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The linear one-turn map of a storage ring contains coupling information on which a correction
algorithm can be based. In principal, the one-turn matrix can be fitted from turn-by-turn data of beam
position monitors. However, the signal-to-noise ratio of the coupling information can be greatly
enhanced by fitting maps for larger turn numbers N. Furthermore, by using a number of beam position
monitors in a region with only small coupling sources, the determination of the N-turn map can be made
robust against failures of individual beam position monitors, and the signal-to-noise ratio of the
coupling information is further enhanced. With the so obtained N-turn maps an automated global
coupling correction is possible without the need for a tune change. This is demonstrated for the
Brookhaven Relativistic Heavy Ion Collider where the implementation of the algorithm allows a global
coupling correction within a few seconds at injection.

DOI: 10.1103/PhysRevSTAB.6.062801 PACS numbers: 29.20.Dh, 29.27.Ac, 29.27.Bd

I. INTRODUCTION

Linear coupling, when large enough, can make it dif-
ficult or impossible to set tunes to values close to the
coupling resonance Qx � Qy. These tunes are desirable
since the resonance density in this area is low. When a
tune feedback is used, linear coupling may prevent the
feedback system from attaining the set values and cause
the loops to open. A fast and robust method for decou-
pling is therefore desirable.

A widely used method to measure global linear cou-
pling is to move the tunes until the minimum tune sepa-
ration �Qmin � jQx �Qyjmin is reached [1]. A coupling
correction is then performed by scanning skew quadru-
pole corrector settings to minimize �Qmin. This approach
has several disadvantages. First, due to its iterative nature
the procedure is time consuming. This can result in time
lost for luminosity production, or slow performance deg-
radation if the correction is not performed routinely.
Second, in a coupled machine scanning one tune may
push the other tune close to a limiting resonance. In
superconducting machines, the resulting beam loss can
lead to an aborted store to protect the magnets from
quenching. A method that does not change the tunes is
therefore called for. Third, a tune and skew quadrupole
scanning method cannot be practically applied to a ma-
chine during an energy ramp. The decoupling method
presented here overcomes all these shortcomings.

In lepton machines, a coupling measurement and cor-
rection can be based on a continuous beam excitation with
a shaker (see, for example, Refs. [2–4]). However, the
beam excitation with a shaker leads to unacceptable
emittance growth in hadron machines. Apart from the
tune scanning method mentioned above, other coupling
measurements and correction algorithms were imple-
mented in hadron machines [5,6]. But in these cases,
hardware beyond a turn-by-turn orbit acquisition system
was used.

The measurement and correction of linear coupling
in storage rings was analyzed by a number of authors.
A short collection of this work is given as Refs. [1–12].
The purpose of this article is not to repeat such an
analysis. Rather, based on previous work, an algorithm
is presented to measure and correct linear coupling
globally from turn-by-turn orbit data. We assume here
that the orbit data are taken after a transverse kick was
applied. In principle the kick size can be small enough to
avoid sizable emittance growth. Emphasis is put on ro-
bustness against failures of individual beam position
monitors and random errors in monitor readings. Based
on fitted N-turn maps the minimum tune approach
�Qmin � jQx �Qyjmin, a common measure of linear cou-
pling, and skew corrector settings can be obtained with-
out a tune change. The algorithm lends itself to full
automation and allows a coupling correction within sec-
onds. When turn-by-turn data can be obtained during an
energy ramp, skew corrector settings can be computed for
the next ramp.

In the following we review the matrix description
of linear coupling. The construction of turn-by-turn
4-vectors is shown, from which N-turn maps can be fitted.
The minimum tune separation �Qmin is computed from
the N-turn map, as well as skew corrector settings to
minimize it. The implementation of an automatic cou-
pling correction, based on this method, is presented for
the Relativistic Heavy Ion Collider (RHIC).

