
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC)

Collider Accelerator Department

August 2002

K. A. Brown

Retrack: simulating particle passage through excited resonances

BNL-99231-2013-TECH

C-A/AP/78;BNL-99231-2013-IR

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the technical
note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for
United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

C-A/AP/#78
August 2002

retrack: simulating particle passage through excited
resonances

K.A. Brown

Collider-Accelerator Department
Brookhaven National Laboratory

Upton, NY 11973

retrack: simulating particle passage through excited
resonances

K.A. Brown,
Brookhaven National Laboratory, Upton, New York 11973, USA

This report will describe a simulation program written to track particles through
one-third and one-half integer resonances. The purpose of the program is to generate
large ensembles of particle coordinates (5 dimensions) that can be tracked through a
beam line or accelerator using another simulator (such as TRANSPORT or MAD).
One deficiency in programs such as TRANSPORT or MAD is that the time it takes
to track large numbers of particles for many thousands of turns is impractically large.
In addition they lack certain forms of flexibility, such as slow variation of parameters
to simulate particle passage through resonances. To get around these problems and
to allow other features to be included in the simulation, such as placing in septum
magnets to kick particles and observe losses, it was necessary to write an independent
simulator. In this report this simulation program will be described and various results
will be presented. Simulations of slow extraction from the Booster and from the AGS
will be shown.

1

Contents

I Introduction 3

II Computer simulation of charged particle beams: a tutorial 3

III Tracking particles through resonances 6

IV Including septa and measuring losses 10

V Passage of particles through thin foils 11

VI Collimation and wire stripping 13

VII Interfacing with MAD 13

VIII Program interface and usage 15

IX Conclusions 20

X Acknowlegements 20

List of Tables

I “retrack” names and meanings . 18

List of Figures

1 Gaussian generated phase space using uniform random numbers 6
2 Four particles passing into a sextupole resonance at the Booster D3 thin septum . . . 8
3 Particles passing into the half integer driven by using octupoles. Extraction efficiency

is around 65%. 9
4 Particles passing into the half integer driven by useing sextupoles. Extraction efficiency

is around 70%. 9
5 Distribution of particles in x and x’ for idealized phase space. 10
6 Phase space at Booster D3 thin septum and at Booster D6 thick septum 11
7 Phase space before and after a 0.2mm foil at Booster D6 Septum 12
8 Real Space, Horizontal Phase space, and Vertical Phase space at D6 Septum after

passage through a 0.1 mm foil . 12
9 Real Space, Horizontal and Vertical Phase space at D6 using a wire foil or a Collimator 13
10 Phase space of slow extracted beam from the AGS at middle of AGS F13 straight

section and at C target location . 14
11 Beam sizes from AGS F13 straight section through to C target location 15

2

I. INTRODUCTION

There are a number of problems which can best be studied by tracking large distributions of par-
ticles through some system of accelerator components. Examples are studies of crystal extraction,
defining uniform distributions from resonant extracted beams, high frequency bunched beam extrac-
tion, bunched extraction near transition energy, and studies of extremely small low intensity beams.
The problem in doing these studies is being able to generate a large distribution of particles (10,000 to
1,000,000), which can then be tracked through a relatively trusted simulation (such as a MAD model
of the AGS or Booster). The distribution that is generated must very closely match what the other
simulators would generate, were they capable of doing so. This means the phase space must match
very closely to that which is defined in the other simulators, including momentum deviation effects.
This is the aim of the work which is described in this report. Naturally the end product is only an
approximation and so much effort was made to make that approximation as good as possible, and to
understand the bounds of that approximation.

This report will give a detailed description of a simulator which was written to generate distributions
of particles and study the passage of particles through excited resonances, such as those created to
perform resonant extraction. As input the simulator uses twiss parameters derived in some other
manner (e.g., from MAD) and makes small adiabatic variations in those parameters in order to
simulate passage through a resonance. Results of various studies will be presented in this report as
well as a guide on using the program.

Programs exist already that could be used to study the problems listed above. There are a number
of reasons for writing our own program. One reason was to give ourselves the most amount of flexibility
and not be constrained by the assumptions that other programs may have on what is or isn’t useful.
Other programs were written for the purpose of solving certain classes of problems. No claim is made
that this program is better in any way from others, and in fact a fair degree of skepticism should be
given to results derived here, until a sufficient degree of verification is performed.

