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Abstract 
 
The Circular Radio-Frequency Quadrupole (CRFQ) is a new concept of storage and 
accelerator ring for intense beams of light and heavy ions, protons and electrons. It is 
basically a linear RFQ completely bent on a circle. In this paper, equations of motion are 
derived and solved for particles circulating and accelerated in the device. Comparison of 
beam performance is made with that of conventional storage and accelerator rings. The 
advantages are: very small beam dimensions, high beam intensity, and considerably less 
susceptibility to errors, which makes the motion of particles in the device very stable. We 
first discuss the use of the CRFQ as a storage ring; in the second part of the paper, we 
investigate also the possibility of acceleration. The design of several applications is 
discussed, including, a medical accelerator and a synchrotron radiation source. Both are 
made of a structure much more compact than that of other conventional rings. 
 
Introduction 
 
In this report we describe a novel idea of storage and accelerator ring for intense and 
dense beams of light and heavy ions, protons, and electrons in a more compact structure. 
The concept takes advantage of established principles [1, 2] of operation of conventional 
accelerators, ion traps, and RFQ. The proposed new storage ring is basically a circular 
RFQ bent completely on a circle, and closed mechanically. Focusing the particle motion 
is derived from the RF field of the structure, thus eliminating the need of quadrupole 
magnets. Actually, similarly to the linear RFQ, the focusing is continuous in the CRFQ, 
with no interruption, and thus is expected to be more effective than that of conventional 
storage rings, where the focusing action is localized in quadrupoles placed at some 
distance from each other.  As a consequence, a more compact structure is also expected. 
In the case acceleration is not required, but only storage of particles, the four rods of the 
CRFQ, equivalent to those of the linear RFQ, are smooth, with no convolutions shaped 
internally. Care can then be taken so that the ratio of the CRFQ circumference to the 
focusing period length is not an integral number. In this case, electrically the structure is 
not closed on itself and, to a particle traveling inside, it looks like a long unbounded 
transport. For these reasons, similar to those used in a linear RFQ, it is expected that 
particle beams can be stored at intensities and densities higher than those achieved in 
conventional storage rings. Also, for the same reasons, one would expect less 
susceptibility to errors and imperfections, making the particle motion more stable. 
It will be shown that for a very low particle velocity (β <<1) the particle motion is bent 
on a circle without the help of an external bending field. The bending is provided by the 
focusing action of the RF forces that create a reference distorted-orbit displaced 
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horizontally and outward. In case the amount of the displacement is small compared to 
the separation between the rods there is no need of an external bending field. But at larger 
velocities the displacement increases considerably, for reasonable RF parameters, and an 
external bending magnet is required to confine the beam within the aperture of the RF 
structure. In this case the CRFQ is placed entirely in the gap of an external unbroken 
dipole magnet that covers the entire circumference of the ring, and still results in a very 
compact device. Under these conditions, the CRFQ can be used as a storage ring for any 
kind of particle and, in principle, for any energy. 
 
The lack of periodicity avoids the appearance of resonances between the particle 
oscillation frequency and the revolution frequency. It is then possible to cross a large 
range of oscillation frequency without disrupting the stability of the particle motion. In 
particular it is possible as in the linear RFQ to depress considerably the focusing with the 
space-charge forces, much more than it is possible in conventional storage and 
accelerator rings. The focusing period is given by the product of the particle velocity with 
the RF wavelength and can be made very short; much shorter than it is possible in 
conventional magnetic rings. Correspondingly also the amplitude-lattice function is 
reduced and, with a given beam emittance, the transverse beam size is also smaller. These 
two features, higher intensity and smaller beam dimension, combined together will allow 
very high beam brilliance. 
 
The CRFQ does not have to be necessarily exactly circular. Long straight sections can be 
introduced, and the special case of a race-track-shaped CRFQ is discussed in the paper. In 
this case a geometrical periodicity appears but nonetheless it does not seem to have 
consequences similar to those of conventional rings.  
 
