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Abstract

Two transverse eigenmode rms emittances are defined statistically in the uncoupled normal-

ized coordinate system. They are assumed to be adiabatic invariants. With linear coupling’s

action-angle parameterization, the strict expression for the beam size matrix in the laboratory

coordinate system is obtained. It can be expressed in matrix P defined in the action-angle param-

eterization or in Twiss and coupling parameters defined in Edwards-Teng’s parameterization, along

with the eigenmode rms emittances. Numerical simulation calculations are carried out to check

the analytical expressions and to verify the adiabatic eigenmode rms emittance invariants during

the skew quadrupole magnet ramping. With linear coupling’s matrix perturbation approach, the

strict expressions of the horizontal and vertical beam sizes in the laboratory coordinate system

are approximated to give the quasi horizontal and vertical beam emittances under the weak linear

difference coupling situation.
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I. INTRODUCTION

Under the linearly coupled situation, a single particle’s motion is contributed from two

eigenmode modes. It doesn’t trace out an ellipse in x−x′ or in y−y′ phase space. Then, the

1-D emittance does not apply to the coupled situation. However, for weak linear difference

couping, with the linear coupling’s Hamiltonian perturbation approach [1–4], Guignard re-

tained the 1-D emittance definition and gave the quasi horizontal emittance εx and vertical

emittance εy as [3, 5]

εx = εx,0 −
|C−|2/2

∆2 + |C−|2 (εx,0 − εy,0), (1)

εx = εy,0 +
|C−|2/2

∆2 + |C−|2 (εx,0 − εy,0), (2)

where εx,0 and εy,0 are the horizontal and vertical emittances without coupling, respectively.

∆ is the fractional uncoupled tune split. C− is the difference coupling coefficient,

C− =
1

2π

∮ √
βxβykse

i(Φx−Φy−∆ 2πs
L

)dl, . (3)

where βx and βy are the uncoupled betatron amplitude functions, Φx and Φy are the uncou-

pled betatron phase advances, ks is the skew quadrupole strength, L is the ring’s circumfer-

ence, and s is the distance between the skew quadruple and the reference point to calculate

the coupling coefficient.

In the following, I first define two transverse eigenmode rms emittances in the uncoupled

normalized coordinate system. They are assumed to be adiabatic invariants. Then, with the

linear coupling’s action-angle parameterization [6–10], the strict expression of the beam size

matrix in the laboratory coordinate system can be obtained. It can be expressed in matrix

P defined in the action-angle parameterization or in Twiss and coupling parameters defined

in Edwards-Teng’s parameterization, along with the eigenmode rms emittances. Numerical

simulations are carried out with the Relativistic Heavy Ion Collider (RHIC) injection optics

to check the analytical expression and to verify the adiabatic eigenmode rms emittance

invariants during the skew quadrupole magnet ramping. With the linear coupling’s matrix

perturbation approach, the strict expressions for the horizontal and vertical beam sizes are

approximated to give the quasi horizontal and vertical beam emittances under weak linear

difference coupling situation.
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II. EIGENMODE EMITTANCE

In this session, I briefly review the definition of the 1-D rms emittance and its statistic

calculation. Then, the 2-D eigenmode emittance is defined in the uncoupled normalized

coordinate system using the linear coupling’s action-angle parameterization.

A. 1-D rms emittance

Statistically, for example, in the x − x′ phase space, the uncoupled 1-D rms emittanc is

defined as [11, 12]

εx−x′,rms =
√
σxxσx′x′ − σxx′ , (4)

where,

σxx = σ2
x =

ΣN
i=1(xi − x)2

N
, (5)

σx′x′ = σ2
x′ =

ΣN
i=1(x′i − x′)2

N
, (6)

σxx′ =
ΣN
i=1(xi − x)(x′i − x′)

N
. (7)

N is the number of particles in the beam, and (x, x′) are the coordinates of the distribution

barycenter. The rms emittance ellipse is

σx′x′x
2 − 2σxx′xx

′ + σxxx
′2 = ε2x−x′,rms, (8)

whose area is πεx−x′,rms. For Gaussian distributions in the phase space, the rms emittance

ellipse contains about 40% of the total number of the beam particles. According to Liouville’s

theorem, the rms emittance is constant along the ring.