II. MATRIX DESCRIPTION OF LINEAR
COUPLING

We follow in our notation largely Refs. [11,12] and only
state the results that are used later. For derivations the
reader is referred to Refs. [1–12]. We denote by ~zz �
�x; x0; y; y0�T the 4-vector with the positions and slopes
at a certain observation point in the ring (see Fig. 1). The
linear one-turn map M transforms the 4-vector ~zzi at turn i
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into the 4-vector ~zzi�1 at turn i� 1 via

~zz i�1 � M~zzi: (1)

The 4� 4 matrix M can be written in terms of 2� 2
matrices as

M �

�
A B
C D

�
: (2)

The machine is said to be globally decoupled if B � 0,
which implies C � 0. If the machine is globally de-
coupled at one observation point, it is not necessarily
decoupled at another observation point. B � 0 does not
mean that the eigenmotions are in the horizontal and
vertical planes, but that the resonant energy excitation
between one eigenmode and the other is suppressed.
Furthermore, if the linear coupling is caused by a number
of small sources, rather than a few large ones, global
decoupling at any observation point will usually lead to
a machine that is almost globally decoupled at any other
observation point [11].

We denote by �QA;QD� the eigentunes of the map (2),
where QA is close to the uncoupled horizontal tune Qx,
and QD is close to the uncoupled vertical tune Qy. The
eigentunes can be determined with good precision from
turn-by-turn data by filtering, Fourier transformation,
and interpolation [13]. For easier notation we will also
use the quantities �A;D � 2�QA;D, and the symplectic
conjugate R � �SRTS of a matrix R, where S is the
symplectic form and RT denotes the transposition of
matrix R. For 2� 2 and 4� 4 matrices the symplectic
forms are

S �

�
0 �1
1 0

�
and S �

0
BB@
0 �1 0 0
1 0 0 0
0 0 0 �1
0 0 1 0

1
CCA: (3)

For a general 2� 2 matrix

R �

�
R11 R12

R21 R22

�
; (4)

the complex conjugate is computed as

R � �SRTS �

�
R22 �R12

�R21 R11

�
: (5)

We now note that a matrix G can be found that transforms
the matrix M in Eq. (2) into an eigenbasis [11]:

M � GMG�1 � G
�
A 0
0 D

�
G�1: (6)

The underlined matrices denote one-turn maps in the
eigenbasis. The matrix G and its inverse G�1 can be
expressed as [11]

G �

�
gI �R
R gI

�
and G�1 �

�
gI R
�R gI

�
; (7)

where I denotes the identity matrix. The quantities g and
R can be computed as [11]

g �

																																																																
1

2
�

1

2

																																																
1�

detjC�Bj
�cos�A � cos�D�2

svuut ; (8)

and

R �
C� B

2g�cos�A � cos�D�
: (9)

The minimum tune approach is [11]

�Qmin �

																								
detjC� Bj

p
��sin�A � sin�D�

(10)

and global decoupling amounts to manipulations
that result in detjC� Bj � 0. Note that the sign of
detjC� Bj is negative on sum resonances and positive
on difference resonances [11].

In Eqs. (8) and (9) the denominators become small
when �Q � ��A ��D�=2�! 0, i.e., the globally de-
coupled state is approached. Under these circumstances
we get with Eq. (10)

lim
�Q!0

detjC�Bj
�cos�A � cos�D�2

� � lim
�Q!0

�2�Q2
min

cos2 �A��d2

sin2 �A��d2

� � lim
�Q!0

�Q2
min

�Q2 � 1;

(11)

since �Qmin 
 �Q. Thus g in Eq. (8) approaches 1. By
inspection of Eqs. (6) and (7) it can be seen that
lim�Q!0R � 0.

arc

observation point

FIG. 1. Observation point at the beginning of an arc and
beam trajectory in the arc.
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For weak coupling, the elements of the matrices B and
C can be more than an order of magnitude smaller than
those of the matrices A and D. As an example, consider a
linear one-turn map of a RHIC model. In this model a
single skew quadrupole of strength k � 0:0022 m�1 was
inserted in an otherwise uncoupled linear machine, at a
location with lattice functions �x � 11:8 m and �y �
44:9 m. k denotes the inverse focal length. The resulting
minimum tune split is [1,10]

�Qmin �
k
2�

												
�x�y

q
� 0:0079 (12)

and the one-turn map at the beginning of an arc, different
from the location of the skew quadrupole, is

MRHIC �

0
BB@
�1:87 48:88 �0:07 �0:49
�0:11 2:33 0:00 �0:04
0:01 �0:54 0:80 12:90
0:00 �0:02 �0:11 �0:52

1
CCA: (13)

The coupling information is in the small values of the off-
diagonal submatrices which often sink into the noise floor
when real data are used to fit a one-turn map.