It is also possible to accelerate all types of particles in the CRFQ. For this purpose, the 
rods have a convolution shaped on their facing side. The length of the convolution, that 
generates a longitudinal electric field, equals the focusing period. It is then required that 
the number of focusing periods per turn is exactly an integral number. It is not clear 
whether this will cause the appearance of resonances, and what their effect on the particle 
motion stability is. During acceleration the particle velocity will vary, and this variation 
has to be compensated with an increase of the RF frequency so that the period length is 
preserved during the acceleration cycle. In the acceleration mode, an external bending 
magnet is always required that needs also to be ramped with the beam momentum. 
 
The paper starts with the presentation of the CRFQ geometry and definitions. After 
deriving the RF fields acting on the particle, the equations of motion are obtained and 
solved in the linear approximation. First we discuss the case without acceleration where 
the four rods are smooth and do not present convolution. It is found that transverse 
motion is confined by the oscillating behavior of the RF forces in the similar fashion of 
conventional alternating gradient accelerators. Thus, concepts describing the particle 
motion, similar to those of conventional accelerators, can still be used. A new concept 
appears that deals with the displacement of the reference orbit. The momentum 
dependence of the usual lattice parameters is also estimated. It is found that dispersion 
and chromaticity have in the CRFQ a behavior well different from that of conventional 
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accelerators. A race-track-shaped CRFQ with two long straights inserted is also 
investigated. Finally, acceleration and how the rods need to be convoluted, to generate 
the required longitudinal electric field, are also studied. The procedure is similar to that of 
the linear RFQ. Both transverse and longitudinal space-charge limits are evaluated, again 
following closely the same approach used for the conventional linear RFQ. 
 
Though the applications of the CRFQ storage and accelerator ring can be numerous, we 
have offered in the last part of the paper six examples: a CRFQ prototype, a modest ring 
for the demonstration of the operation principles; a low-energy ion storage ring; a low-
energy proton beam storage ring for the production of gamma and neutron radiation; a 
compact medical accelerator; a high-energy proton accelerator, and a similar electron 
accelerator; and, finally, a compact light source CRFQ storage ring. There are some 
technical outstanding issues that need to be solved for the demonstration of the CRFQ 
ring. Among them, it is important to learn how to input RF power in the device and how 
to inject and to extract a particle beam. 
 
The Circular Radio-Frequency Quadrupole Storage Ring 
 
The Circular Radio-Frequency Quadrupole (CRFQ) storage ring is composed of four 
concentric annular metallic rods made, for instance, of copper. Figure 1 shows the plane 
view (a) and the cross-section (b) of the device. The major radius R joins the center O on 
the mid-plane to the point P equidistant from the four rods. Each rod has a circular cross-
section. The inner diagonal separation between rods is 2b. It is assumed that the major 
radius R is considerably larger than the minor radius b, that is R >> b. The parallel and 
up-and-down arrangement of the coils, as shown in Figure 1, is suggested to make 
injection of the beam easier, without encountering obstructions, and for the insertion of 
localized items like rf cavities, vacuum pumps and beam diagnostic components. 
 
 

R
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Figure 1. Plan view (a) and cross-section (b) of the CRFQ 
 

A cylindrical coordinate system (r, ψ, z) is employed; with the radial coordinate r 
measured on the mid-plane from the origin O. The vertical axis z is perpendicular to the 
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plane view (a), goes through the origin O, and is oriented upward. The angular coordinate 
is ψ. A more useful coordinate system is the toroidal system (η, θ, ψ) [3]. The angular 
coordinate ψ coincides with the coordinate of the same symbol in the cylindrical system. 
The toroidal surface is described by the coordinate η, with η = 0 the vertical axis through 
the origin O, and η = ∞ the circle* of radius R going through P. The coordinate θ is the 
azimuth around the toroidal surface, rotating clockwise, with the origin θ = 0 on the mid-
plane, pointed inward. To solve the associated Maxwell’s equations, it is more 
convenient to consider a reduced toroidal coordinate system. This is obtained by 
replacing η with the local toroidal variable ρ = (x2 + z2) 1/2.  Here x = r – R is the radial 
distance on the mid-plane from the circumference of radius R. It is ρ = 0 on the same 
circumference, and ρ = b on the toroidal surface touching the inner part of the four rods 
(see Figure 2). 
 
