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1. Introduction 
 
Coupling correction is essential for the operational performance of an accelerator, and RHIC is no 
exception. Effective independence of the transverse degrees of freedom makes measurements and 
diagnostics easier, and it is usually advantageous to operate an accelerator close to the coupling resonance 
to minimize nearby nonlinear sidebands. Besides these general considerations, the RHIC specific 
requirement of stringent tune control on the ramp (especially for polarized proton operations) demands 
good control of coupling effects, to ease the operation of the PLL based tune feedback system. 
The coupling correction strategy that we used during the run 2001 is based on operational experience of 
other accelerators, simulation and studies on coupling effects performed during the RHIC design and 
construction phase, and, most relevant, the analysis of data and results gathered during the previous RHIC 
run in the year 2000. 
First, we used the independently powered skew quadrupole correctors embedded in the IR triplets to 
compensate locally the effect of roll alignment errors. The initial local corrector settings, based on the 
analysis of the run 2000 data, are applied at injection and ramped. The IR local coupling compensation 
techniques and the performance during the RHIC 2001 run are described in Section 2. In particular, results 
for the skew quadrupole strengths obtained with the IR bump technique are compared to the action-phase 
jump method and found in good agreement. After the end of the run, the alignment of selected individual 
triplet cold masses was revisited and the measured roll errors were found in good agreement with the roll 
inferred from the beam-based measurements. 
The residual coupling in the machine, from arc magnets, experimental magnets (and in addition the 
Siberian snakes during the polarized proton run) has been corrected with two orthogonal families of skew 
quadrupoles by minimizing the tune separation, a well established operational technique to correct coupling 
globally in the machine. This technique was also used during run 2000. The improvement in 2001 was the 
development of  a set of application scripts to aid the global decoupling operation by taking advantage of 
both the tune meter and the Schottky detector for tune measurements, and by allowing easier skew 
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quadrupole family setting. The scripts and the performance of the global coupling correction system are 
discussed in Section 3. 
Local and global decoupling were the typical operational tools used in Run 2001, but development work for 
upgraded coupling correction techniques started during beam experiment time in run 2001, that are the 
basis for new developments planned for the next run. Section 4 reports results obtained in the measurement 
of the coupling resonance and related data analysis with the SUSSIX analysis package. Finally, Section 5 
discusses the requirements for coupling correction in the upcoming run 2003 and the strategy to fulfill 
them. Several methods were presented at the RHIC Retreat (March 2002) that have the potential of 
correcting coupling without moving the tunes, opening the possibility of coupling compensation during the 
ramp. We will discuss these techniques in more detail and try to assess their feasibility for the next RHIC 
run and beyond. 
The RHIC coupling correction system is described in Figure 1, which shows the skew quadrupole system 
for the Blue ring. The same configuration is replicated for the Yellow ring. 
 

 
 

Figure 1. The skew quadrupole correction system in the RHIC Blue ring. 
 
Each ring is equipped with 12 independently powered local skew quadrupole correctors located in the 
triplet corrector packages, and 48 skew correctors wired up in 3 families. The use of the 2 types of 
correctors is respectively discussed in Sessions 2 and 3. 

2. Local IR coupling correction 
 
  During the RHIC run 2000 dedicated measurements were taken in the RHIC interaction regions (IR) to 
identify the coupling errors originating from rotation errors of quadrupoles of the IR triplets.  Two 
techniques have been used independently. The first method, based on applying closed orbit bumps at the IR 
[1][2] triplets and looking at the rms closed orbit excited in the other plane, is described in Section 2.1. The 
second, which is called action-phase jump method [3], utilizes single dipole kicks to excite large beam 
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trajectory oscillations and looks at the change of the amplitude (action) and phase of the trajectory 
oscillations in the other plane after every interaction region. The latter is described in Section 2.2. 

2.1 IR bump method 
 
  Using three dipole correctors a closed orbit bump can be formed around any RHIC interaction region 
triplet. The maximum of the orbit excursion produced by the bump is located inside the triplet and in the 
absence of local gradient or skew errors the closed orbit in the rest of the ring would be undisturbed. If 
skew errors are present inside the triplet this is no longer the case. Closed orbit oscillations are excited in 
the plane orthogonal to the plane of the orbit bump.  
Figure 2 shows a typical closed orbit bump in an interaction region. Closed bump data are obtained by 
taking the difference between orbits before and after setting the correctors for the requested bump. The 
bump settings are calculated by the on-line model, which assumes the ideal machine optics. 
 

 
Figure 2. Example of interaction region (horizontal) orbit bump. 

 
The amplitude of the closed orbit excitation is proportional to the bump amplitude and to the value of the 
coupling error. Since the RHIC rings have local skew quadrupole correctors inside every IR triplet (see 
Figure 1) and the betatron phase advance over the triplet is very small, corrector strengths can be calculated 
to eliminate this orbit excitation.   
Let us consider a closed orbit bump applied in the horizontal plane. Defining the closed orbit bump 
amplitude Ax as the orbit excursion at the position of the horizontal dipole corrector in the triplet, the orbit 
excited in the vertical plane because of a coupling error κ is: 

dsAy
triplet

yxyydc
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x

y

y
∫−Ψ= ββκπν

βπν
β

)cos(
sin2

       (1) 

 

where Ψ  is the vertical betatron phase advance which changes with the betatron tune y yν .  
dc
xβ is the horizontal beta function at the position of the triplet horizontal dipole corrector. The effect of 

coupling is quantified by an integral which is taken over the quadrupoles of the given triplet. 

 3



The orbit analysis is based only on data from beam position monitors in the arcs.  The vertical beta function 
has the same value (48 m) at all arc vertical BPM locations.  This simplifies the calculation of the orbit rms 
value which after averaging over the phase yΨ , is: 

xyxdc
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      (2) 