With coupled motion energy is exchanged between the
transverse planes with the beat frequency. To observe the
maximum effect of the energy transfer from one plane to
the other, one has to wait for half the beat period, or N
turns with

N �
1

2jQA �QDj
�

�
j�A ��Dj

: (14)

This can be seen in Figs. 2(a) and 2(c). If we now consider
a N-turn map

MN �

�
AN BN
CN DN

�
(15)

and choose the turn number N with Eq. (14), the signal-
to-noise ratio of the coupling information is maximized.
In the above example from RHIC we get

MN
RHIC �

0
BB@
�2:03 34:35 �0:01 �10:31
�0:08 0:92 0:02 �0:29
0:58 �9:65 0:02 �9:26
�0:04 1:07 0:08 0:97

1
CCA; (16)

where QA � 0:2120, QD � 0:2283, and N � 30.
The coupling information can also be obtained from

the N-turn map. From Eq. (6) we get

MN � GMNG�1 (17)

and from Eq. (9)

R �
C�B

2g�cos�A � cos�D�
�

CN � BN
2g�cosN�A � cosN�D�

;

(18)

which leads to

C � B � �CN �BN�
cos�A � cos�D

cos�N�A� � cos�N�D�
: (19)

�Qmin can be computed with Eq. (10). The signal-to-
noise ratio of the matrix elements in CN � BN is maxi-
mized when the factor

cos�A � cos�D
cos�N�A� � cos�N�D�

(20)

is minimized. Often one can improve the results by
minimizing this quantity through small variations in N
from the start value given by Eq. (14). Based on the
obtained value for C� B, skew correctors can be set so
that detjC�Bj � 0 when the correctors are included.
This will be shown in Sec. V.

III. CONSTRUCTION OF TURN-BY-TURN
4-VECTORS

Assume that the beam position was measured at n
monitors in a contiguous region over a number of turns.
If the region contains only very small coupling sources,
the horizontal and vertical orbits are decoupled for the
passage of the beam during every turn. Such a region is
typically an arc of a storage ring (see Fig. 1). The position
and slope at the beginning of the arc in either plane can
then be fitted from the beam positions at the n monitors.
In principle two monitors are enough to obtain a fit result.
However, beam position monitors may fail and by using
more than two monitors the fit can be made resistant
against a limited number of such failures. Monitors
may deliver a status flag indicating whether the reported
data are useful (see Refs. [14,15] for such an implemen-
tation at RHIC). Software checks can be implemented
to reject unphysically large values (for example, see
Ref. [16]). Furthermore, by using more monitors, the
effect of random errors in the measured beam position
on the fit result is reduced through averaging.

We denote by �zi; z0i�
T the beam position and slope in

either plane at monitor i, relative to the closed orbit. The
subscript 0 is used for the observation point at the begin-
ning of the arc. The linear transfer map from the obser-
vation point to monitor i is [17]

Mi �

0
B@

					
�i
�0

q
�cos��i � �0 sin��i�

											
�0�i

p
sin��i

� 1��0�i								
�0�i

p sin��i �
�0��i								
�0�i

p cos��i
					
�0

�i

q
�cos��i � �i sin��i�

1
CA; (21)

where �i; �i denote the lattice functions and ��i the phase advance between the observation point and monitor
i. Lattice functions and phase advances can be measured but in many cases values from the ideal lattice will be sufficient.
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FIG. 2. (Color) Turn-by-turn signals and spectra before and after a coupling correction. In (a) and (c) the horizontal and vertical
injection oscillations are shown before a coupling correction. In (b) and (d) the respective spectra are depicted. (b) also shows the
computed �Qmin, its error, and the predicted �Qmin after a coupling correction. (e)–(h) show the situation after the computed
corrector values were applied.
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If the beam has position z0 and slope z00 at the observation
point, the position at monitor i is

zi � Mi
11z0 �Mi

12z
0
0: (22)