 
 
 
 
 
 
 
 
 

 
 

R

+ V0 cos ωt

+ V0 cos ωt 

− V0 cos ωt 

− V0 cos ωt
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Figure 2. Four-Rods and Toroidal Coordinate System 

 
Field Expansion 
 
The rods are placed at alternating RF voltages as shown in Figure 2. The peak voltage is 
V0 and the angular frequency of the excitation is ω = 2π f, to which wavelength λ = c/f is 
associated, with c the speed of light. Aside from the variation with time, the voltage is 
otherwise constant along the length of the rods. Apart from the term cos (ωt) which 
shows explicitly the time dependence, let V (ρ, θ) be the scalar voltage distribution in the 
region of the CRFQ within the four rods. Because of the assumed symmetry, there is no 
dependence on the angular coordinate ψ. The wave equation satisfied by V (ρ, θ) is  
 
∇2 V (ρ, θ) + q2 V (ρ, θ)  = 0,               (1) 
 
where q = ω/c = 2π / λ. The Laplacian should be expressed in the main toroidal 
coordinate system, but the resulting second-order differential equation is too complex and 
difficult to solve. We then rely on the assumption R >> b, and work out an expansion 
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which gives an approximate representation in the region surrounded by the four rods, that 
is for ρ < b. Following the details of the computation shown in Appendix A, 
 
ρ2 ∂2 V / ∂ ρ2  +  ρ ∂ V / ∂ ρ   +   ∂2 V / ∂ θ2    +   q2 ρ2 V  = 0.           (2) 
       
Observe that this equation does not depend explicitly on the major radius R, but it does 
implicitly through the definition of the reduced toroidal coordinate system. The solution 
of Eq. (2) can be expressed in terms of Bessel functions, 
 
V (ρ, θ)  = Σn  an Jn ( qρ ) sin (nθ)  cos (ωt)                  (3) 
 
satisfying, from symmetry considerations, the condition V = 0 on the mid-plane. 
Similarly, there is also a vector potential A. The relationship of these potential functions 
to the field components is given in Appendix B. It is sufficient to retain only the lowest-
order term n = 2, and finally, after expansion of the Bessel function, we have 
 
V (ρ, θ)   =      a2 J2 ( qρ ) sin (2θ)  cos (ωt)        
               =      V0  (ρ/b)2 sin (2θ)  cos (ωt) 
    =       − 2 V0 (x z /b2) cos (ωt)              (4) 
 
where x = − ρ cosθ, z = ρ sinθ. From this we can derive the radial and vertical electric 
field components, as shown in Appendix B, 
 
Ex     =      2 V0  (z / b2) cos (ωt)                          (5) 
Ez     =      2 V0  (x / b2) cos (ωt)                     (6) 
 
It is to be noticed the inversion of reciprocity between field components and point 
coordinates. This is due to the chosen mutual arrangement of the four rods, shown in the 
cross-section view (b) of Figure 1. There is also a solenoidal magnetic field directed 
along the main direction of the beam motion. Its expression is given in Appendix B. The 
magnitude of this field is though small, and can be ignored. 
 