 

where is taken at the arc BPM’s. bpm
yβ

Although is always considered as a positive mathematical value, in order to distinguish the sign of a 
coupling error we consider it as a signed value. Its sign is defined as the sign of the orbit data measured at a 
position in the arcs where, according to the machine optics, one expects a positive orbit measurement for a 
positive coupling error κ and a positive bump amplitude A

rmsy

x. 
Having and Armsy x from the measurements, the linear coefficient λ can be extracted. One then calculates 
the IR skew quadrupole integrated corrector strength required to compensate for the coupling error.  This is 
given by 
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with  the beta functions at the skew corrector. Although we considered the effect of a horizontal orbit 
bump on the vertical orbit rms, switching the y and x indexes gives us the opposite case with a vertical 
bump and the horizontal orbit rms. Moreover, from the formulas listed above one can see that the coupling 
value error κ as well as the skew corrector strength are weighted by a factor 

sc
yx,β

yx ββ that is symmetric with 

respect to βx and βy. Thus, whatever orbit bump is used for the experiment, horizontal or vertical, it has to 
lead to the same value of the skew corrector strength.  
Figures 3 and 4 summarize the measured data of the rms orbit excited in the plane orthogonal to the bump 
plane as a function of the bump strength.  Measurements were taken in 3 interaction regions (IR2, IR6, IR8) 
in both RHIC rings. For half of the triplets, measurements were done in both the horizontal and vertical 
planes but for the other half only horizontal bumps were used. The bump amplitude was varied from 5 mm 
to up to 50 mm in some triplets. For the larger bump amplitudes some of the curves deviate from linearity, 
a signature of nonlinear effects in the IR triplets 
The coefficient λ has been extracted by taking the linear coefficient of the curve polynomial fit.  The 
corrector strengths have been calculated according to formula (3) and are listed in Tables 1 (“Closed orbit 
bumps” column) and 2 in Section 2.3. For triplets with both horizontal and vertical bump data, the skew 
corrector strength is taken as the average between the two measurements (plus and minus an error defined 
as a half of the difference between the two measurements). There is good agreement between horizontal 
and vertical bump measurements for all triplets except the BI1 triplet (Blue ring) where the error of 0.16 is 
comparable with the calculated average strength of -0.22. Another uncertainty appeared at the YI6 (Yellow 
ring) triplet where the sign of the skew corrector could not be trustfully determined. 
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Figure 3. Orbit rms measured in the opposite plane versus bump strength (Blue Ring) 

 

 
Figure 4. Orbit rms measured in the opposite plane versus bump strengths (Yellow Ring) 

 

2.2 Action-phase jump method 
 
Under ideal conditions, the action and phase of the betatron oscillations of a particle should remain constant 
all around the ring. Magnetic errors in the different elements of the ring can lead to a change of these two 
constants of motion, and these changes can be used to determine the location of the errors and their 
strengths. Action and phase associated with RHIC particle orbits at particular positions in the ring are 
obtained from pairs of adjacent BPM measurements. BPM measurements are converted into action and 
phase after inverting the equations: 
 

)sin(2

)sin(2

222

111

ϕψβ

ϕψβ

−=

−=

Jx

Jx      (4) 

 
where  x1 and x2 correspond to any two adjacent BPM measurements,  2121 ,,, ψψββ  their corresponding 
beta functions and phase advances and finally J and ϕ  are the action and phase. Equation 4 is applied to all 
adjacent BPM measurements in the ring to obtain action and phase as a function of the longitudinal position 
s. During the RHIC 2000 run, studies of action and phase confirmed the existence of significant coupling 
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errors in the IR’s. A method based on first turn measurements and action and phase analysis was developed 
to quantify the coupling error and correct for it. The positive results obtained from the previous studies 
stimulated the extension to a more general method that can evaluate, from closed orbits (RHIC 2001 run) 
not only skew errors but also gradient and nonlinear error in the RHIC IR’ s. 

2.2.1 Experimental procedure 
 

Action and phase studies require stable and defined orbit betatron oscillations. Such betatron oscillations 
can be produced at RHIC by simply turning on a dipole corrector. The corrector must be chosen such that 
the phase advance between the corrector and the interaction region under study is close to an odd integer of 
π/2. This condition guarantees that the orbit will be near to its maximum when going trough the interaction 
region. The strength of the corrector is a trade-off, strong enough to cause a large betatron oscillation but 
weak enough to avoid beam losses. In RHIC, a few tenths of mrad produce large enough oscillations 
without compromising the beam. 
The resulting orbit however arises not only from the dipole corrector intentionally turn on but also has 
small contributions from dipole errors always present in the ring. To eliminate such contributions, the 
baseline (orbit when the dipole corrector is off) is subtracted from the original orbit producing what is 
called a difference orbit. This procedure also eliminates possible systematic errors associated with the BPM 
measurements.   
In principle, betatron oscillations should be present in only the plane where the dipole corrector is turn on. 
However, due to coupling, betatron oscillations are also present in the plane opposite to the plane where the 
dipole corrector is turned on. The betatron oscillations in the plane opposite to the plane of the acting dipole 
corrector are the ones that will be analyzed since they give a direct indication of the amount of coupling 
present in the ring. 

2.2.2 Analysis 
 

Equations 4 are applied to the difference orbit to get functions of action and phase like the ones shown in 
Figure 5. To obtain this particular plot, the vertical dipole corrector bo7-tv7 was set to 0.23 mrad, the 
induced orbit in the opposite plane measured (top rectangle of Figure 5) and then action and phase obtained 
(middle and bottom rectangles of Figure 5) by repeatedly using formulas 4. 
 

 
Figure 5: Horizontal action and phase 
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Figure 5 suggests that action and phase remain constant in the arcs while making significant jumps at the 
interaction regions. The analysis of first turn orbits indicates that the jumps at the IR’ s are mainly due to 
the local skew quadrupole errors. All RHIC IR triplet correction packages include 1 skew quadrupole layer 
(see Figure 1). The local skew correction is aimed at eliminating the betatron oscillations generated by the 
skew errors at the triplet, or in mathematical terms: 

[ ] 0))(sin()()(2 =−+ trip
xxx

sc
x

sc
sc

trip
x ssyklJ ϕψββ       (5) 

 

 
where  is the action associated with the betatron oscillations originated by the skew quadrupole errors 
at the triplet, y

trip
xJ

sc is the beam position in the plane of kick (in this case the vertical plane) at the location of 
the skew quadrupole corrector,  is the beta function at the position of the skew quadrupole corrector, 
(kl)

sc
xβ

sc is the strength of the corrector,  the phase at the triplet and  βtrip
xϕ x(s) and ψx(s) the beta functions and 

phase functions. (kl)sc  trivially follows from Equation 5.   

scsc

trip
x

sc
xy

J
kl

β

2
)( −=          (6) 

 

Since the two skew quadrupole correctors of a specific IR have a difference phase advance close to π, only 
one skew quadrupole corrector can be used to compensate the skew errors in the whole IR. This is specially 
useful when is not possible to have individual estimates of  for the left and right triplets but rather a 
integrated value  for the whole IR, as it was here experimentally the case. It is possible to show that 
formula 6 still holds if is changed by .  

trip
xJ

IR
xJ

trip
xJ IR

xJ
If the action in the arc immediately to the left (Blue Ring) of the IR under study is zero (see Figure 5) the 
action immediately to the right is equal to . Strengths are then trivially calculated using Formula 6. We 
called the strengths so obtained principal strengths. On the other hand, if the action in the arc immediately 
to the left of the IR under study is different from zero an additional step is required to obtain : 
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here, is the action on the left hand side of the IR, is the action on the right hand side and  and 
are the corresponding phases. We call the strengths thus obtained secondary strengths. Figure 5 shows 

how actions and phases are labeled when strengths are calculated at IR10. In principle, only one orbit 
would be required to extract the corrector strength required at a particular interaction region. However, 
several orbits produced by different dipole correctors and different strengths are used to estimate the 
uncertainty in the measurement. 