By minimizing the function

�2�z0; z00� �
Xn
i�1

�zi �Mi
11z0 �Mi

12z
0
0�

2; (23)

the variables z0 and z00 can be fitted. To find the minimum
of �2�z0; z

0
0� we set the partial derivatives with respect to

z0 and z00 to zero:

@�2�z0; z00�
@z0

� �2
Xn
i�1

Mi
11�zi �Mi

11z0 �Mi
12z

0
0� � 0;

@�2�z0; z
0
0�

@z00
� �2

Xn
i�1

Mi
12�zi �Mi

11z0 �Mi
12z

0
0� � 0:

(24)

Introducing the quantities

S1z �
Xn
i�1

Mi
11zi; S2z �

Xn
i�1

Mi
12zi; (25)

and

S11 �
Xn
i�1

�Mi
11�

2; S22 �
Xn
i�1

�Mi
12�

2;

S12 �
Xn
i�1

Mi
11M

i
12; S � S11S22 � S212;

(26)

Eqs. (24) can be written as

S11z0 � S12z00 � �S1z;

S12z0 � S22z00 � �S2z;
(27)

with the solution

z0 � �S22S1z � S11S2z�=S;

z00 � �S11S2z � S12S1z�=S:
(28)

In practice the coefficients Mi
11 and Mi

12 can be com-
puted with Eq. (21) from model data, and the sums (26)
can be calculated and stored in memory. When new data
arrive, the closed orbit is subtracted from the measured
positions and the sums (25) are recomputed while some
beam position monitor data may be disregarded. The
solution �z0; z00�

T is obtained with Eqs. (28). The proce-
dure can be performed for the horizontal and vertical
planes individually and the two 2-vectors are combined
into a 4-vector �x0; x00; y0; y

0
0�
T . This can be done for every

turn that is recorded and thus a turn-by-turn 4-vector at
the observation point is constructed.

The algorithm has only one division, by S in Eqs. (28).
The value of S can be checked at the beginning. However,
in a regular arc (�i � �arc � const; �i � �arc � const) S
is only zero if the phase advance between any two of the n
monitors is �.

IV. CONSTRUCTION OF A N-TURN MAP

We assume that m consecutive turns of a 4-vector ~zz �
�x; x0; y; y0�T were fitted from turn-by-turn orbit data after
a transverse kick. For the N-turn map one has

~zz k�n � MN ~zzk: (29)

To fit the matrix elements of MN the function

�2�MN� �
Xm�N
k�1

X4
i�1

�
zk�Ni �

X4
j�1

MN
ijz

k
j

�
2

(30)

is minimized. Note that in Eq. (30) weights wij could be
used for each addend corresponding to a fit parameter
Mij. We have, however, chosen N such that the matrix
elements of MN are not different by orders of magnitude
and can avoid this complication. To find the minimum of
�2�MN� the partial derivatives with respect to the fit
parameters MN

ij are set to zero:

@�2�MN�

@MN
ij

� �2
Xm�N
k�1

�
zk�Ni �

X4
j�1

MN
ijz

k
j

�
zki � 0: (31)

We now introduce the two 4� 4 matrices Sa and Sb with
elements

Saij �
Xm�N
k�1

zk�Ni zkj and Sbij �
Xm�N
k�1

zki z
k
j ; (32)

with which the condition (31) can be written as
Sa � MNSb: (33)

The direct solution for MN is
MN � Sa�Sb��1: (34)