Equations of Motion 
 
The particle beam circulates in the CRFQ storage ring between the four rods along the 
circumference of radius R, on the mid-plane. We shall use the cylindrical coordinate 
system (r, ψ, z) and the reduced coordinate x = r − R. The equations of motion of a single 
particle can be derived from the Lagrangian 
 
L    =   − A m c2 (1 − β2)1/2  −  Q e [V(x, z) − v ⋅ A/c]                          (7) 
 
where m is the mass at rest of a proton, e the electron electric charge, Q the charge state, 
and A the mass number of the ion. β and γ are respectively the usual velocity and energy 
relativistic factors. By denoting vr = dr /dt, vψ  =  dψ /dt, and vz =  dz / dt, it is   
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c2 β2   =  vr
2  + r2 vψ

2  + vz
2.  The vector potential A may also include the contribution 

from an external bending field Bext, in which case A = [0, − rBext/2, 0].  We shall ignore 
the contribution of the excitation RF field to the potential vector A, because, as it is 
shown in Appendix A, it is of higher order. In linear approximation, the RF field is 
derived only from the scalar potential V(x, z), Eq. (4), and is given by Eq.s (5 and 6). 
 
The Lagrangian equations of motion are 
 
d ( ∂L / ∂ vr )  / dt  =  ∂ L / ∂r                       (8) 
 
and similarly for the other equations obtained by replacing r with x, ψ and z. We have 
             
Am d (γvr) /d t    =        A m γ r (dψ / dt) 2   −   Q e  ∂V / ∂ r   −  Qe r (dψ / dt) Bext /c     (9) 
Am d (γvz) /d t    =   −   Q e  ∂V / ∂ z                   (10) 
 
It is seen in particular that the generalized angular momentum  
 
Pψ   =   Amγ r2 (d ψ / dt)  –  Qe r2 Bext / 2c               (11) 
 
is a constant of motion. In the case of storage mode that is being considered here, the 
particle energy does not change, and the relativistic factors β and γ can be treated as 
constant∗. We shall also introduce the angular revolution frequency ω0 = dψ / dt ≈ βc / r. 
The last two equations can then be written as follows 
 
d2 x /d t2  –   (2 Q e V0 / Aγm b2) z cos (ωt)   =  r  ω   −  Qe βB2

0 ext / Aγm      (12) 
d2 z /d t2  –   (2 Q e V0 / Aγm b2) x cos (ωt)   =  0          (13) 
 
We need to make one more transformation from time t to path length s = βct. Moreover, 
ωt = ks with  
 
k   =   2π / βλ   =    2π / L             (14) 
 
where L is the focusing period. With these transformations Eq.s (12 and 13) become 
 
d2 x /d s2  –   (2 Q e V0 / Aγm c2 β2 b2) z cos (ks)   =  1/r   –  1/rL        (15) 
d2 z /d s2  –   (2 Q e V0 / Aγm c2 β2 b2) x cos (ks)   =  0         (16) 
 
where  
 
rL   =   Aγm β  c2 / Qe Bext               (17) 
 

                                                 
∗ In reality, under the effect of the electric RF field that does do work, the particle energy oscillates at the same excitation frequency ω 
but with an amplitude not exceeding 2QeV0xz/b2. 
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is the Lorenz radius. Eq.s (15 and 16) are those of coupled linear oscillators under the 
action of a periodic restoring force with period L = βλ.  
 
It is convenient at this point to introduce the RFQ parameter [4] 
 
B   =   2 Q e V0 λ2 / A γm c2 b2                (18) 
 
and we have 
 
d2 x /d s2  –   (B / L2) z cos (k s)   =  1/r   –  1/rL          (19) 
d2 z /d s2  –   (B / L2) x cos (k s)   =  0                         (20) 
 
At the r. h. side of Eq. (19), taking x << R, and after expansion,  we have 1/r = 1/R – 
x/R2. The second term x/R2 adds the focusing from curvature to the total focusing on the 
mid-plane. This is the equivalent of the curvature effect encountered in bending magnets 
of more conventional storage rings. As long as R2 >> L2 this term can be ignored, and we 
shall assume here that this is always the case. At the r. h. side of Eq. (19) we shall keep 
only the term 1/R –  1/rL. In absence of an external bending field Bext = 0 and  1/rL =  0. 
At one extreme, the term at the r.h. side of Eq. (19) can be cancelled entirely by setting 
the external bending field so that rL = R. Other intermediate values are of course also 
possible, with only a partial cancellation, if desired, of the curvature term at the r.h. side 
of Eq. (19). 
 