L
xJ R

xJ L
xϕ

R
xϕ

2.2.3 Results 
 

The different measurements of principal strengths for a particular interaction region are, in general, very 
consistent. In other words, the uncertainty associated with principal strengths is very small. For almost all 
interactions regions the uncertainties associated with secondary strengths are bigger than the ones 
associated with principal strengths.  
The difference in the uncertainties of principal and secondary strengths might be due to the presence of 
gradient errors. Their magnitudes can be very different in the 2 cases. The difference lies in the fact that the 
beam position at the interaction region of orbits that are used to calculate principal strengths is very small 
when compared with the beam position at the same interaction region of orbits that are used to calculate 
secondary strengths. Since gradient errors at the interaction region depend linearly on the position of the 
beam, the difference between the gradients errors in each case can be also very different. The “action-phase 
jump” column in the Table 1 (Section 2.3) shows the estimated principal strengths obtained from the 
analysis of 40 difference orbits taken during RHIC run 2000 in the Blue ring. 
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2.3 Calculated corrector strength 
 

The resulting IR skew corrector strengths, using the two methods described, are summarized in Table 1 
and 2.  For the Blue ring, where we have calculations obtained from both methods, we compare the results 
of the methods for three interaction regions. Because the action-phase jump technique determines the 
corrector strength for whole interaction region, it should be compared with the sum of both triplet corrector 
strengths calculated by closed orbit bumps, for a given IR. The agreement between results is good for all 
three measured interaction region 

 
Calculated corrector strengths (10-3 m-1) 

IR Triplet Closed orbit bumps Action-phase jump 

IR2 BI1 
BO2 

-0.22 +/- 0.16 
1.23 +/- 0.15 0.99 +/- 0.14 

IR4   0.63 +/- 0.06 

IR6 BI5 
BO6 

0.39 
0.12 0.60 +/- 0.15 

IR8 BO7 
BI8 

-0.84 
1.32 0.67 +/- 0.07 

IR10   1.00 +/- 0.15 
IR12   0.18 +/- 0.03 

 
 

 
 

 
 
 
 
 

 
 

Table 1. Calculated IR skew corrector strengths for the Blue ring. 
 
 

IR Triplet Calculated corrector 
strength (10-3 m-1) 

IR2 YO1 
YI2 

0.3 
0.76 +/- 0 

IR6 YO5 
YI6 

    -0.94 +/- 0.08 
+/- 0.36 +/- 0.04 

IR8 YI7 
YO8 

 0.36 +/- 0.04 
-1.1 

 
 
 
 
 
 

 
Table 2. Calculated IR skew corrector strengths for Yellow ring  (closed orbit bumps data only) 

 

2.4 Local correction in run 2001 
 
The two methods described in the previous section and data from run 2000 provided us with a set of skew 
corrector strengths (Tables 1 and 2), but not a complete set. We had no data for all Yellow triplets in IR10, 
IR12 and IR4, so the local correction had to be completed and tested at the beginning of the 2001 run. 

2.4.1 Local IR correction during operations 
 

The run 2001 optics was different from the one in run 2000. The injection β* in 2001 was 10 m at all 
interaction points. We could then expect a decreased effect of the coupling error at injection because of the 
lower β function in the IR triplets. On the other hand, the collision optics at top energy in 2001 used β∗ of 1 
and 2 meters, which, left uncompensated, would have considerably  enhanced  the coupling effect. 
Therefore we planned to put the calculated IR corrections early into the run, before globally decoupling 
with the skew families in the arcs. (Ssee Section 3). 
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Figure 6. Setting for the IR skew quadrupole correctors in 2001 (Blue and Yellow) 
 

The local IR skew corrector set, activated in the machine in early July, is shown in Figure 6 from the 
RampEditor. Most of the triplets were corrected using the calculated corrector values. For the triplets where 
we had only predictions from the action-phase jump method for a whole interaction region, the strength has 
been divided equally over the two correctors in the same IR. 
 

 
Figure 7.  The difference orbit before (blue) and after (orange) skew correction at the YO10 triplet. The 
vertical orbit was excited by applying a 10 mm amplitude  horizontal bump. 
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Figure 8. Distribution of skew corrector strengths. 

 
For the Yellow triplets where we did not have calculated corrector strengths from run 2000, the correction 
was done online, operationally, via closed IR bumps. Figure 7 shows the IR correction done with a closed 
bump in the YI10 triplet. Vertical orbit oscillations excited by applying a horizontal orbit bump of 10 mm 
amplitude were damped by using the local skew corrector. For most of the regions where the calculated 
corrector strength had been applied, we tested the correction quality with closed orbit bumps. That 
demonstrated that the calculated correction works very well. Only at the YO1 and YI6 triplets the corrector 
strength required some adjustment from the calculated values. Figure 8 shows a distribution of absolute 
skew corrector strengths. The largest corrector strengths were needed at BI8, BO2 and YO8 triplets. The 
quadrupole roll error of the triplets as the main source of the skew IR error is discussed in Section 2.4. 
The strength required for the bi8-qs3 corrector, corresponding to 49 A in the power supply, is beyond the 
recommended current limit of 47.5 A. To limit the current in bi8-sq3, the correctors were readjusted at the 
flat-top stone by distributing some strength to the corrector across the IP (bo7-qs3). In order to insure the 
locality of the correction, the plan for run 2003 is to increase the power supply limit to 55A for the 
correctors running close to the limit. 
Figure 9 shows the local corrector strengths, blue and yellow respectively, over the length of the run 
(including polarized proton operations). 
Starting from early July the correction was fairly stable, with the exception of a few power supply trips. 
The effect of a tripped power supplies was normally compensated by adjusting the corrector at the other 
triplet while keeping the sum of the two IR corrector strength constant. In particular, the corrector at 1 
o’clock in Blue had to compensated by the 2 o’clock one for most of the run. 
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Figure 9. Yellow and blue skew quadrupole IR settings during Run 2001. 