II. COMPUTER SIMULATION OF CHARGED PARTICLE BEAMS: A TUTORIAL

The motion of charged particles in linear systems of magnets can be described as a simple harmonic
oscillator with the form: (Most of what appears in this section can be found described in much greater
detail in [1].)

d2η

dφ2
+ ν2η = 0 (1)

where ν is the betatron tune and φ is the phase at a given point in the system. The general solution
to this equation is,

η(φ) = A cos(νφ+ δ) (2)

where A and δ are constants of integration which depend on the initial conditions. The motion of
this simple harmonic oscillator can be visualized by thinking of the system as a periodic system in
equilibrium. The motion can then be described as a circle in (η, η′) space, where η′ ≡ dη/dφ. In this
case,

η′(φ) = −A sin(νφ+ δ) (3)

To do tracking simulations of single particles through arbitrary linear systems we generate a distri-
bution of coordinates using random numbers,

η = σx

√
−2 ln(i1) cos(2πi2) (4)

and,

η′ = −σx

√
−2 ln(i1) sin(2πi2) (5)

where i1 and i2 are two independent random numbers between 0 and 1.

3

The distribution of coordinates will then describe a Gaussian distribution of particles with a one
sigma width of σx. We now need to make a transformation from (η, η′) to coordinates useful for
tracking the generated particles through a secondary system. So far the motion described is only for
that of a particle in a single plane. To describe a distribution of particles in the two transverse planes
(vertical and horizontal) we assume no coupling and use an independent set of random numbers to
generate an independent distribution of coordinates.

The nominal coordinate system used in accelerators is a curve-linear coordinate system. In this
case the trajectory is along a planar closed curve. The path length along the curve of motion is the
independent variable, s. At any point along this curve we can define three unit vectors: ŝ, x̂, x̂′. A
more detailed description of this coordinate system can be found in the MAD manual [2]. We generally
are interested in deviations of x and y from the reference orbit, so in our discussion we speak of x
and y, meaning the deviations in horizontal and vertical planes from the reference path defined by
the elements of the system.

In the curve-linear coordinate system, then, we write the equation of motion in the form of Hill’s
equation (note that x′ ≡ dx/ds),

x′′ +K(s)x = 0 (6)

K(s) is a periodic function of the independent variable, s. The general solution to this equation is

x = Aω(s) cos(ψ(s) + δ) (7)

Again, A and δ are constants of integration reflecting the initial conditions. By substituting ω(s) and
ψ(s) into eq. (6) we find

2ωω′ψ′ + ω2ψ′′ = (ω2ψ′)′ = 0 (8)

Since what we want is a way of describing the motion of particles as they propagate through the
system from some point s0 to s0 + C, we re-normalize the constants to derive the twiss parameters,

β(s) =
ω(s)2

k
(9)

α(s) = −1
2
dβ(s)
ds

(10)

γ =
1 + α2

β
(11)

Now we rewrite the equation of motion to describe a mapping from one point in the reference
trajectory to another point in the reference trajectory:

(
x
x′

)
s0+C

= M

(
x
x′

)
s0

(12)

where,

M = I cos∆ψc + J sin∆ψc (13)

where we have defined

I =
(

1 0
0 1

)
, J =

(
α β
−γ −α

)
, J2 = −I (14)

I and J satisfy the symplectic condition, MTSM = S. One consequence of this condition is the
transformations are very close to exact. If a matrix M is symplectic, then its inverse is symplectic
and the determinant of that matrix is symplectic. If two matrices M and N are symplectic, then the
product MN is also symplectic. The only loss in precision will be due to round off errors resulting
from finite bit sizes in numeric representations.

4

The constant A in eq. (7) can be expressed in terms of x and x′.