The coupling between the two components of motion can be resolved by transforming to 
 
u   =   x + z                  (21) 
v   =   x – z                  (22) 
 
which satisfy the decoupled equations 
 
d2 u /d s2  −   (B / L2) u cos (k s)   =  1/R –  1/rL      =   1/R         (23) 
d2 v /d s2  +   (B / L2) v cos (k s)   =  1/R –  1/rL      =   1/R            (24) 
 
These equations show that the two modes of oscillation do not coincide with the x- and z-
axis, but have directions obtained by rotating them by 45o.  Since an ensemble of 
particles can be represented in the real space as an ellipse, the actual beam cross-section 
breaths along the CRFQ axis as shown in Figure 3, in the way we are going to estimate 
below.  
 
Momentum Dependence 
 
Eqs. (23 and 24) are identical, apart from a sign. The solution of one can be derived from  
the other by a shift of 180o. We shall, therefore, concentrate on the solution of Eq. (23). 
 
Particles of a beam have a spread of momentum values. The CRFQ is in particular 
designed with a reference momentum value in mind that we shall refer to as ps. All 
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parameters associated to the reference particle will be denoted with the subscript s. In 
particular the velocity βsc corresponds to this. All other particles have a momentum value 
p = ps (1 + δ), where δ << 1 is the relative momentum deviation. The parameters 
associated to any other particle will be denoted with the same symbol but without any 
subscript. In particular the velocity is βc. By differentiating β = βs (1 + δ /γs

2),  
γ = γs (1 +  βs

2δ ), and  βγ = βsγs (1 + δ ).  
 
 
 
 
 
 
 
 

 
 
 
 
 

v u z 

x 

Figure 3. Normal Modes of oscillations in the CRFQ 
 
As written, Eq. (23) applies to any particle with momentum p. It is seen that the 
momentum dependence enters through the velocity βc in the period of the external 
focusing L = Ls (1 + δ / γs

2), where Ls = βsλ is the period associated to the reference 
momentum value. There are two places in Eq. (23) where this occurs. First, in the 
amplitude B / L2 and, then, in the frequency k of the restoring force. In both cases, the 
dependence is through the period L and the parameter B. The radius R does not exhibit 
momentum dependence, but the Lorenz radius rL does. Thus we have 
 
B / L2    =     (Bs / Ls

2) [1 – (2 – βs
2)δ]                  (25) 

k      =      ks (1 – δ /γs
2)               (26) 

rL  =     rLs (1 + δ)             (27) 
 
This result shows a significant departure from the behavior in a conventional storage ring 
with magnets. There is a different, stronger momentum dependence on the strength of the 
focusing. The focusing periodicity varies with momentum, whereas in a conventional 
storage ring it is absolutely constant. Finally, there is a mixed momentum dependence in 
the curvature term as opposed to the case of a conventional storage ring. 
 
Solution of the Equation of Motion 
 
Let us solve Eq. (23) for a particle with reference momentum ps. The equation is non-
homogenous because of the curvature term at the r. h. side. Let us study first the 
homogenous equation 
 
d2 u /d s2  –   (Bs / Ls

2) u cos (2πs / Ls)   =  0           (28) 