Obviously, a solution for MN exists only if Sb has an
inverse. To avoid problems in an implementation, the
condition detjSbj � 0 can be checked to ensure that a
solution exists. The direct solution of Eq. (33) may not
be the best way to solve the problem numerically. Better
algorithms include LU decomposition with backsubstitu-
tion, Cholesky decomposition, and Gauss-Jordan elimi-
nation [18]. The variances of the matrix elementsMN

ij can
be obtained as [18]

 2�MN
ij� �

Xm�N
k�1

� @MN
ij

@~zzk�N

�
2
�

Xm�N
k�1

X4
q�1

� @MN
ij

@zk�Nq
zk�Nq

�
2
:

(35)

The matrix elements MN
ij are

MN
ij �

X4
q�1

Saiq�S
b��1
qj ; (36)

while only the Saiq depend on the zk�Nq .With Eqs. (32) one
finds

@Saiq
@zk�Np

�
@

@zk�Np

Xm�N
l�1

zl�Ni zlq �
�
zkp if p � i;
0 otherwise;

(37)
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and
@MN

ij

@zk�Np
�

�P
4
q�1 z

k
q�Sb��1

qj if p � i;
0 otherwise:

(38)

From this the variances are obtained as

 2�MN
ij� �

Xm�N
k�1

�
zk�Ni

X4
q�1

zkq�Sb��1
qj

�
2
: (39)

For hadron machines the matrix MN must be symplec-
tic but the fit result (34) will be, in general, only nearly
symplectic due to measurement errors in the beam posi-
tion monitors and the effects of filamentation. Thus by
symplectifying the matrix obtained with Eq. (34) the
accuracy of the fit is likely to be improved. This can be
done in the following way [19,20]. A symplectic matrix
M can be written as M � exp�SU� where U is a symmet-
ric matrix. The matrix M can then be rewritten as

M � I� tanh�SU=2��I� tanh�SU=2���1

� �I�W��I�W��1; (40)

where I is the identity matrix, and W is symmetric if and
only if M is symplectic. Given a nearly symplectic matrix
Mns, a matrix

V � S�I�Mns��I�Mns��1 (41)

can be defined from which the exactly symmetric matrix
W � �V � VT�=2 is obtained. The symplectified matrix
M is then calculated using Eq. (40). Efficient symplecti-
fication routines are available [21].

V. MEASUREMENT AND CORRECTION OF
LINEAR COUPLING

We assume that the eigentunes QA;D were obtained
from a Fourier transform of turn-by-turn data, and the
matrix

K � C�B (42)

from a N-turn map. For a coupling measurement, the
minimum tune approach �Qmin can then be calculated
using Eq. (10).With Eq. (39) statistical errors �MN

ij for the
matrix elements MN

ij can be estimated, and with Eq. (19)
the errors �Cij and �Bij for the matrix elements Cij and
Bij can be obtained, respectively. An estimate for the
error in the minimum tune approach can be computed
from these quantities through error propagation as

��Qmin� �
�Qmin

2 detjC�Bj
��C11 ��B22� � jC22 � B11j � ��C22 ��B11� � jC11 � B22j

� ��C12 � �B12� � jC21 � B21j � ��C21 � �B21� � jC12 � B12j�: (43)

Large computed errors ��Qmin� indicate a significant
mismatch between observed turn-by-turn orbit data and
expectations from the model. This can happen with fail-
ures in the orbit acquisition system (for example, timing
problems or wrong gains). Large errors can be used to
reject coupling measurement results.

For a correction algorithm we work in a coordinate
system, in which the linear motion is represented by
circles in phase space. The transformation into the new
coordinate system

~~zz~zz � B~zz (44)

is provided by the matrix

B �

�
Bx 0
0 By

�
; (45)

with

Bx �

�
��1=2
x 0

�x�
�1=2
x �1=2

x

�
and

B�1
x �

�
�1=2
x 0

��x�
�1=2
x ��1=2

x

�
; (46)

and similar for By [11]. The matrix B is computed at the
observation point. The matrices C and B in the old and
new coordinate system are related via

B � B�1
x

~BBBy; C � B�1
y

~CCBx; (47)

and the matrix ~KK can be written as

~KK � ByCB�1
x � BxBB�1

y : (48)