α(s)x(s) + β(s)x′(s) = −A
√
β(s) sin(ψ(s) + δ) (15)

or,

A2 = γ(s)x(s)2 + 2α(s)x(s)x′(s) + β(s)x′(s)2 (16)

This invariant form describes an ellipse in (x, x′) phase space. The area of the ellipse is a constant
of the motion and is

Area =
πA2√
βγ − α2

= πA2 (17)

The constant A2 is called the unnormalized emittance, ε, in which case,

ε

π
= γx2 + 2αxx′ + βx′2 (18)

The canonical transformations between (η, η′) coordinates and (x, x′) coordinates is then a Floquet
transformation,

η =
x√
β

(19)

η′ =
xα√
β

+ x′
√
β (20)

x = η
√
β (21)

x′ =
η′ − ηα√

β
(22)

The computer code takes eqs.[4,5] and makes the canonical transformation to (x,x’), generating a
single set of coordinates. The distribution of these coordinates depends on the value of σ, which is
calculated from,

σ2 =
εβ

−2π ln(1 − F)
(23)

Where F is the fraction of emittance (e.g., 95 %). The momentum part of the particle coordinate is
calculated using:

σ2
δ =

1
−2 ln(1 − F)

(
D

∆p
p0

)2

(24)

Where D is the momentum dispersion of the lattice and ∆p/p0 corresponds to the fraction F of the
total momentum distribution.

δ = σδ

√
−2 ln(i1) cos(2πi2) (25)

The total beam size depends on both components as:

σ2
T = σ2 + σ2

δ (26)

Figure 1 shows the result of producing a Gaussian distributed phase space given twiss parameters,
emittance, and ∆p/p0.

5

FIG. 1. Gaussian generated phase space using uniform random numbers

III. TRACKING PARTICLES THROUGH RESONANCES

If one knows the twiss parameters at two points in a lattice, a single particle can be tracked from
the first point to the next using the following transformation.

 xf

x′f
δf

 =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 xi

x′i
δi

 (27)

where

M11 =
(

βf

βi

) 1
2

(cos∆ψ + αi sin∆ψ)

M12 = (βfβi)
1
2 sin ∆ψ

M13 = Df −
(

βf

βi

) 1
2

(cos ∆ψ + αi sin ∆ψ)Di − (βfβi)
1
2 sin ∆ψD′

i

M21 = − 1+αiαf

(βiβf)
1
2

sin ∆ψ + αi−αf

(βiβf)
1
2

cos∆ψ

M22 =
(

βi

βf

) 1
2

(cos∆ψ − αf sin ∆ψ)

M23 = D′
f −

(
− 1+αiαf

(βiβf)
1
2

sin∆ψ + αi−αf

(βiβf)
1
2

cos∆ψ
)
Di −

(
βi

βf

) 1
2

(cos∆ψ − αf sin∆ψ)D′
i

M31 = 0
M32 = 0
M33 = 1

(28)

where δ is the momentum deviation for the particle (∆p/p), Di,f and D′
i,f are the dispersion and

angular dispersion at the two points. αi,f and βi,f are the twiss parameters for the two points. The
phase advance from i to f is denoted ∆ψ. The vertical plane is evaluated in the same way, although

6

it is assumed there is no coupling terms in between kicks (only coupling produced by the sextupole
or octupole kick is included).

As long as there is not a strong momentum dependence of the twiss parameters (i.e., a strong radial
dependence), then we can assume the values to be static over the range of particles that represent
realistic cases. Nevertheless the code has the ability to linearly vary twiss parameters if the dependence
is specified. This will be discussed further in section VIII.

In both the AGS and the Booster a sextupole resonance is created using 2 sets of sextupoles excited
in opposite polarities. Therefore, in order to study sextupole resonances in the AGS or Booster
we need to define at least 5 points in the lattice: 4 sextupoles and one septum. We can construct
the phase space at the septum by putting in thin sextupole kicks (which keeps the transformations
symplectic) and tracking particles starting at the septum and observing the particles at the septum
every revolution. One then performs the mapping of eq. (27) from the septum location to the first
sextupole, using twiss parameters derived from MAD, gives a thin sextupole kick, and maps to the
next sextupole. The sextupole kick is done by using,

x′f = x′i + S · (x2
i + y2

i) (29)

y′f = y′i − S · (2xiyi) (30)

where S is the sextupole kick strength. This strength can be given directly, but is related to the
sextupole field gradient by,

S =
1

2! ·Bρ
∫ ∞

−∞

∂2Br

∂r2
dl (31)

An octupole kick is done by using,

x′f = x′i +O · (x3
i + xiy

2
i) (32)

y′f = y′i −O · (3x2
i yi + y3

i) (33)

where O is the octupole kick strength. This strength can be given directly, but is related to the
octupole field gradient by,

O =
1

3! ·Bρ
∫ ∞

−∞

∂3Br

∂r3
dl (34)

To simulate traversal through a resonance there needs to be the ability to shift the tune (e.g.,
phase advances). To do this the phase advances, ∆ψ, are all initially shifted up by a small amount,
with a scaling sufficient to place all particles above the resonance, in tune, and then decreased a very
small amount each revolution, until the particles pass into the resonance and are excited into large
amplitude oscillations.