In the 1-D uncoupled situation, the motion of a single particle traces out an ellipse in the

x− x′ phase space. The ellipse equation is

γxx
2 + 2αxxx

′ + βxx
′2 = 2Jx, (9)

where Jx represents the particle’s action. The area of the ellipse is 2πJx. If the phase ellipse

of one particle happens to coincide with the rms emittance ellipse, comparing Eq. (8) and

(9), we get

εx−x′,rms = 2Jx,rms, (10)

σx =
√
βxεx−x′,rms =

√
2Jx,rmsβx, (11)

σ′x =
√
γxεx−x′,rms =

√
2Jx,rmsγx. (12)
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B. Action-angle Parametrization

For 2-D coupled transverse motion, a single particle’s motion is contributed from two

uncoupled eigenmode modes. It doesn’t trace out an ellipse in x − x′ or y − y′ phase

space. Then, the uncoupled 1-D rms emittance defined above does not apply to the coupled

situation.

With the linear coupling’s action-angle parameterization, the coupled motion can be

decoupled into two uncoupled eigenmode motions. There, a single particle’s motion in the

laboratory coordinate system is [6]

X =




x

x′

y

y′




= P




√
2JI cos ΦI

−√2JI sin ΦI
√

2JII cos ΦII

−√2JII sin ΦII



, (13)

JI,II and ΦI,II are the actions and phases of the two eigenmodes. JI,II are constant for

one particle along the ring. P can be numerically determined from the eigenvectors of the

one-turn 4 × 4 linear transfer matrix, or from Twiss and coupling parameters defined in

Edwards-Teng’s parameterization [6],

P =




r
√
βI 0 c11

√
βII − c12αII√

βII

c12√
βII

− αIr√
βI

r√
βI

c21

√
βII − c22αII√

βII

c22√
βII

− c12αI√
βI
− c22

√
βI

c12√
βI

r
√
βII 0

c11αI√
βI

+ c21

√
βI − c11√

βI
− αIIr√

βII

r√
βII



. (14)

The eigenmode I and eigenmode II motions of a single particle have projections in the

x−x′, y−y′, and x−y planes, that normally are ellipses. The ellipse areas of the eigenmode

I’s projections in the x− x′, y − y′ and x− y planes are [6]

πεI,x−x′ = 2πJI · r2, (15)

πεI,y−y′ = 2πJI · |1− r2|, (16)

πεI,x−y = 2πJI · r |c12|. (17)

The ellipse areas of the eigenmode II’s projections in y − y ′, x− x′ and x− y planes are [6]

πεII,y−y′ = 2πJII · r2, (18)

4



πεI,x−x′ = 2πJII · |1− r2|, (19)

πεI,x−y = 2πJII · r |c12|. (20)

If r < 1, for example, in the linear difference coupling regime [13], then

πεI,x−x′ + πεI,y−y′ = 2πJI , (21)

πεII,y−y′ + πεI,x−x′ = 2πJII. (22)

And if r > 1, for example, in the linear sum coupling regime [13], then

πεI,x−x′ − πεI,y−y′ = 2πJI , (23)

πεII,y−y′ − πεI,x−x′ = 2πJII. (24)

C. 2-D Eigenmode Emittances

Eq. (13) can be rewritten as

X = PXn, (25)

Xn =




xn

x′n

yn

y′n




=




√
2JI cos ΦI

−√2JI sin ΦI
√

2JII cos ΦII

−√2JII sin ΦII



. (26)

Xn is defined as the uncoupled normalized coordinate. A single particle’s motion traces out

an circle in the xn − x′n or yn − y′n phase space. Then, statistically, we can define the two

eigenmodes’ rms emittances in the xn − x′n and yn − y′n phase spaces,

εI,rms =
√
σxnxnσx′nx′n − σxnx′n, (27)

εII,rms =
√
σynynσy′ny′n − σyny′n . (28)

For Gaussian distributions in the xn − x′n and yn − y′n phase spaces,

σxnxn = σx′nx′n = σ2
xn = σ2

x′n
, (29)

σynyn = σy′ny′n = σ2
yn = σ2

y′n
, (30)

σxnx′n = σyny′n = 0. (31)
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And any correlation coefficient between xn − x′n plane and yn − y′n plane is zero,

σxnyn = σxny′n = σx′nyn = σx′ny′n = 0. (32)

Then, Eqs. (27) and (28) can be rewritten as

εI,rms = σxnxn = σx′nx′n, (33)

εII,rms = σynyn = σy′ny′n . (34)

Comparing these to the uncoupled 1-D situation, we define

εI,rms = 2JI,rms, (35)

εII,rms = 2JII,rms. (36)

Then, considering Eqs. (29) and (30), for Gaussian distributions in the xn−x′n and yn− y′n
phase spaces, we have

σ2
xn = σ2

x′n
= 2JI,rms, (37)

σ2
yn = σ2

y′n
= 2JII,rms. (38)

Eigenmode rms emittances εI,rms and εII,rms are constant along the ring. For Gaussian

distributions in xn − x′n and yn − y′n phase spaces, the rms emittance ellipses contain about

40% of the total number of the beam particles. In the following section, numerical simulation

will be carried out to verify that the eigenmode rms emittances are adabatic invariants.