 

2.4.2 Extension of the action-jump method 
 

In the 2001 run the action-phase jump technique described in Section 2.2 was extended to add the analysis 
of gradient and nonlinear errors in the IR’s to the original coupling errors. After a brief introduction on the 
experimental procedure, we will discuss here only the coupling results. 
Closed orbits are obtained from the average of many thousands of turns. This leads to small uncertainties in 
the beam position monitor measurements, which in turns leads to a more precise determination of the 
magnetic errors when compare with first turn orbits measurements. However, closed orbits can be used 
almost exclusively to find secondary strengths (see Section 2.2) and the determination of secondary 
strengths might be affected by the presence of significant gradient errors. This is especially true when the 
measurements are repeated after the correctors are set. In that case, the skew quadrupole errors are very 
close to zero and the gradient errors can be significantly larger, which in turn will lead to a false 
measurement of the secondary strength.  Principal and secondary strengths can also be affected by the 
presence of non-linear errors. All this motivated the development of a general method that is able to 
discriminate between gradient errors, skew quadrupole errors and non-linear errors. 
In this case, the experiment described in section 2.2.1 is repeated four times for each dipole corrector, for 4 
different corrector strengths. The measured quantities are closed orbits and this implies that both horizontal 
and vertical orbits must be analyzed, and also that the resolution of the measurements is better. In 
particular, the 2 DX BPM' s can be used to calculate action and phase in the region between triplets and to 
independently estimate errors at each triplet.  
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In this case the action and phase jump can be described as if it were coming from a general magnetic kick 
∆’trip that can be obtained from measured quantities: 
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R
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L
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R
x

L
x

R
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L
x

trip JJJJx βψψ /)cos(2(' −−+=∆     (8) 
 

where L and R label action and phases at the left and right hand side of the triplet under study. The ∆x’trip 
thus obtained is an effective kick that we can assume produced at a particular location so within the triplet. 
so can be chosen arbitrarily and it determines the beta function  to be used in the previous formula. 
Choosing s

trip
xβ

o exactly at the location of the skew quadrupole corrector simplifies the determination of the 
corrector strengths needed to compensate for the errors. On the other hand,  ∆x'trip corresponds to the sum 
all possible error present at a particular triplet, skew quadrupole, gradient or non linear errors. In general, 
∆x’ can be written as: 

ρB
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x y−=∆ '      (9) 

where By is the vertical component of the magnetic field error, l is the total length of the magnet and Bρ is 
the rigidity. A similar equation can be written for a vertical kick. By expanding Bx and By in their magnetic 
multipole components [4], we can see that: 
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Here the A’s and B’s are the triplet magnetic multipoles. A1 is the skew quadrupole error, B1 to the gradient 
error, xo and yo the horizontal and vertical position of the beam at so. Since so is chosen at the corrector 
location, from A1 we can determine the skew corrector strength. It is possible to evaluate the different 
multipole components in equations 10 by taking several sets of delta measurements of given horizontal and 
vertical beam positions. In section 2.2 difference orbits were created with a dipole corrector set to different 
strengths. The magnetic kick at each triplet will vary as the strength of the corrector is varied. The position 
of the beam in both planes at the specific location so will vary as well with the variations on the dipole 
corrector strength. As was mention in section 2.2 a set of four different orbits were taken for each dipole 
corrector. These orbits provide four points to be used to evaluate the coefficients in Equation 10. 
The values of ∆x’ and ∆y’ as a function of the two variables xo and yo can be extracted from the difference 
orbits. xo and yo are no longer independent variables. The relation between these variables depends on the 
amount of coupling present in the ring and that can be easily determined experimentally. This means that 
∆x’ and ∆y’ can be regarded as functions that depend only on one variable, xo or yo 

  
Figure 10. Relation between magnetic kicks and beam position 

 
Figure 10 shows ∆x’ (green line), ∆y’ (black line) and xo as a function of yo at the right triplet of IR2 for a 
set of four difference orbits taken by turning on the vertical dipole corrector bo7-tv13 at strengths -0.1 
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mrad, -0.05 0.05 mrad and 0.1 mrad (each point in the graph correspond to one strength). The behavior of 
∆x’ and ∆y’ as function of xo is almost linear, that is, the contribution of nonlinear errors to the action and 
phase jump at the right triplet of IR 2 is very small. Comparing Equation 10 (only linear terms) with the 
slopes of the curves of Figure 10, it is possible to estimate the value of the linear errors A1 and B1 using:  
 

)1/()(

)1/()(
2

1

2
1

kkCCB

kkCCA

xy

yx

++=

++=       (11) 

 

where Cx is the slope of the curve ∆x’ vs. yo , Cy is the slope of the curve ∆y’  vs.  yo  and k  is the slope of 
the curve xo  vs. yo The experiment is repeated with many other correctors and in different triplets, with 
results that are summarized in Table 3. The value of the skew quadrupole corrector corresponds is the 
average of the values obtained with the different dipole correctors. The large errors at the 2 o’clock triplets 
reflect the fact that the BO2 skew corrector was tripped and its strength was added to the BI1 corrector to 
provide the compensate.  

 
Triplet Skew error  (10-3) 
BO7 -0.001 +/- 0.01 
BI8 0.1 +/- 0.07 
BI9 -0.04 +/- 0.03 

BO10 0.13 +/- 0.03 
BI1 -1.11 +/- 0.03 
BO2 1 

 
Table 3. Measured Blue IR skew quadrupole errors (run 2001) 

 

The errors limit the minimum skew error that can be resolved to ~ 10-4 1/m . That many of the skew errors 
fall around or below this number was to be expected since the local skew correctors were already on when 
the data in Table 3 were taken. The magnitude of the error depends more on the dipole corrector that is 
chosen to produce the betatron oscillations than on the BPM measurements. This is an indication that the 
measurements are sensitive to the difference of phase advance between the dipole corrector and the IR. 
Even though the orbits used to find the errors at a particular IR were chosen with optimal phase advanced 
in one of the planes, it was not always possible to fulfill the same condition in the other plane. It is possible 
though to have a complete control over this problem if a horizontal and a vertical dipole corrector are used 
simultaneously to produce the betatron oscillation. 
Another possible source of error is the slight difference in tunes between the model used to do the analysis 
and the real tune of the machine. This difference creates a slight slope in the graphs of phase vs. s in the 
arcs. A retuning of the lattice model would hopefully reduce this tilt in the phase. After correction of these 
effects, it is not unreasonable to expect measurements of skew errors with significant figures up to  10-5 
1/m. 

