural convection calculations only.
PSUCT: In a previous model, there was a fixed suction pressure. This was impractical as a pump model, but this value is still used in the end plenum.
PWROUGH: Pipe wall relative roughness for the 10" (Schedule 20) pipe
SP_CSA: The cross-sectional area of the metal annulus in the vaporizer pipes is used to calculate axial heat transfer and volume.
SP_REP: This is one of the most important user-adjusted values. This determines the number of parallel vaporizer pipes, each of which will experience identical fluid flow. Fractions are acceptable, but I don't know why you would do that.
SP_DIV: See "NUM."
TSTART_*: These values do not effect the steady-state results.
T_A: The temperature of the source plenum.
VFLOW: When the final path (21022) in the BigPipe model is a volume flow ratedefining path, this values can be used to specify the volume flow rate (in $\mathrm{m}^{\wedge} 3 / \mathrm{s}$)
VMID: The volume of each lump of the central cylinder of the 10 " pipe

Trial Runs

	pipes	Pressure at end junction (Pa) (tank BigFlow.221, immediately before the "pump")	Temperature at end junction (K)	Temperature in first lump of fin bank (K)	$\begin{aligned} & \hline \text { Mass flow } \\ & \text { rate (g/s) } \end{aligned}$	$\begin{array}{\|l} \hline \text { Volume flow } \\ \text { rate (} \left.\mathrm{m}^{\wedge} 3 / \mathrm{s}\right) \end{array}$
Limits	12	>3800	>280		>2	
Full lead tube convection	12	3777.51	285.94	263.196	2.52874	0.40
Full lead tube convection	12	3826.49	291.707	278.411	2.00895	0.32
No lead tube convection	12	3883.25	239.11	51.5726	2.4836	0.32
No lead tube convection	12	3910.75	249.625	66.1659	1.8724	0.25
No lead tube convection	36	3983.05	272.172	134.27	2.24	0.32
No lead tube convection	36	3985.4	272.936	137.731	2.15147	0.308
Lead tube convection for nodes 50+	36	3979.93	288.835	252.556	2.03103	0.308
50+	36	3977.43	287.547	248.669	2.11826	0.32
90+	36	3981.6	276.32	167.969	2.20599	0.32
75+	36	3979.73	281.6	206.672	2.16388	0.32
Full lead tube convection	36	3974.73	293.945	283.726	2.07106	0.32
Mass flow set (not volume), 50+	12	3843.26	276.669	224.294	2.1	
Mass flow, 50+	24	3942.92	284.404	239.3	2.1	
Mass flow, 50+	18	3903.45	280.276	227.695	2.2	
Mass flow, 50+	16	3885.97	279.183	225.141	2.2	
Mass flow, 50+	48	3993.59	288.915	252.995	2.2	
Mass flow, 50+	24	3938.57	283.346	234.706	2.2	

Register Data for above chart

```
REGISTER DATA (for trial runs)
    AFLOW = PI/4*ID^2 $ Flow area
    VFLOW = 0.32 $ constant volume flow rate
    PIE = PI $ pi
    T_A = 11 $ Temperature after first heat exchanger
    P_A = PFEED $ Pressure after 1st heat exchanger
    CAVVOL = 1 $ Volume of experiment-cooling tank
    DRATIO = 8.0 $ Ratio of middle lump wall thickness to inner/outer lump wall thickness
    FINS_PER = 4 $ number of fins per tube section
    FIN_HEI = 4.57200 $ vertical height of fins (longest dimension)
    FIN LEN = 0.1016 $ radial extension of fins
    FIN SUBD = 5 $ number of lumps to represent fin
    FIN_WID = 0.0025 $ width of fins (smallest dimension)
    HEATING = 50 $ Heat produed by experiment in tank (W)
    ID = 0.2545 $ Inner diameter of pipe
    KAX IM = 2*PI*LN(((MD1+MD2)/2)/ID)*LENGTH/NUM $ Radial conduction from inner to middle ring
    KAX_MO = 2*PI*LN(OD/((MD1+MD2)/2))*LENGTH/NUM $ Radial conduction from middle to outer ring
    KLONG_I = PI/4*(MD1^2-ID^2)/(LENGTH/NUM) $ longitudinal conduction along inner ring
    KLONG_M = PI/4*(MD2^2-MD1^2)/(LENGTH/NUM) $ longitudinal conduction along middle ring of pipe
    KLONG_O = PI/4*(OD^2-MD2^2)/(LENGTH/NUM) $ longitudinal conduction along outer ring of pipe
    LENGT\overline{H}=30.5 $ pipe length (m)
    MD1 = 1/(2+DRATIO)*(OD+(1+DRATIO)*ID)
    MD2 = OD+ID-MD1
    INT:NUM = 100 $ number of longitudinal subdivisions
    OD = 0.2730 $ Outer diameter of pipe
    PCAV = 4053 $ Start pressure of experiment tank
    PDENS = 1 $ density of pipe material
    PFEED = PCAV
    PLAB = 101325 $ Pressure in room outside pipe
    PSUCT = PFEED-266 $ Suction pressure
    PWROUGH = 0.00005/ID $ Relative wall roughness
    SP_CSA = PI/4*(SP_OD^2-SP_ID^2) $ metal cross-section of finned pipes
    SP_DENS = 2770 $ density of small pipe material
    SP DIV = 20
    SP FLOWA = PI/4*SP ID^2
    SP_ID = 0.0254 $ Inner diameter of small pipe (pipe with fins)
    SP KLONG = PI/4*(SP OD^2-SP ID^2)/(2*SP LEN/SP DIV) $ axial conduction k factor
    SP KRAD = 2*PI*LN(S\overline{P OD/SP ID)*SP LEN/SP DIV $ Radial conduction k factor}
    SP_LEN = FIN_HEI $ length of smal\overline{l pipe}
    SP_OD = 0.02\overline{6}4 $ Outer diameter of small pipe (pipe with fins)
    SP_REP = 12 $ total number of parallel finned pipes
    SP ROUGH = 0.0000015/SP_ID
    TFEED = 11
    TFINISH = 280 $ Temperature of final plenum
    TLAB = 298.0 $ Temperature of room outside pipe
    TSTART_I = 100.0 $ start temperature of inner pipe layer
    TSTART_M = 200.0 $ start temperature of middle of pipe
    TSTART_O = 298.0 $ start temperature of outside of pipe
    VIN = PI/4*(MD1^2-ID^2)/NUM $ volume of each inner pipe lump
    VMID = PI/4* (MD2^2-MD1^2)/NUM $ volume of each middle pipe lump
    VOUTER = PI/4* (OD^2-MD2^2)/NUM $ volume of each outer pipe lump
```


This graph shows different numbers of parallel vaporizer pipes and the resulting final pressures. Higher final pressure indicate lower pressure drops. There was a constant mass flow rate of $2.2 \mathrm{~g} / \mathrm{s}$.

This graph shows how less pressure drop is needed if more of the 10 " tube has no convection (or is iced), but that there is a cutoff around 75% after which 36 ambient vaporizer tubes cannot heat the gas sufficiently.

References

Crane Co, Flow of Fluids Through Valves, Fittings, and Pipe (Technical Paper No. 410 M). New York, 1986

Cullimore and Ring Technologies, Inc. http://www.crtech.com/properties.html . 2003: Helium properties, air properties.

Fox, R. and McDonald, A. Introduction to Fluid Mechanics, $5^{\text {th }}$ ed. Wiley.
Holman, J.P. Heat Transfer, $9^{\text {th }}$ ed. 2001: McGraw-Hill

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