We denote by �ix the horizontal phase advance from the
observation point to the skew quadrupole i, and use in the
following

�!ii
x��x��ix (49)

and

Six � sin�ix; Cix � cos�ix;

S!iix � sin�!ii
x; C!ii

x � cos�!ii
x:

(50)

In the new coordinate system we have for a number of
weak skew quadrupoles [11]

~CC �

0
@P

ki
												
�ix�

i
y

q
S!iiyC

i
x

P
ki

												
�ix�

i
y

q
S!iiyS

i
xP

ki
												
�ix�iy

q
C!ii
yCix

P
ki

												
�ix�iy

q
C!ii
ySix

1
A; (51)

and

~BB �

0
@P

ki
												
�ix�

i
y

q
S!iixC

i
y

P
ki

												
�ix�

i
y

q
S!iixS

i
yP

ki
												
�ix�

i
y

q
C!ii
xC

i
y

P
ki

												
�ix�

i
y

q
C!ii
xS
i
y

1
A: (52)
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The strength ki is the inverse focal length fi of skew
quadrupole i. Assume a corrector family has the same
skew corrector strength k1 in all correctors and results in

~KK1 � k1�~CC1 � ~BB1�; (53)

where the elements in ~CC1 and ~BB1 were divided by k1. For a
global coupling correction we want to minimize the
quantity

��k1� � detj ~KK� k1 ~KK
1j: (54)

From

d��k1�
dk1

� 0 (55)

it follows

k1 � �
K1

2 det ~KK1
; (56)

with

K1 � ~KK11
~KK1
22 �

~KK12
~KK1
21 �

~KK1
11
~KK22 � ~KK1

12
~KK21: (57)

In principal two correctors or families are sufficient to
correct linear coupling globally (unless their matrices ~KK1

and ~KK2 are linear dependent). After the first strength k1
has been found, the second strength k2 can be found with
Eqs. (56) and (57), by replacing k1 by k2, ~KK

1 by ~KK2, and ~KK
by ~KK� k1 ~KK

1.
If there are more than two corrector families, their

effectiveness ei can be tested by computing

ei �
�Qmin � �Qmin;i

ki
; (58)

where �Qmin;i is the minimum tune approach for
~KK� ki ~KK

i. After the most effective corrector km is set,
the test can be repeated for the next corrector with ~KK
replaced by ~KK� km ~KKm, and so on. The corrector
strengths can also be distributed among the available
correctors using other constraints.

VI. APPLICATION AT THE RELATIVISTIC
HEAVY ION COLLIDER

The above described algorithm for the global linear
coupling correction has been implemented within the
RHIC injection optimization application. After the
beam is injected, turn-by-turn data are automatically
acquired from 12 beam position monitors in the horizon-
tal and 12 monitors in the vertical plane. 1024 turns are
recorded in each of the beam position monitors while the
beam exhibits injection oscillations. The application has
access to an on-line machine optics model and can read
and set skew corrector strengths [22].

The implementation was first tested with simulated
turn-by-turn data and defined skew quadrupole errors in
the optics model. Then, using turn-by-turn data from

machine operation, the �Qmin computed from the
N-turn maps was compared with the �Qmin obtained by
bringing the tunes together. This is shown in Fig. 3. In
part (a) the measured tunes are plotted as a function of
the horizontal tune set point. From this data one obtains
�Qmin � 0:0137. In Fig. 3(b) the �Qmin computed from
N-turn maps is shown for the same horizontal tune set
points, along with the errors computed with Eqs. (39) and
(43). Over the scanned horizontal tune set points, the
�Qmin from the N-turn maps differs from the �Qmin

obtained by bringing the tunes together by less than
0.002 in all but two cases. The coupling measurement
returns useful values over a range of tune differences
jQx �Qyj sufficient to cover operational needs (both
RHIC tunes are kept between 0.2 and 0.25). The computed
errors appear to be a conservative estimate. They become
large for large tune differences.