 8



 
The solution can be described in terms of Mathieu functions (see Appendix D), but it can 
also be treated on the computer, and numerically solved [5]. In analogy to FODO cells of 
conventional storage rings with magnets [6], the solution is a betatron oscillation 
described by a local amplitude function βLs, which varies periodically with the path 
length s and has the same periodicity Ls of the focusing, and a phase advance µs per 
period. For instance, a phase advance per period of 90o is achieved by setting the RF peak 
voltage V0 so that Bs = 6.80928. At the same time the amplitude lattice function βLs varies 
between a minimum 0.905 Ls and a maximum 1.878 Ls, with an average value of about 
1.39 Ls (see Figure 4). The ratio of the extreme values of the amplitude function is 2.075. 
Since the beam dimension is given locally by the square root of βLs, it is seen that, for a 
phase advance per period of 90o, the relative maximum change of the beam size is 44%. 
If along one mode of oscillation (u or v) the beam size is the largest, than it is the smallest 
along the other mode, and vice-versa. The beam profile is usually an ellipse with a shape 
oscillating between the two extremes, as shown in Figure 3. A complete envelope 
oscillation takes place during one focusing period. The other quantity which describes the 
particle motion is the ellipse rotation parameter αLs related to the amplitude function by 
dβLs / d s  =  −2 αLs. This quantity vanishes at the extremes of βLs. Calculated in the 
middle of a period, where it is the largest in absolute value, it does not depend on the 
period length and it is αLs = ±1.516.  
 
The following trigonometric expansion of the amplitude function applies for a 90o phase 
advance per period (kss = 2θ) 
 
βLs / Ls   =    a0   −   a1 cos (2θ)   +   a2  cos (4θ)   +  ….            (29) 
 
with a0 =  1.3600, a1 =  0.4865, a2 =  0.0315 and a residual error not exceeding  ±0.0016. 
 

θ

 
        Figure 4. The amplitude lattice function βLs / Ls over one focusing period (0-π). 
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Orbit Distortion 
 
The general solution of Eq. (23) is the sum of a particular solution u(s) of the 
inhomogeneous equation, which we take here to be periodic with the same periodicity L 
of the focusing period, and of the “free betatron oscillation” solution that is the solution 
of the associated homogenous equation we have studied in the previous section. With the 
variable replacement  2θ = ks. 
 
u(θ)   =  w(θ)  L2 / π2 R             (30) 
 
where w(θ) is an oscillatory universal function, with a similar behavior of βL, shown in 
Figure 5. For a phase advance of 90o per period, it varies between wmin = 13.942 and  
wmax = 19.743. Actually, it can be shown that, with an error not larger than ±1%,  
 
w   =  14.5 (βL / L)1/2.                  (31) 
 
Also, 
 
w =    w0   −   w1 cos (2θ)   +   w2  cos (4θ)   +  ….                  (32) 
 
with w0 = 16.7758, w1 = 2.8995, w2 = 0.0625 and a residual error not exceeding  
±0.0010. 
 
Thus, for every particle there is an orbit distortion caused by the curvature of the CRFQ, 
around which open betatron oscillations, of the type described in the previous section, are 
performed. The orbit distortion is given by Eq. (30). Since R >> L, the distortion is 
typically a small fraction of the period L.  
 

θ

 
Figure 5. The scaled dispersion function w(θ) over one focusing period (0-π) 

 
Orbit distortion appears for both the rotated coordinates u and v. But the minima on one 
plane correspond to the maxima on the other; that is the waveforms are shifted by 180o 
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per period with respect to each other. Recalling the coordinate definition by Eqs. (21 and 
22), it is seen that the terms in Eq. (32) proportional to w0 and w2 contribute to the orbit 
distortion and dispersion on the horizontal (x) direction, whereas the term in w1 
contributes on the vertical (z) direction.  
 