2.5 Comparison between beam-based and bench alignment measurements 
 

Table 4 summarizes the relations between the different beam-based measurements done at RHIC 
 

triplet corrector residual 2001 total triplet total IR Orbit bump 2000 action-phase  
BO7 -0.8 0 -0.8 -0.84 
BI8 1.3 0.1 1.4 0.6 1.32 0.67 

BI9 0.35 -0.035 0.32  
BO10 0.65 0.13 0.78 1.1  1 

BI1 1 -1.1 -0.1 -0.22 
BO2 0 1 1 0.9 1.23 0.99 

 
Table 4. Skew error measurements, comparison 2000 and 2001 (Blue). All values are given in 10-3 1/m. 
 
The first column shows the triplet skew quadrupole corrector settings during RHIC run 2001. The second 
shows the measurement of the skew errors done during RHIC run 2001 with the action-phase jump method. 
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This is effectively the residual error as the data were taken with the local correctors already on. The total 
triplet column lists the sum of the previous two quantities. The total IR column is the sum of the left and 
right triplets for each IR, from the previous column. The total triplet column and the total IR column allow 
a direct comparison with run 2000 measurements, where data were taken with correctors off. The orbit 
bump column shows the measurements of the skew errors done during the run 2000 with the orbit bump 
method, in good agreement with the ‘total triplet’ column. Two other columns to compare are the action-
phase jump column and the total IR column. The action-phase jump column corresponds to the 
measurement done in 2000 with action-phase jump. The agreement is good in this case too. The beam-
based measurements evidenced that there is indeed a large coupling effect in the RHIC triplets. This 
motivated bench alignment measurements on selected triplets during the shutdown 2002. 
The roll angles of individual cold masses inside the triplet were measured and the bench measurements 
compared with the beam-based predictions in Table 5 below. The roll angles are shown as if they were 
measured from the Lead End of the Q1 quadrupole. Roll angles can be easily related to the equivalent skew 
quadrupole error of a particular triplet by the formula: 
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where  if iφ   and  correspond respectively to the focal lengths, roll angles, beta functions (in both 
planes) of each quadrupole in the triplet.  and are the beta functions at the place where the 
equivalent skew quadrupole error is to be calculated, in this case at the position of the skew quadrupole 
corrector. 
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Triplet Q1 

mrad 
Q2 
mrad 

Q3 
mrad 

kl 
10-3 1/m 

Orbit bump 
10-3 1/m 

Action-phase 
10-3 1/m 

Q2 roll eq. 
mrad 

Blue sector 8 -5 2 -0.7 1.6 1.3 1.4 3.7 
Yellow sector 8 -1.08 1.54 -2.12 -1.13 -1.1  2.9 
 

Table 5. Roll angles, comparison between beam based and alignment measurements. 
 
Using the measured rolls (Table 5) and the design values for the focal lengths and the beta functions in 
equation 13, we find that the equivalent skew quadrupole error for triplet 8 in the Blue Ring is 1.6 e-3 1/m 
compared to 1.4 e-3 (action-phase jump value in Table 4) and 1.3e-3 (orbit bump value in Table 4). 
Similarly, for the Yellow Ring the calculated value is -1.13 e-3 1/m as compared to the measured value of -
1.1 e-3 1/m. Taking into account that the measurement errors are about 10%, there is excellent agreement 
between the strength derived from the measured roll angles and the strength derived from orbit based 
measurements. 
 

  3. Global coupling correction 
 
A common operational way to correct global coupling in an accelerator is the minimum tune separation 
technique. This has been used at a variety of accelerators and at RHIC as well. It can be derived that the 
minimum achievable separation of the horizontal and vertical tune (∆Qmin) in presence of coupling is given 
by: 
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where E is the 2x2 off diagonal coupling matrix. For N skew quadrupoles of strength k and length L wired 
into a family, neglecting beta and phase differences, we can write the following relation: 

yxkLNQ ββ
π2min ≈∆           (15) 
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The operational way to correct coupling is to reach the minimum separation via a tune scan to bring the 
tunes together. At the minimum, a pair of orthogonal skew quadrupole families is varied to reduce the 
separation, ideally limited only by the resolution of the tune measuring system. Figure 1 describes the 
schematics of the skew quadrupole families in the RHIC Blue ring (the Yellow ring configuration is the 
same). Every family consists of 16 skew quadrupoles, powered by 4 power supplies that are hardware-wise 
independent but are set at the same strength in software, at the RampEditor level. (In fact, given the phase 
advance in the lattice, the supplies of the family are powered anti-symmetrically). There are 3 families in 
each ring, given the lattice symmetry, and the phase between families if approximately 120 degrees. It is 
easy to verify that the pair (fam1, (fam2−fam3) is orthogonal. The effect of different coupling sources and 
the capabilities of the correction system itself have been simulated during the design phase and verified 
with measurements during the RHIC runs 2000 and 2001. Table 6 lists coupling effects in term of their 
effect on the RHIC ∆Qmin obtained in simulation and the capability of the correction system, and compares 
them with actual measurements during RHIC runs. 

3.1 Global coupling correction performance 2001 
 
The global coupling correction system has been used during the Run 2001 almost exclusively to correct the 
residual coupling in the machine, after the local correction in the IR triplets (see Section 2). It was 
demonstrated that the system could be used to decouple that machine to the tune measurement system 
precision of ~ 0.001-0.0005 for tune meter and HF Schottky [5]. The latter were the tune measurement 
systems routinely used for decoupling operations. The PLL use for decoupling, potentially providing a 
much higher resolution (~10-5), will be discussed in Section 5.  
 
configuration method ∆Qmin   
Systematic a1(-4 units) in all dipoles Model 0.050 
1 Q2 triplet quadrupole tilted by 1 mrad Model 0.017 
Random roll of 0.5mrad in all quadrupoles(average) Model 0.058 
Random roll of 0.5mrad in all quadrupole (worst seed) Model 0.1312 
Random roll of 0.5 mrad in all triplet quadrupoles Model 0.043 
Systematic a1 (1 unit) in one DX IR dipole  Model 0.0003 
Systematic a1 (1 unit) in one DO IR dipole Model 0.0015 
1 skew family powered at kl=0.0005 m-1 Model 0.024 
Maximum skew family corrector strength 
(3 families powered ae 50A, kl=0.001785 m-1 

Model 0.197 

Uncorrected ∆Qmin  Blue ring, 2000 run  (2.5m β* lattice) Data 2000 0.03 
Uncorrected ∆Qmin  Blue ring, 2001 run  (10m β* lattice) Data 2001 0.01 

 
Table 6. Comparison of coupling effects in terms of the resulting ∆Qmi 

 
Although the ultimate correction quality in 2001 has been to ∆Qmin=0.0005, it has been our experience that 
for operations the coupling had to be typically controlled to ∆Qmin~0.005. Global coupling corrections were 
performed at injection and flattop.  Global decoupling readjustment was required after machine retuning 
larger than typically 0.01 (as the global correction is valid only in the vicinity of the tunes where the tune 
scan is performed), and after orbit correction, that typically generate tune shift. 
The typical global decoupling system performance after dedicated tune and family scans are summarized in 
Table 7 and 8, respectively for the gold and proton run. 
 