The scaling is done as,

scale =

√
x2 + (D · δ)2√− ln(1 − F)(σ2 + σ2

δ)
(35)

The phase advances are then shifted as,

phaseshift = scale ·
∣∣∣∣ξ∆p
p0

∣∣∣∣ (36)

where ξ is the lattice chromaticity. For these purposes the method is arbitrary. It is computationally
faster than other methods, but it is incompatible with defining a time structure to the extracted
particles. To do this would slow down the simulations significantly. We need only get enough tune
shift to get the particle away from the resonance (since the given twiss parameters are for a lattice
right at or very close to the resonant tune) and which can be parametrically driven back down into

7

the resonance adiabatically. Figure 2 shows an example of 4 different particles being driven into a
sextupole resonance.

0 0.01 0.02 0.03
x (m)

−0.003

−0.001

0.001

0.003
x’

 (
ra

d)
4 particles tracked through 13/3 resonance in Booster. D3 location.

FIG. 2. Four particles passing into a sextupole resonance at the Booster D3 thin septum

Figures 3 and 4 show examples of particles being driven into the half integer.

8

FIG. 3. Particles passing into the half integer driven by using octupoles. Extraction efficiency is around
65%.

FIG. 4. Particles passing into the half integer driven by using sextupoles. Extraction efficiency is around
70%.

Figure 5 is an idealized case showing the x and x’ distributions of the horizontal phase space for
10000 particles.

9

FIG. 5. Distribution of particles in x and x’ for idealized phase space.

IV. INCLUDING SEPTA AND MEASURING LOSSES

Defining the septum is relatively simple, since the coordinate system is clearly defined and one only
needs to give a location and a thickness. If a particle position falls within the area of septum location
+ septum thickness, it is considered lost. Scattering from the septum is not considered. This allows
calculation of extraction efficiency simply by counting how many particles hit the septum and how
many particles fall past the septum. An orbit deviation, or “bump”, can be defined to allow matching
to other simulations, by using x and x′ offsets.

The ability to include a second septum is useful and exists in the program. In this way the first
septum can give a kick and we can construct a phase space at the entrance to the second. We again
include a septum location and thickness and keep track of the number of particles lost on the second
septum. Figure 6 shows particles being kicked at the Booster D3 thin septum and being tracked to
the location of the D6 thick septum. For this case about 13% of the particles were lost on the thin
septum and no particles were lost on the thick septum, giving about an 87 % extraction efficiency.

10

−0.04 −0.02 0 0.02 0.04 0.06 0.08
x (m)

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

x’
 (

ra
d)

D3 Phase Space

D3 Septum

D6 Septum

D6 Phase Space

D6 Upstream

D6 Downstream

FIG. 6. Phase space at Booster D3 thin septum and at Booster D6 thick septum

V. PASSAGE OF PARTICLES THROUGH THIN FOILS

For slow extraction from the Booster there exists a foil stripping mechanism in front of the thick
septum. It is useful to be able to generate the phase space at the exit of the foil stripping, to be able to
use the resulting phase space in another model. This is done by including multiple Coulomb scattering,
in which many relatively small random changes occur in the direction of a particles trajectory (an
angular kick). We define the kick as,

θ0 = σθ

√
−2 ln ri (37)

where ri is a random number, and σθ is the one sigma spread in angle caused by a foil. The direction
of the kick is assigned randomly.