III. CALCULATION OF BEAM SIZE MATRIX

In this section, the strict expression of the beam size matrix in the laboratory coordinate

system is derived, and is compared with the numerical simulations based on the RHIC

injection optics.

A. Beam size matrix

In the the laboratory coordinate system, The beam size matrix Σ is defined as [14, 15]

ΣX =




σxx σxx′ σxy σxy′

σx′x σx′x′ σx′y σx′y′

σyx σyx′ σyy σyy′

σy′x σy′x′ σy′y σy′y′



. (39)
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This is a symmetric matrix, in which there are 10 independent parameters. We define the

coupling angle φ in the x − y plane, which is the rotation angle of the long axis of the

matching particle distribution ellipse with respect to x axis,

tan 2φ =
2σxy

σxx − σyy
. (40)

In the uncoupled normalized coordinated system, for Gaussian distributions of the beam

particles in the x− x′ and y − y′ phase spaces, the beam size matrix ΣXn is

ΣXn =




σxnxn σxnx′n σxnyn σxny′n

σx′nxn σx′nx′n σx′nyn σx′ny′n

σynxn σynx′n σynyn σyny′n

σy′nxn σy′nx′n σy′nyn σy′ny′n



, (41)

that is,

ΣXn =




2JI,rms 0 0 0

0 2JI,rms 0 0

0 0 2JII,rms 0

0 0 0 2JII,rms




=




εI,rms 0 0 0

0 εI,rms 0 0

0 0 εII,rms 0

0 0 0 εII,rms



. (42)

B. In the laboratory coordinate system

Expanding Eq. (25), one obtains





x = p11xn + p13yn + p14y
′
n

x′ = p21xn + p22x
′
n + p23yn + p24y

′
n

y = p31xn + p32x
′
n + p33yn

y′ = p41xn + p42x
′
n + p43yn + p44y

′
n

. (43)

Then, considering Eq. (43) and Eqs. (41) - (42), the rms beam sizes in the laboratory system

can be calculated,

σxx = 2p2
11JI,rms + 2p2

13JII,rms + 2p2
14JII,rms, (44)

σxx′ = 2p11p21JI,rms + 2p13p23JII,rms + 2p14p24JII,rms (45)

σxy = 2p11p31JI,rms + 2p13p33JII,rms, (46)

σxy′ = 2p11p41JI,rms + 2p13p43JII,rms + 2p14p44JII,rms, (47)
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σx′x′ = 2p2
21JI,rms + 2p2

22JI,rms + 2p2
23JII,rms + 2p2

24JII,rms, (48)

σx′y = 2p21p31JI,rms + 2p22p32JI,rms + 2p23p33JII,rms (49)

σx′y′ = 2p21p41JI,rms + 2p22p42JI,rms + 2p23p43JII,rms + 2p24p44JII,rms (50)

σyy = 2p31JI,rms + p2
32JI,rms + 2p2

33JII,rms (51)

σyy′ = 2p31p41JI,rms + 2p32p42JI,rms + 2p33p43JII,rms (52)

σy′y′ = 2p2
41JI,rms + 2p2

42JI,rms + 2p2
43JII,rms + 2p2

44JII,rms. (53)

Or, expressing this in a compact way,

ΣX = PΣXnP
T . (54)

When all coupling sources are removed, according to Eq. (54), one can prove

εx,0 =
σ2
x,0

βx
= εI,rms, (55)

εy,0 =
σ2
y,0

βy
= εII,rms, (56)

where εx,0 and εy,0 are the horizontal and vertical emittances without any coupling, respec-

tively. σx,0 and σy,0 are the horizontal and vertical beam rms sizes without any coupling,

respectively.