 
 
 

 
  Au Run  
  Blue Yellow Blue Yellow 

Configuration   Injection Injection Store Store 
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∆Qmin after correction   0.0005 0.006 0.004 0.0005 
Skew Quad #1 0 0 0 -0.00005 

Family #2 0.0006 -0.0005 0.0001 -0.0005 
Settings (kL) #3 0 -0.0001 0 0.0005 

Set Tunes x 28.4 28.459 28.1335 28.213 
 y 29.225 29.199 29.217 29.096 

Measured Tunes x 28.2207 28.228 28.208 28.2169 
 y 29.2202 29.234 29.2124 29.2164 

Tune measurement system  Artus FFT Artus Artus FFT HF Schottky 
Date recorded  7/12/2001 7/2/2001 10/12/2001 11/16/2001 

 
Table 7. Global decoupling system performance after dedicated scans (gold run). 

 
  PP Run  
  Blue Yellow Yellow 

Configuration   Injection Injection Store 
∆Qmin after correction   0.0005 0.001 0.001 

Skew Quad #1 0.0007 -0.0001 0.0002 
Family #2 -0.00005 -0.00006 0 

Settings (kL) #3 0.00005 0.00006 0.0003 
Set Tunes x 28.313 28.413  

 y 29.173 29.034  
Measured Tunes x 28.227 28.228 28.213 

 y 29.2265 29.227 29.214 
Tune measurement system  Artus FFT Artus FFT Artus FFT 
Date recorded  12/18/2001 12/18/2001 1/18/2002 

 
Table 8. Global decoupling system performance after dedicated scans (proton run). 

 
Coupling correction during Run 2001 was done exclusively at injection and flattop, with the injection 
settings propagated during ramping, as the method relies on scanning tunes and skew quadrupoles, not 
possible in a dynamic situation. Alternative correction methods that allow dynamic correction will be 
discussed in Section 5. The skew quadrupole family settings over the life of Run 2001 (both Au and PP) at 
injection and storage respectively are shown in Figure 10. 
Figure 11 shows a typical tune scan to bring the tunes together, in this example at flattop in Yellow, during 
the polarized proton run. Tune meter measurements agree well with HF Schottky measurements, once the 
time lag in the latter due to averaging is taken into consideration. 
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Figure 10. Global skew quadrupole strengths during run 2001, injection and flattop. 
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Figure 11. Tune as measured by HF Schottly and the tune meter during a global decoupling scan (flattop, 
polarized protons, yellow ring) 

 

3.2 Global decoupling application package 
 
An application package (DQMIN) has been developed for global linear decoupling during run 2001. It 
consists of a series of TCL scripts, able to interface with the tune measurement systems and the 
RampEditor for tune and skew quadrupole family control. In more detail, the script functionality include: 

• Setting of the desired tunes 
• Monitoring magnet current changes  
• Getting measured tunes from the existing tune measurement systems (Artus, PLL and HF 

Schottky 
• Visualization of tune scans vs. set-tunes with separate displays for set-νx and set-νy. 
• Setting of skew quadrupole family strengths 
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• Visualization of tune scans vs. skew quads family strengths with displays for all the three 
families. 

  
The application is available in StartUp. Documentation about the scripts and instructions to perform global 
decoupling with the DQMIN application package can be found in Appendix 1. The same information is 
also available online at http://www.cadops.bnl.gov/RHIC/setup/dqmin.html. 

4. Measurement of the linear coupling resonance 
 

Linear coupling is one of the factors that can affect the lifetime in RHIC. As explained in Section 3, the 
traditional minimum tune separation method requires a tune scan and cannot be used either parasitically or 
during the ramp. A new technique of measuring the linear coupling resonance was developed at CERN [6] 
that quantifies the degree of coupling by comparing the secondary fundamental tune line to the primary 
one. The very presence of the secondary line is a signature of coupling. The advantage of this method is 
that it works without changing the machine operating working point. This method can also localize the 
coupling source by mapping out the coupling driving terms through the ring. Local information is 
particularly useful in the interaction regions. A beam experiment with the aim of measuring linear coupling 
was performed during the 2001 polarized proton run.  The RHIC tune meter kickers were used to kick 
beam in both planes and 1024 turn-by-turn (TBT) beam position data were recorded around the ring. We 
will discuss theory, experiment and results respectively in Section 4.1 to 4.3 below. 

4.1 The method 
 

The skew quadrupole component in an accelerator drives the coupling resonance at: 
 

pQQ yx =±  
 

where Qx and Qy are the tunes of the horizontal and vertical betatron oscillation and p is an integer. 
According to the Normal Form theory, in the presence of coupling, the coupling resonance (1,1) 
corresponds to the (0,1) spectral line in the horizontal Fourier spectrum, and appears as (1,0) in the vertical 
Fourier spectrum. Hence, the strength of the coupling resonance can then be characterized with the 
amplitude of the (0,1) line in the horizontal spectrum or the (1,0) line in the vertical spectrum, normalized 
by the amplitude of the base spectral line of the corresponding plane. 
In general, this method requires turn-by-turn beam position data in both planes around the accelerator. The 
normalized momentum px,y  can be derived from the beam position data from two BPM’ s separated by a 
phase advance of about 90 degrees. This method was first tested at the CERN SPS during 2000 and 2001 in 
a resonance driving terms experiments dedicated to the compensation of the SPS linear coupling. The 
amplitude ratio of the horizontal (0,1) and (1,0) lines was measured as a function of the current settings of 
only one SPS skew quadrupole family. The minimum of this ratio was determined and the corresponding 
minimum tune split ∆Qmin was measured as 2x10-4. 
An offline code has been developed at CERN to calculate the drive terms of the coupling. [7] The code first 
takes two pairs of BPM’ s, one horizontal and one vertical, and calculates the Fourier spectrum of each 
beam position signal. The code then calculates the amplitude and phase of the spectral line at the position 
of betatron oscillation frequency. From the amplitude ratio and phase difference between the two BPM’ s, 
one can then calculate the normalized coordinate at the location of the BPM. The Fourier spectrum is 
calculated by the SUSSIX code, which is essentially a high precision Fourier analysis tool. 