σθ = (3.381e−3)

√
d

X0

[
1 + 0.038 ln

(
d

X0

)]
(38)

where d is the foil thickness in cm and, (A is atomic number of the foil and Z is nuclear charge of
particles in the beam)

X0 =
716.40749A

Z(Z + 1) ln
(

183

Z
1
3

) [gm/cm2] (39)

11

FIG. 7. Phase space before and after a 0.2mm foil at Booster D6 Septum

FIG. 8. Real Space, Horizontal Phase space, and Vertical Phase space at D6 Septum after passage through
a 0.1 mm foil

12

VI. COLLIMATION AND WIRE STRIPPING

As with addition of septa, the addition of wire strippers and a vertical jaw collimator is easily done,
since the geometry of the system is clearly defined. This was done by adding more arguments to
the foil arguments of the input file, defining the wire stripper position and width and the amount of
opening in the vertical collimator. Figure 9 shows a case in which there is a 0.5 mm foil, located 1
cm from the edge of the thick septum.

FIG. 9. Real Space, Horizontal and Vertical Phase space at D6 using a wire foil or a Collimator

VII. INTERFACING WITH MAD

The program can generate a seperate file containing a listing of particle coordinates in a format
recognized by bnlmad for tracking. For example,

start, x= 7.546714e-02 , px= 1.349710e-04 , deltap= 1.180271e-04
start, x= 7.702635e-02 , px= 1.385926e-04 , deltap= 1.341925e-04
start, x= 6.885140e-02 , px= 1.205745e-04 , deltap= 2.956971e-04
start, x= 6.541547e-02 , px= 5.797749e-06 , deltap= 2.173743e-04
start, x= 6.615986e-02 , px= -4.080350e-05 , deltap= 2.840350e-04
...

To improve the speed of the program run time you have the ability to turn off writing to a MAD
output file. The “plotfile” is just columns of coordinates, in the format of x x′ dp/p.

7.546714e-02 1.349710e-04 1.180271e-04
7.702635e-02 1.385926e-04 1.341925e-04
6.885140e-02 1.205745e-04 2.956971e-04
6.541547e-02 5.797749e-06 2.173743e-04
6.615986e-02 -4.080350e-05 2.840350e-04
...

13

These files contain the final unlost particle positions, so if you specify 10000 particles and get an
80 % efficiency, you end up with 8000 lines of output in each file.

To use the “madfile” one simply reads it in to a MAD input file using the “call file” mechanism
(for bnlmad). For example,

print, clear
print, SMF05
track, noref, betx=1.419783395E+01, alfx=-1.390205931E+00, &

bety=1.814524996E+01, alfy= 1.559737336E+00
call file=’’madfile’’
run, turns=1, fprint=1, short
endtrack

Figure 10 shows the result of using an initial phase space generated using “retrack” and tracking
the particles through to the C target location in the AGS Switchyard. Figure 11 shows the envelope
calculation along the C line using the same initial phase space. The solid blue lines represent the 95%
emittance beam width along the beam line. The red lines at different points along the line represent
the 100% extent of the tracked phase space generated from “retrack”.

FIG. 10. Phase space of slow extracted beam from the AGS at middle of AGS F13 straight section and at
C target location

14

C
D

1

C
Q

2

C
Q

4

A
B

1 A
P

1

C
F

10
0

C
F

15
7

C
D

2

C
Q

5

C
Q

8

C
F

22
3

C
P

2

C
F

25
5

C
D

4

C
Q

9

C
Q

10

C
Q

11

C
Q

12

C
T

G
T

−0.05

0

0.05

y
(m

)

Vertical Apertures
Vert. Envelope Calculation
Vertical Tracking

−0.05

0

0.05

x
(m

)

Horizontal Apertures
Horiz. Envelope Calculation
Horizontal Tracking

FIG. 11. Beam sizes from AGS F13 straight section through to C target location

VIII. PROGRAM INTERFACE AND USAGE

The name of the simulator is “retrack” and the command line syntax is as follows:

retrack [-d[ata] inputfile] [-m[ad] madoutput] [-p[lot] plotoutput] [-h[elp]] [> trackoutput]

Default names are used if none are specified. The default names are seb.input, mad.out, and plot.out,
respectively.

The “trackoutput” redirection is needed if you ask for the program to output sepatrix data. This
can be a large amount of data output and using redirection allows sending the data to a unix pipe,
permitting a program to read data directly. If the redirected file doesn’t exist, or is not a pipe, then
the data will just be written to a file with the name “trackoutput”, or whatever you provide.