Let 2πRc denote the path length of a particle trajectory after one complete revolution. The 
number of periods traveled during that length is n = 2π Rc / L. This number can be very 
large and, usually, has a non-integral value. This feature does not exist in conventional 
storage rings that have integral and low periodicity. To determine the one-turn path 
length we have to perform the following operation 
 
2π Rc   =    2π R [ 1  +  (L3 / 2π4 R2 R)  ∫ w(θ) dθ ]          (33) 
 
where the integral is taken over one complete revolution. In good approximation, since  
n >> 1, 
 
∫ w(θ) dθ       =     n π <w>                 (34) 
 
with <w> the average value of w(θ) over one period (from 0 to π). By combining the 
equations above 
 
Rc    =    R ( 1    +    <w> L2 / π2 R R )                    (35) 
 
For a 90o phase advance per period <w> = w0 = 16.78. In all cases, the difference  
∆R = Rc – R  = w0 L2 / π2 R is only a small fraction of the period length L, as long as  
L << R.  
 
There are two extreme cases: (i) No external bending field, Bext = 0, in which case R = R 
and 1/rL = 0. The main trajectory also oscillates according to w(s), but does not close, as 
long the number of periods n is not integral. (ii) The external field is adjusted so that  
rL = R and 1/R = 0, in which case ∆R = 0 identically. The main trajectory closes exactly 
after one turn and coincides with the circle of radius R. 
 
For the particle with reference momentum ps, the length of the orbit after one turn is  
Rcs = R (1  +  <w>Ls

2 / π2 R Rs). The revolution frequency is fs = 2π Rcs /cβs. For any 
other particle it is  f = 2π Rc / cβ. Let µ be the phase advance per period; we can introduce 
the “betatron tune”  ν = nµ / 2π, that is the number of free (betatron) oscillations per 
revolution. Moreover, the betatron frequency is fβ = f ν. For the particle with reference 
momentum ps, the number of periods per revolution ns = 2π Rcs / Ls, the phase advance 
per period is µs, the betatron tune νs = ns µs / 2π, and the betatron frequency fβs = fs νs. 
 
Dispersion 
 
We have seen that the orbit distortion is given by Eq.(30). After extracting the linear 
dependence with the momentum error δ, we have 
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u(θ)    =    us(θ)   +   (Ls / π)2 ws(θ) [(2/γs
2 Rs)  +  (1/rLs)  –  χw(θ) βs

2 / Rs] δ       (36) 
 
where 
 
us(θ)      =      Ls

2 ws(θ) / π2 Rs                      (37) 
 
is the orbit distortion for the particle with momentum ps, ws(θ) is the central value of the 
universal function w(θ) estimated for the RFQ parameter B = Bs,  1/Rs  = 1/R – 1/rLs, and 
 
χw(θ) = (Bs / ws) ∂w / ∂B              (38) 
 
We define the dispersion η(θ) as the variation of the orbit distortion with the momentum 
error δ, that is  
 
η(θ)      =      (Ls / π)2 ws(θ) [(2/γs

2 Rs)  +  (1/rLs)  –  χw(θ) βs
2 / Rs]        (39) 

 
As for the length of the orbit distortion, also the contribution to the dispersion in the 
horizontal plane (x) is given by the w0 and w2 terms of the expansion Eq. (32); whereas 
the contribution to the dispersion in the vertical plane (z) is given by the w1 term.  
 
A global parameter is the momentum compaction factor 
 
αp       =        (1 / 2π Rcs

2) ∫ η(s) d s                  (40) 
 
Neglecting higher order terms in Ls / R, we have  
 
αp       =        (Ls

2 w0 / π2 R) [(2/γs
2 Rs)  +  (1/rLs)  –   <χw> βs

2 / Rs]        (41) 
 
From this we derive the transition energy (in unit of rest energy)  
 
γΤ = 1 / αp

1/2                   (42) 
 
In the case of no external bending field Bext = 0,  1/rLs = 0,  Rs = R, 
 
γΤ = 0.54 (γs R / Ls) / (1  –  <χw> βs

2 γs
2  / 2)              (43) 

 
In the other extreme case when the bending field is large enough so that rLs = R and  
1/Rs = 0,  
 