4.2 Experiment setup and data analysis 
This method was tried out in RHIC to measure the coupling driving term during run 2001. We used the 2 
tune-meter kickers to excite coherent oscillations in both transverse planes simultaneously. In order to 
obtain significant coherent oscillation, the tune-meter kickers were configured to kick the beam multiple 
times at a frequency close to the betatron frequency. Each RHIC arc quadrupole has a BPM nearby in the 
quadrupole focal plane. The phase advance between each two adjacent horizontal (or vertical) BPM’ s is 
about 85 degree. Dual plane BPM’ s are only available in the interaction regions where the phase advance 
between the two BPM’ s is no longer close to 90 degree. In general, all the RHIC BPM’ s are capable of 
acquiring 1024 turns of beam position data. Some BPM’ s, however, were not available during the 
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experiment. Turn-by-turn data at all the available BPM’ s around the ring were taken with different skew 
quadrupole family settings. An offline code [HH] was then used to convert the 1024 beam position data to 
normal form coordinates. 
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Here xi,j are the positions at the two BPM’s, βi,j the beta functions at each BPM, and ijψ the phase advance 
between the two BPM’ s. These data were then fed into SUSSIX, a computer code for frequency analysis, 
to calculate the Fourier spectrum. The amplitude ratio of the (0,1) spectral line to the (1,0) line in the 
horizontal plane, and the amplitude ratio of the (1,0) line to the (0,1) line in the vertical plane were then 
computed. Figure 12 shows the measured (1,1) amplitude and (1,-1) at all the BPM’ s  for different skew 
quadrupole settings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. The top plot is the measured (1,1) resonance strength as a function of the BPM position. Four 
sets of data were taken for different skew quadrupole settings. (the data around the interaction regions are 
noisier due to the fact that the phase advance between two adjacent BPM’s is not close to 90 degrees, fact 
that reduces the accuracy of the derived normalized complex coordinates) 
 
In general, the amplitude ratio should be a less than 1. The fact that some sets of the data are actually larger 
than 1 could be explained by the fact that coherence in these cases is mainly coming from the other plane, 
induced by coupling. The in plane coherence induced by the tune-meter kicker de-coheres quickly because 
of large chromaticity. When this happens, the ratio of the (0,1) line and (1,0) line becomes larger than 1. 
This method can also be used to measure local coupling. In general, the sudden change of amplitude ratio 
between different locations in the ring represents a local coupling source. This can be useful for further 
investigation the local coupling in the RHIC IR’ s. 
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5. Developments and plans for Run 2003 
 

The planning of the RHIC Run 2003, to start in November 2002, was initiated at the RHIC Retreat in 
March 2002. New requirements on the performance of the coupling system emerged, and a plan to meet 
these requirements is being developed. 
Operational experience from 2001 stressed that we need faster coupling correction capabilities, so that 
decoupling operations can be routinely done every time a closed orbit correction is done, or a change in 
machine tunes or a change in optics configuration. For example, a change of experiment magnet settings at 
flattop, typically affects the coupling as the experiments have axial or solenoid fields, so it would be useful 
to have a ‘library’ of correction configuration. A faster global correction with the application scripts can be 
achieved by speeding up the underlying tune measurements (i.e. faster averaging for the HF Schottky at 
flattop or use of the PLL for decoupling, following the LEP experience) and by speeding up the skew 
quadrupole scans (for instance by providing the PS control software with knobbing capabilities). 
Another requirement on coupling correction capabilities comes from tune control on the ramp. Tune control 
during ramping is fundamental to minimize beam losses on resonances in general, and to preserve 
polarization during proton operations. Tune feedback is required to keep the tunes constant on the ramp, 
and optimal PLL operation require coupling minimization, unless the PLL horizontal and vertical tune 
signals are separated in frequency or time domain. Operationally, during the commissioning of PLL in 
2001, we set the tunes artificially apart at injection by ~0.02, and that typically prevented losing the lock 
because of coupling effects on the ramp. However, when tune feedback will be used in regular operations, 
we have to be able to set the tunes on operational requirements other than coupling minimization, hence 
coupling control on the ramp is desirable. 
The minimum tune separation technique is obviously not a good candidate, because is time consuming and 
changes the tunes, both incompatible with a dynamic situation. Work has started on devising methods to 
correct coupling that can work on the ramp.  
Table 9 summarizes the techniques that were discussed at the RHIC Retreat. We will describe in the 
following their capability, experimental experience where it applies, possible implementation and use in 
RHIC for Run 2003. 
 
METHOD measure correction On the ramp global/local 
∆Qmin indirect Yes No Global 
IR bumps Yes Yes No Local (IR) 
Action-Phase jump Yes Possible Yes Local (IR) 
SUSSIX method 
(resonance compensation) 

Yes Yes Yes Global correction 
Local measure 

N-turn transfer matrix Yes Possible Yes Global 
Teapot local decoupling Yes Yes Yes Local 
Schottky line Yes Yes Yes Global 

 
Table 9. Summary of coupling measurement and correction techniques 

 
As previously discussed, the first three methods in Table 9 were used in operation during Run 2001, and we 
will retain the capability of setting the local skew IR correctors and that of performing minimum tune 
approach if necessary at injection and flattop. 
 
The (SUSSIX) coupling resonance compensation was described in Section 4. The advantage of the method 
is that it does not require moving the base tunes, so it is a good candidate to allow coupling correction on 
the ramp. Kick and acquisition of turn-by-turn data can be done on the ramp (i.e. on ramp step-stones) and 
from the analysis of the ramp data, corrections can be feed-forwarded to the next ramp. The plan for 2003 
is to have an application available on line that allows easy acquisition and quick analysis of turn-by-turn 
data. 
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Another technique on the drawing board is based on the computation of the N-turn transfer matrix. 
Information about the global coupling of the machine can be in principle inferred by the off-diagonal terms 
of the 1-turn transfer matrix 
 

Before decoupling (01-08-2001).  42-turn map. 
0.3935 -1.1215 -1.4554 4.6185 
-0.00406 0.3822 -0.0837 -0.0865 
0.5319 -13.7945 0.2947 1.5399 
-0.0146 0.9480 -0.0056 0.1527 

After decoupling (01-09-2001). 123-turn map. 
-0.0676 3.0765 1.8507 2.6660 
-0.0056 0.1656 0.0834 0.3968 
0.0961 3.0091 -0.1847 0.9820 
-0.0563 1.0073 -0.0137 -0.2917 

 
Table 10. Comparison of N-turn matrices before and after decoupling. 