“retrack” expects to find a file with the name “seb.input”, or by specifying the command line
switch “-data filename”. This file is then parsed by the program to pick out the parameters and
“commands” for a particular simulation. The parameters and “commands” can come in any order,
with the exception of the LatDef command, which must come before any other lattice definition
statements. If something is multiply defined the first parameter, or “command”, in the file is the
value taken. The case of parameter names or “commands” is not important, so “emitx”, “Emitx”,
and “EMITX” all define the horizontal emittance.

Table I summarizes the parameter names and “commands”. Emittances and momentum spread
are taken to be of the fraction defined by the second parameter for Emitx. All values have defaults,
which is mostly for program stability, except for LatDef, which must be specified.

Command Descriptions:

LatDef
the number of lattice elements being defined, followed by a string of lattice element types. The
number of elements is treated as an integer and must match the number types listed. Accepted
types are kick, sext, and oct. E.G.,
LatDef 5 Kick Sext Oct Sext Oct

15

PrintSep
for each lattice element specify whether or not to print separatrix data. Takes yes or no list of
strings as arguments. The number of yes’s and no’s must match the number of lattice elements.
E.G.,
PrintSep yes no no no no

Emitx, Emity
horiz. or vertical emittance followed by fraction of emittance which the number represents. For
example you could give an unnormalized emittance of 0.000001 and define it to be a 1 sigma
value by making the fraction 0.15. See equation 23.

Dpp
momentum spread corresponding to fraction F of horizontal emittance. For example if you
define the emittance as 0.000001 and fraction 0.15, then this dpp value is assumed to be 15 %
of the full momentum spread. See equation 24.

Betax, Betay
beta function values (in meters) at each element.

Alphax, Alphay:
alpha function values at each element.

Dx, Dy
dispersion function values at each element.

Dpx, Dpy
angular dispersion function values at each element.

Qfr, Qfy
Horizontal or Vertical phase advances. First value is phase advance for a single turn (or the tune
values). The following values are the phase advance from the starting point to that element.
This is the way MAD reports phase advances in a twiss output.

chromx, chromy
lattice chromaticity defined by MAD.

NumPart
number of particles to generate for tracking

Type
If set to 1, the program will generate a gaussian distribution and then stop. In this case only
the first element of the lattice definition is used. If set to 2, the program will track particles
through the lattice for as many turns as defined. If set to 0, the program does nothing.

IsRand
If set to 0, program uses a uniform distribution. If set to 1, program uses a random distribution.

numturn
maximum number of turns to track over. Trackings should end well before reaching this value.

rampt
maximum number of turns to ramp phase advances over. Should best be slightly less than
numturn. second argument is the number of turns to skip printing, to avoid printing a large
amount of particles far from the resonance (only used if separ is set to 1).

separ
If 0, no separatrix data is printed. If 1, then a coordinate position is printed to stdout for each
lattice element for which PrintSep was set to yes for, and for all turns greater than the second
argument of rampt. Each line of output is a listing of the coordinates for one turn. For example,
here are the coordinates (x,x’,y,y’) for the first few turns for two elements in the lattice.

16

1.660391e-02 1.261698e-04 -2.550804e-03 7.675866e-04 4.318592e-03 -8.237894e-05 2.067759e-03 7.563282e-04

1.312010e-02 -3.759855e-04 1.130136e-03 -6.912041e-04 3.361507e-03 3.667398e-04 -2.802340e-03 -5.918679e-04

1.513913e-02 2.290430e-04 5.671658e-04 4.438693e-04 7.136196e-03 -2.615702e-04 2.841513e-03 2.812436e-04

1.656520e-02 1.167895e-04 -2.116790e-03 -8.555916e-05 4.268982e-03 -7.293405e-05 -2.165521e-03 9.924737e-05

...

sgain
scaling phaseshift parameter, to allow moving the phase advances even further away from the
resonance, and ensure a more adiabatic passage into the resonance.

madgen
If 1 then file for using as a mad input file is generated.

units
If 0, then units are in meters and radians. If 1 then units are in inches and radians. This is to
allow using with the program “beam”.

skick
sextupole kicks, one for each sextupole defined in LatDef statement.

okick
octupole kicks, one for each octupole defined in LatDef statement.