The eigenmode rms emittances remain constant if the particles achieve the equilibrium

distribution. For two observation points, say point 1 and point 2, in the ring, we have [6]

P2 = T1→2P1R
−1(∆ΦI ,∆ΦII), (57)

where T1→2 is the 4× 4 transfer matrix from p1 to p2, R(∆ΦI ,∆ΦII) is the block-diagonal

rotation matrix defined in [6], ∆ΦI,II are the eigenmode phase advances from point 1 to

point 2. With Eq. (54), one can prove

ΣX|2 = T1→2 ΣX|1 TT
1→2. (58)

ΣX|1,2 are the beam size matrices at point 1 and 2, respectively.

For a transport line, if the beam size matrix Eq. (39) in the laboratory coordinate system

can be fully decided, then the eigenmode rms emittances and Twiss, coupling parameters

can be decided, according to Eqs. (44)-(53). Then, the beam size matrix and Twiss, coupling

parameters can be tracked down along the transport line.
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C. Numerical simulations

Numerical simulations of the beam size matrices are based on the Relativistic Heavy Ion

Collider (RHIC) Blue ring injection optics. Each RHIC ring has three skew quadrupole

families, F1, F2, and F3. Coupling is introduced into the originally uncoupled optics by

setting F1 and F3’s strengths as (ksdl)1,3 = 0.0004m−1. I choose the entrance of magnet

Q4O6 as the observation point.

First, 10,000 particles are created in the uncoupled normalized coordinate system at the

observation point. In this process, I select σ2
xn = σ2

x′n
= 2× 10−7 m2, σ2

yn = σ2
y′n

= 1× 10−7

m2, that is, the eigenmode rms emittances εI,rms = 2× 10−7 m.rad, εII,rms = 1× 10−7m.rad.

With 10,000 particles, the beam size matrix in this system is numerically calculated,

ΣXn |numerical =




2.02× 10−7 −1.64× 10−9 −4.17× 10−10 3.71× 10−10

−1.64× 10−9 1.98× 10−7 −9.45× 10−10 1.08× 10−9

−4.17× 10−10 −9.45× 1011 1.00× 10−7 5.97× 10−10

3.71× 10−10 1.08× 10−9 5.97× 10−10 9.85× 10−8



. (59)

The statistic distribution error for 10,000 particles is about 1%.

Then, with Twiss and coupling parameters at the observation point, according to

Eqs. (25) and (14), the laboratory coordinates of the 10,000 particles are calculated. The

beam size matrix in the laboratory coordinate system then is numerically calculated,

ΣX|numerical =




8.48× 10−6 5.16× 10−7 6.10× 10−7 −9.81× 10−8

5.16× 10−7 3.45× 10−8 6.45× 10−8 −6.47× 10−9

6.10× 10−7 6.45× 10−8 2.63× 10−6 −1.10× 10−7

−9.81× 10−8 −6.47× 10−9 −1.10× 10−7 1.18× 10−8



. (60)

Analytically, knowing the eignmode rms emittances, according to Eq. (54), the beam size

matrix in the laboratory coordinate system can be calculated,

ΣX|analytical =




8.42× 10−6 5.13× 10−7 6.07× 10−7 −9.50× 10−8

5.12× 10−7 3.44× 10−8 6.52× 10−8 −6.34× 10−9

6.07× 10−7 6.52× 10−8 2.66× 10−6 −1.12× 10−7

−9.50× 10−8 −6.35× 10−9 −1.12× 10−7 1.19× 10−8



. (61)

Comparing Eqs. (60) and (61), the analytical predications of the laboratory beam size matrix

agree well with the numerical calculations.
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D. Adiabatic Eiegnmode Emitance Invariants

The eigenmode rms emittances are invariants if the particles reach equilibrium distribu-

tion. This is not true for injection mismatching and fast magnet ramping. However, if the

magnet ramping is slow enough to let the particles catch up with the optics change, we

assume the eigenmode rms emittances are adiabatic invariants.

Numerical simulation is used to verify the adiabatic eignmode emittance invariants. For

the above coupled RHIC Blue ring injection optics and the same eigenmode rms emittances,

I keep the skew quadrupole family F2’s strength (ksdl)2 = 0.0004m−1, while ramping skew

quadrupole family F1’s strength from (ksdl)1 = 0.0004m−1 to −0.0004m−1 linearly in 1000

turns, or in about 0.1 second. Element-by-element tracking for each particle is performed,

based on the RHIC Blue ring injection optics. Fig. 1 shows the particle distributions in

the xn − x′n phase space before and after the magnet ramping. Fig 2 shows the particle

distributions in x− y phase space before and after the magnet ramping.

-2

-1

 0

 1

 2

-2 -1  0  1  2

x n
’  [m

m
]

xn [mm]

Before magnet ramping
After magnet ramping

FIG. 1: The particle distributions in xn − x′n plane before and after the magnet ramping.