As an example for a coupling measurement and cor-
rection we show the first test of the algorithm in opera-
tion, performed in the RHIC Blue ring with a deuteron
beam. In Figs. 2(a) and 2(c) the beam oscillations in the
horizontal and vertical planes following the injection are
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FIG. 3. (Color) Measured tunes as a function of the horizontal
tune set point in (a). (b) shows the �Qmin obtained from N-turn
maps, and the computed errors, for the same tune set points.
Also shown in (b) is the �Qmin that can be extracted from the
tune measurement depicted in (a).
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shown. The horizontal beam position monitors are at
dispersive locations and the synchrotron motion was fit-
ted and subtracted in 2(a). In Fig. 2(a) the beating due to
coupling is clearly visible. In Figs. 2(b) and 2(d) the
spectra of these oscillations are shown, respectively.
Here too the coupling is visible with two large peaks in
both spectra. From the measured eigentunes, the optimum
turn number N is determined with Eq. (14) and the
subsequent minimization of the quantity (20) through
small variations in N. We get N � 67 and the fitted
N-turn map is

M67
before �

0
BB@
�0:01 2:75 �2:28 �13:18
�0:02 0:49 �0:17 �1:40
�1:02 22:29 0:13 1:84
0:02 �1:31 �0:04 �0:23

1
CCA; (59)

from which �Qmin � 0:0064 is obtained. The error ac-
cording to formula (43) is 0.0028.

RHIC has three families for global decoupling, due to
the sixfold symmetry of the machine.With the algorithm,
two of those families are selected to minimize the cou-
pling. The predicted �Qmin after correction is 0.0003
[see Fig. 2(b)]. A nonzero prediction is a sign of measure-
ment errors in the N-turn map, or a mismatch between
the optics model and the machine. The correction
can be implemented by pressing a single button in the
application.

The result of the coupling correction is shown in
Figs. 2(e)–2(h). In 2(e) and 2(g) the reduction in beating
due to coupling is recognizable. The recoherence after
650 turns is due to synchrotron motion and nonzero
chromaticity [23]. 650 turns are a synchrotron period.
The reduction in coupling is also visible in the spectra
in Figs. 2(f) and 2(h). After correction, we have

M122
after �

0
BB@
�0:26 �11:77 3:62 4:49
0:01 �0:40 0:06 0:29
0:19 �5:62 �0:17 �1:23
0:05 2:65 0:22 0:30

1
CCA; (60)

and �Qmin is reduced to 0.0023 with an error of 0.0006.
Note the reduction in the matrix elements M14 and M32.
The �Qmin reached by the correction was confirmed by a
tune measurement after moving the tunes together.

In operation it was found that the coupling correction
cannot improve �Qmin significantly beyond 0.002. This is
consistent with the �Qmin � 0:0011 predicted for the
next correction. Analyzing about 100 injections, it was
found that detjC�Bj was negative in 10% of the cases,
typical of sum resonances [11]. These cases are rejected
for correction. With increasing chromaticities the signal
decoheres faster. Although a correction can still be com-
puted with a few hundred turns, the part during which the
signal is decohered has to be filtered out. It was also found
that the computed errors for �Qmin are smaller for small
betatron oscillations. This indicates that nonlinearities at

large amplitudes, not included in the model, lead to
discrepancies between the measured turn-by-turn data
and expectations from the model.

VII. SUMMARY

A method for global coupling measurement and cor-
rection is presented that is based on N-turn maps fitted
from turn-by-turn beam position data.N is chosen so as to
maximize the signal-to-noise ratio of the coupling in-
formation. By using more than two monitors per plane the
robustness is increased and the effect of random errors in
beam position monitors is ameliorated. No tune change is
needed for either the measurement or the correction. The
method is implemented for operation as part of the in-
jection optimization application at the Brookhaven
Relativistic Heavy Ion Collider. It allows a global cou-
pling correction within seconds after the turn-by-turn
data are acquired. The method may be used in situations
other than injection, when turn-by-turn data of free beam
oscillations can be acquired.
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