dkick
takes two arguments, a kick value in radians and an integer number of turns to track over.
dipole kick applied by thin septum when particles land outside of the septum location. If dkick
is set to 0.0, then the output phase space is for the entrance to the thin septum. If dkick is
other than 0.0, then a kick is applied and the particles are tracked for the specified number of
turns. The output phase space is at the entrance to the thick septum.

xoff
Allows a horizontal position offset to be applied for each element in LatDef.

xpoff
Allows a horizontal angle offset to be applied for each element in LatDef.

yoff
Allows a vertical position offset to be applied for each element in LatDef.

ypoff
Allows a vertical angle offset to be applied for each element in LatDef.

thinoffs
x, x’, y, y’ offsets to be applied at the thin septum. These offsets are treated differently from
the above offsets. The values in the above offsets should agree, but don’t nescessarily have to
agree, with those defined in xoff,etc. The values here are used when calculating the extraction
efficiencies. The values above, in xoff, etc, are used to provide offsets in the numbers generated,
for display purposes.

thickoffs
x, x’, y, y’ offsets to be applied at the thick septum. Also used for calculating efficiencies.

thinsept
Two arguments; thickness and position of septum (in that order), in meters

thicksept
Two arguments; thickness and position of septum (in that order), in meters

foil
foil specification parameters.

fBetax, fBetay, fAlphax, fAlphay, fDx, fDy, fDpx, fDpy, Dphix, Dphiy
twiss parameters for final point (second septum location). Dphix and Dphiy are the phase horiz.
and vert. phase advance from the first septum the second septum (entrance).

17

TABLE I. “retrack” names and meanings

Name meaning no. parameters parameters

LatDef lattice definition line (Required) 1 int,>2 strings no. elements, element list
PrintSep yes or no, print separatrix for element yes/no
Emitx horizontal emittance 2 float Horz. emittance and fraction, F
Emity vertical emittance 2 float Vert. emittance and fraction, F
Dpp momemtum spread 1 float %dp/p
Betax beta function values >2 float beta values (m); 1st septum, sext/oct
Alphax alpha function values >2 float alpha values
Dx horiz. dispersion function >2 float Dx values (m)
Dpx horiz. angular dispersion >2 float Dx’ values
Betay beta function values >2 float beta values (m)
Alphay alpha function values >2 float alpha values
Dy vert. dispersion function >2 float Dy values (m)
Dpy vert. angular dispersion >2 float Dy’ values
Qphase/Qfr horiz. tune and phase advances >2 float phase advances
Qfy vert. tune and phase advances >2 float phase advances
chromx horiz. chromaticity 1 float horiz. (dQ*p)/(Q*dp)
chromy vert. chromaticity 1 float vert. (dQ*p)/(Q*dp)
skick sextupole kick >1 float sextupole kicks (if present)
okick octupole kick >1 float octupole kicks (if present)
dkick dipole kick 1 float, 1 int kick and num turns to track

xoff x bump >2 float (m)
xpoff x’ bump >2 float (m)
yoff y bump >2 float (m)
ypoff y’ bump >2 float (m)
thinoffs orbit bump offsets at thin septum 4 float (m)
thickoffs orbit bump offsets at thick septum 4 float (m)
thinsept thin septum thickness & location 1 float (m)
thicksept thick setpum thickness & location 1 float (m)
foil foil specifier 6 float A, Z, thickness(cm),

width(m), height(m), xpos(m)

NumPart number of particles 1 int integer number of initial particles
Type type of simulation 1 int 1(gaussian),or 2(resonant)
IsRand random gen. switch 2 int 0(uniform) or 1(random) and seed
numturn max. number of turns to track over 2 int num. turns to track and num. to skip
rampt max. number of turns to ramp tune 1 int num. turns to ramp tune over

separ output separatrix switch 1 int 0 (no separatrix data) or
1 (output separatrix data)

sgain scaling phaseshift parameter 1 int fudge factor for dQ shifts
madgen output MAD data 1 int 0 (no mad output) or 1
units meters or inches 1 int 0 (m) or 1 (inch)

fBetax beta function at thick septum 1 float twiss parameters at a second septum
fAlphax alpha at thick septum 1 float
fDx dispersion at thick septum 1 float
fDpx angular dispersion at thick septum 1 float
fBetay vert. beta at thick septum 1 float
fAlphay vert. alpha at thick setpum 1 float
fDy vert. dispersion at thick septum 1 float
fDpy vert. angular dispersion 1 float
Dphix horz. phase advance to thick septa 1 float
Dphiy vert. phase advance to thick septa 1 float