After the magnet ramping, compared to Eq. (60), the beam matrix in the laboratory
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FIG. 2: The particle distributions in x− y plane before and after the magnet ramping..

coordinate system changes to

ΣX|numerical =




8.87× 10−6 5.38× 10−7 −1.30× 10−6 2.47× 10−8

5.38× 10−7 3.58× 10−8 −6.53× 10−8 −4.28× 10−10

−1.30× 10−6 −6.53× 10−8 2.49× 10−6 −1.07× 10−7

2.47× 10−8 −4.28× 10−10 −1.07× 10−7 1.15× 10−8



. (62)

Xn is calculated according to Eq. (25) after the magnet ramping. Then, the beam matrix

in the uncoupled normalized coordinate system is numerically calculated,

ΣXn |numerical =




2.00× 10−7 −4.93× 10−9 1.11× 10−9 −3.50× 10−10

−4.93× 10−9 2.01× 10−7 1.74× 10−10 −1.66× 10−9

1.11× 10−10 1.74× 1011 9.87× 10−8 5.87× 10−10

−3.50× 10−10 −1.66× 10−9 5.87× 10−10 1.00× 10−7



. (63)

Compared to Eq. (59), the eigenmode rms emittances almost have no changes after the

magnet ramping.

According to Eq. (40), with the beam size matrices Eqs. (60) and (62) in the numerical

simulations, the coupling angle in x − y plane before and after the magnet ramping are

calculated,

φ|before,numerical = 5.89◦, (64)

φ|after,numerical = −10.31◦. (65)
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Analytically, using εI,rms = 2×10−7 m.rad and εII,rms = 1×10−7m.rad, and with Twiss and

coupling parameters, the coupling angle in x−y plane before and after the magnet ramping

are calculated,

φ|before,analytical = 5.95◦, (66)

φ|before,analytical = −10.98◦. (67)

IV. APPROXIMATION TO WEAK LINEAR DIFFERENCE COUPLING

In this section, the strict expressions of the beam horizontal and vertical sizes are ap-

proximated to give the quasi horizontal and vertical beam emittances under weak linear

difference coupling situation. The linear coupling’s matrix perturbation approach is used.

A. Linear coupling’s matrix perturbation approach

In the linear coupling’s matrix perturbation approach, Twiss parameters have no signifi-

cant changes, P is then approximately given by [13, 16]

P = UV, (68)

where

U =




√
βx 0 0 0

−αx√
βx

1√
βx

0 0

0
√
βy 0

0 0
−αy√
βy

1√
βy



, (69)

V =




r 0 c11 c12

0 r c21 c22

−c22 c12 r 0

c21 −c11 0 r



. (70)

C is the normalized coupling matrix, and r and C are connected by r2 + ||C|| = 1.

Under weak linear difference coupling regime, r and C are approximately [13]

r =

√√√√1

2
+

1

2

√
sin2 π(µx − µy)

sin2 π(µx − µy) + 1
4
|h−|2

, (71)
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C = sgn

(
− sin π(µx + µy)

2r(cos 2πµI − cos 2πµII)

) √
1− r2

|h−|


 Re{h−} Im{h−}
−Im{h−} Re{h−}


 , (72)

h− =

M∑

j=1

(
√
βxβyksdl)je

i[π(µx−µy)−(φx,j−φy,j)], (73)

sgn(x) =





1, x > 0

0, x < 0
, (74)

where µx,y are the uncoupled tunes, µI,II are the eigentunes, and M is the number of the

skew quadrupoles in the ring.

B. Quasi horizontal and vertical emittances

Under weak coupling situation, the quasi horizontal and vertical emittances are defined

as

εx =
σ2
x

βx
, (75)

εy =
σ2
y

βy
, (76)

where σx and σy are the rms horizontal and vertical beam sizes with coupling, respectively.

βx and βy are the amplitude function without coupling. It should be mentioned that the

quasi horizontal and vertical emittances are different from the uncoupled 1-D emittances.