 
In practice though the off diagonal terms at RHIC are typically 10-4 smaller than the diagonal ones, 
unfavorable for experimental robust determination. However, it can be demonstrated that for the N-turn 
map, where N is half the coupling beat period, the off diagonal are the same order than the diagonal terms. 
Table 10 shows the comparison of the N-turn map for RHIC (Run 2001 data), before and after a global 
decoupling operation (with the ∆Qmin method). By modeling the predicted changes of the off diagonal  
terms of the N-turn, this technique can be used for global coupling corrections.  
 
Another method that has the capability of measuring (and correcting) coupling on the basis of turn-by-turn 
BPM data is the local decoupling technique. A detailed derivation of the method can be found in [8] and 
the study and modeling of its application to RHIC in [9]. The essence of the method is to use the turn-by-
turn signal measured at all double plane BPM’ s in the machine. After kicking (or exciting) the beam in one 
plane, it is possible to extract from the turn-by-turn data the ratio between the out of plane and in plane 
oscillations. From this it is possible to derive the magnitude of the eigen-angles, a measure of coupling, 
locally, at every double plane BPM. Furthermore, it is possible from the data to build a badness function, 
function of the skew quadrupole corrector strengths available in machine. Minimization of the badness 
function gives the skew quadrupole strengths to correct the coupling locally. This method gave excellent 
results in simulation for RHIC (the correction algorithm is implemented in the Fortran version of the 
Teapot code). The plan for run 2003 is to implement the local decoupling algorithms first in the present 
RHIC offline model (based on the UAL software package), then make it available in the upgraded online 
machine model. 
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Appendix 1. Guide for using the DQMIN application package for 
global decoupling 
A1. Open the application 
From the StartUp operation menu, select the method (PLL, Schottky, or ARTUS) and ring (blue or yellow) 
DQMIN script. The application window will show up on the screen by clicking once on one of the 
following applications from the list:  

• Decoupling (ARTUS, Blue  
• Decoupling (ARTUS, Yellow) 
• Decoupling (PLL, Blue) 
• Decoupling (PLL, Yellow) 
• Decoupling (Schottky, Blue)  
• Decoupling (Schottky, Yellow)  

Do not open the application, then use it during a ramp or after a ramp. It should be opened and used at an 
injection or at a store alone. You MUST RESTART the application if there has been a ramping-up or a 
ramping-down.  

A2. Use the application 

1. The values shown in the box "SET TUNE" are the set tunes at the time when the application is 
opened. To change the set tunes, enter the desired values in the "muX set" AND "muY set" entry-
boxes in "SET TUNE", then push "Enter" on the keyboard while cursor is in one of the entry-
boxes. You will see a short time period that the entry boxes being blank which allows magnet 
current becoming stable.  

2. If you have chose PLL or Schottky application, the measured tunes are shown and updated 
automatically in "MEASURED TUNE" box provided PLL or Schottky instrumentation is tracking 
the tunes. If you have chose ARTUS application, you can push "Enter" on the keyboard while 
cursor is in one of the entry-boxes in "MEASURED TUNE" box in order to trigger tune 
measurement.  
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3. The values shown in the box "SET SKEW STRENGTHS" are the skew quad family strengths at 
the time when the application is opened. To change the strengths, enter the desired values in ALL 
entry-boxes in "SET SKEW STRENGTHS", then push "Enter" on the keyboard while cursor is in 
one of the entry-boxes. You will see a short time period that the entry boxes being blank which 
allows magnet current becoming stable.  

4. Caution: all the values are expected in the box "SET TUNE" or "SET SKEW STRENGTHS" 
when you make tune or skew quad family setting changes. Do not leave one of the entry box 
blank.  

5. All the tune scan graphs are on auto-scale. Holding the left button on the mouse to zoom-in. Push 
the right button on the mouse to return to auto-scale.  

A3. Decoupling procedure 

1. Record the current tune settings.  
2. SCAN OF MEASURED-TUNES VS. SET-TUNES: 

Do a tune scan around the current set tunes. The goal is to bring the measured horizontal and 
vertical tunes together by changing the set tunes.  

Suggestion: 
a) Move the higher tune down and the lower tune up by changing set tunes by 0.003-
0.005 at the same time. If a tune is close to a resonance, only move 0.001-0.002 at each 
step. 
b) Watch "qmain" and "qtrim" boxes in "WFG MAIN BUS" box to see if the changes of 
the magnet current are completed. 
c) If measure tunes look reasonable, click on "Add data point" button on both pictures on 
the top row. 
d) Repeat step a) to c) until you see the minimum horizontal and vertical tune separation. 
e) If you need to start over the tune scan, click on "Clear all data point" buttons.  

3. Minimize the measured horizontal and vertical tune separation by putting the set-tunes at the value 
where horizontal and vertical tune separation reached minimum in 1).  

4. SCAN OF MEASURED-TUNES VS. SKEW QUAD STRENGTHS Do a tune scan around the 
current skew quad family settings. The goal is to further bring the measured horizontal and vertical 
tunes together by changing the skew quad family settings.  

Suggestion: 
f) Move the skew quad family #1 by 0.00005-0.0002 at each step. 
g) If measure tunes look reasonable, click on "Add data point" button on the first pictures 
on the bottom row. 
h) Repeat step f) and g) until you see the minimum horizontal and vertical tune 
separation. 
i) Minimize the measured horizontal and vertical tune separation by putting the skew 
quad family #1 at the value where horizontal and vertical tune separation reached 
minimum. 
j) Then do tune scan with family #2 and #3 as step f) through i). At each step change the 
two families have opposite values. (For example: Family #2 =0.0001, Family #3=-
0.0001).  

5. Put the set tunes back to the original settings recorded in 1).  
6. If you are satisfied with the result and want to save the settings for the later ramps, put the final 

skew quad family settings into "RAMP EDITOR".  

Please forward requests or report bugs to Joanne Beebe-Wang (344-3646  bbwang@bnl.gov) 
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