// single line comment none
/* single line comment none

18

An example seb.input file is:

/*3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

/*------10--------20--------30--------40--------50--------60--------70--------80--------90

/**/

// D3 D6us D6ds E4 F8 B4 C8

//--

LatDef 7 kick kick kick sext sext sext sext

PrintSep yes yes no no no no no

Emitx 0.0000037 0.95

Emity 0.0000037 0.95

Dpp 0.0002

Betax 9.5873357 12.2611135 6.0448229 12.545486 12.116174 12.5535487 12.1315470

Alphax -1.4683853 1.7446750 0.9686770 -1.7671210 -1.6108323 -1.7699250 -1.61161590

Dx 2.4361410 2.8833202 1.9307608 2.7785205 1.7615426 2.7762064 1.76367850

Dpx 0.3687764 -0.3936196 -0.3936196 0.36906824 0.1641037 0.36877642 0.16446086

Betay 6.2743893 4.6158564 9.8176338 4.7007230 4.6900374 4.7074249 4.70620574

Alphay 1.0012921 -0.6883859 -1.4611088 0.71101962 0.7088521 0.7088446 0.71187967

Dy 0. 0. 0. 0. 0. 0. 0.

Dpy 0. 0. 0. 0. 0. 0. 0.

xoff 0.015 0.005 0.005 0.0 0.0 0.0 0.0

// going from d3 to d3

Qfr 4.333366118 0.1973593811 0.2420576706 0.7355278962 1.810368863 2.902414778 3.976880573

Qfy 4.579999888 0.2595405011 0.3180650214 0.7901592953 1.935272464 3.080481888 4.225156944

chromx -2.50

chromy 0.10

NumPart 10000

Type 2 // 0 or 1 is gaussian beam generator, 2 is resonance extraction

IsRand 1 3 // if 1, set to use random numbers with next number as seed

thinoffs 0.015 0.00 0.00 0.00

thickoffs 0.005 0.00 0.00 0.00

rampt 100000

numturn 100500 50000

pimult 1.0

sgain 2.0

// can use skick or okick

skick 0.125 -0.125 -0.125 0.125

//dkick 0.00 0

dkick 0.002 1

thinsept 0.00076 0.055 //thickness and location

thicksept 0.0152 0.05

// A Z thickness(cm) width(m) height(m) xpos(m, inner edge relative to septum)

foil 63.546 29.0 0.01 0.1 0.0005 0.0

//foil 63.546 29.0 0.01

units 0

separtrix 0

madgen 0

fBetax 12.261113467

fAlphax 1.744675026

fDx 2.883320193

fDpx -0.393619587

fBetay 4.615856418

fAlphay -0.688385932

fDy 0.

fDpy 0.

Dphix 0.1973593811

Dphiy 0.2595405011

19

IX. CONCLUSIONS

To track 10,000 particles for about 60,000 turns each, takes about 1.5 hours on a 500 MHz pentium
III machine running on linux. To track 100,000 particles takes about 9 hours. To do the comparable
calculation using MAD would take weeks (assuming the program wouldn’t crash, which it would if you
tried to track that many particles). The generated phase spaces agree very well with those produced
by MAD for a small number of particles and tracking using the generated phase spaces show very
good agreement with MAD envelope calculations.

The source code and example input files reside on the C-AD sun system in the
rap/lattice tools/retrack directory. This document also reside in that location.

X. ACKNOWLEGEMENTS

E.Courant was extremely helpful by explaining how to correctly include dispersion in the matrix
transformations (see equations 27,28). S.Peggs and T.Satogata were extremely helpful in pointing out
the proper way to include coupling from sextupoles and octupoles (see equations 29-33).

[1] D.Edwards and M.Syphers, “An Introduction to the Physics of High Energy Accelerators”, Wiley Series
in Beam Physics, 1993 John Wiley & Sons, Inc. ISBN 0-471-55163-5

[2] H.Grote, F.C.Iselin, “The MAD Program User’s Reference Manual”, CERN/SL/90-13(AP)Rev.4, May 26,
1995.

20