Rewriting Eqs. (44) and (51) as

σ2
x = σxx = p2

11εI,rms + (p2
13 + p2

14)εII,rms, (77)

σ2
y = σyy = (p2

31 + p2
32)εI,rms + p2

33εII,rms, (78)

and considering Eqs. (68) - (70),

σ2
x = r2βxεI,rms + βx(c

2
11 + c2

12)εII,rms, (79)

σ2
y = βy(c

2
22 + c2

12)εI,rms + r2βyεII,rms. (80)

Under weak linear difference coupling situation, according to Eq. (72),

σ2
x = r2βxεI,rms + βx(1− r2)εII,rms, (81)

σ2
y = (1− r2)βyεI,rms + r2βyεII,rms. (82)
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Considering Eqs. (75)- (76) and Eqs. (55)-(56), then Eqs. (81) and (82) can be rewritten as

εx = εx,0 − (1− r2)(εx,0 − εy,0), (83)

εy = εy,0 + (1− r2)(εx,0 − εy,0). (84)

Integrating r from Eq. (71), and considering sin π(µx − µy) ≈ π∆, ∆ is the fractional un-

coupled tune split, we obtain

εx = εx,0 −
(

1

2
− 1

2

√
∆2

∆2 + ( 1
2π
h−)2

)
(εx,0 − εy,0), (85)

εy = εy,0 +

(
1

2
− 1

2

√
∆2

∆2 + ( 1
2π
h−)2

)
(εx,0 − εy,0). (86)

Comparing the definitions of C− and h−, when the accelerator is working close to the

linear difference coupling resonance,

|C−| ≈ 1

2π
|h−|. (87)

Then, the quasi horizontal and vertical emittances become

εx = εx,0 −
(

1

2
− 1

2

√
∆2

∆2 + |C−|2

)
(εx,0 − εy,0), (88)

εy = εy,0 +

(
1

2
− 1

2

√
∆2

∆2 + |C−|2

)
(εx,0 − εy,0), (89)

and

εx + εy = εx,0 + εy,0. (90)

Clearly, Eqs. (88) and Eqs. (89) differ from Eqs. (1) and (2) derived by Guignard using

Hamiltonian perturbation approach.

C. Comparison of different analytical predications

As an example, I again set the eigenmode rms emittance as εI,rms = 2 × 10−7 m.rad,

εII,rms = 1 × 10−7m.rad for the RHIC Blue injection optics. 10,000 particles with Gaus-

sian distribution are created in the uncoupled normalized coordinate system. The optics

is not coupled originally. Then, the skew quadrupole family F1’s strength is scanned from

14



(ksdl)1 = −0.0006 to 0.0006m−1 with ∆(ksdl)1 = 0.0001m−1. Assuming the eigenmode rms

emittances are adiabatic invariants, at each scan step, the particles’ laboratory coordinates

are calculated according to Eq. (25) and σxx and σyy calculated statistically.

During the scan, βI is found to have less than 1.6% deviation from uncoupled βx, and

βII less than 0.3% deviation from uncoupled βy. Fig. 3 shows the eigentunes versus the

skew quadrupole family F1’s strength during the scan. Figs. 4 and 5 show the quasi

horizontal emittance εx and the quasi vertical emittance εy versus the skew quadrupole

family F1’s strength, respectively. There, the predications from the strict matrix approach

are calculated according to Eq. (54) and Eqs. (75)-(76), while those from the Hamiltonian

perturbation approach are calculated according to Eqs.(1) and (2), and those from the matrix

perturbation approach are calculated according to Eqs. (88) and (89).
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FIG. 3: Eigentunes versus the skew quadrupole family F1’s strength in the scan.

Fig.4 and Fig.5 reveal that the strict matrix approach predicts the quasi horizontal and

vertical emittances very well. Those from the Hamiltonian perturbation and the matrix

perturbation approaches show more or less deviation, especially the former that entails a

large predication error in the quasi vertical emittance at ∆(ksdl)1 = ±0.0006m−1.
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FIG. 4: Quasi horizontal emittance εx versus the skew quadrupole family F1’s strength in the scan.
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FIG. 5: Quasi vertical emittance εy versus the skew quadrupole family F1’s strength in the scan.

V. CONCLUSION

Two transverses eigenmode rms emittances are statistically defined and numerical simula-

tion calculation verifies that they are adiabatic invariants. With the linear coupling’s action-

angle parameterization, the strict beam size matrix in the laboratory coordinate system is

obtained in matrix P or in Twiss and coupling parameters, together with the eigenmode rms

emittances. Under weak linear difference coupling, these strict expressions of the beam sizes
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are approximated to give the quasi horizontal and vertical emittances. Numerical simulation

calculations show that the strict matrix approach predicates the beam size matrix and quasi

horizontal and vertical emittances very well, while those from the Hamiltonian perturbation

and the matrix perturbation approaches have more or less deviation.
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