γΤ = 0.767  R / Ls                  (44) 
 
independent of the beam energy. In both cases, as long as R >> Ls, for low energy 
particle beams  γs << γΤ, and the beam motion is always considerably well below the 
transition energy. In absence of an external field this is always true, no matter what is the 
beam energy.  
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Natural Chromaticity 
 
We have seen that the length of a period varies with the particle momentum according to 
L = Ls (1 + δ/γs

2). On the other end, the phase advance per period depends only on the 
RFQ parameter B and not on the period length. B varies inversely to γ, so that the 
dependence on the momentum error of the phase advance per period is  
 
µ  =  µs(1 − βs

2 χµ δ)             (45) 
 
where   
 
χµ = (Bs / νs) ∂ν / ∂B                (46) 
 
For a period with a phase advance close to 90o, χµ  = 1.0522. The number of periods 
depends on the momentum error as n = ns / (1 − δ/γs

2), which is a result quite different 
from that of a conventional storage ring where the periodicity is actually independent of 
the momentum error. As a consequence the total betatron tune,  
 
ν =   νs { 1 + [1 – βs

2 (1 + χµ)]δ },                 (47) 
 
from which we can estimate the natural chromaticity   
 
ξ  =  (1 / νs) d ν / d δ  =   1 – βs

2 (1 + χµ),         (48) 
 
different from that of conventional storage rings. 
 
Another chromatic property is the variation of the amplitude lattice function βL with the 
momentum error because it is directly proportional to the period length and depends on 
the RFQ parameter B. 
 
βL / L  =  (βLs / Ls) { 1 – [ 1  –  βs

2 (1 – χβ) ]δ }               (49) 
 
where 
 
χβ = (Bs Ls / βLs) ∂(βL / L) / ∂B                    (50) 
 
Again, for a phase advance of 90o per period, and for the maximum value of βL,  
χ β  =  -0.593.  
 
The same considerations apply to the Twiss parameter that measures the rotation of the 
beam ellipse αL in the phase space. This does not depend with the period length but 
varies with the RFQ parameter B, so that 
 
αL  =  αLs (1 – βs

2 χαδ)                   (51) 
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where χ α = 0.151 for the same 90o phase advance per period. 
 
Periodicity 
 
There is the focusing periodicity with period L and there is the geometrical periodicity, 
that is the CRFQ circumference 2πR. The lattice parameters βL and αL, the orbit 
distortion u and the dispersion  η have the periodicity of the focusing L, but do not follow 
necessarily the periodicity of the circumference. This is a very important point 
differentiating the CRFQ from the conventional storage ring. In the latter, the presence of 
magnets imposes that the lattice functions and dispersion are periodic functions of both 
the focusing period and of the circumference, because the latter is a multiple of the 
former. This is not the case in the CRFQ, since the number ns of periods per revolution is 
not necessarily an integer. This fact is expected to improve considerably the stability of 
motion versus manufacturing imperfections that, moreover, are also of different nature 
than those in magnetic conventional storage rings. 
 
The beam is made of particles with a spread of momentum values. Thus, as we have seen 
previously, the periodicity n = ns / (1 + δ/γs

2) and varies with δ. It is, therefore, important 
that the momentum spread is sufficiently small to avoid that part of the beam sits across 
an integral value of n that is δ < γs

2 / 4ns. 
 
Initial Conditions 
 
The equations of motion Eq.s (23 and 24) have been derived for a particle that is at the 
unspecified location s = 0 along the circumference at the time t = 0 when the RF voltage 
reaches the maximum. At that location the amplitude lattice function  βL = βmax  and  
αL  = 0. Also, at the same location and instant, the orbit distortion and dispersion have the 
maximum value. Differently from the conventional storage ring with magnets, where the 
lattice and dispersion functions have a locally fixed configuration, in the CRFQ the same 
quantities are not fixed but travel with the particle. Since particles reach the arbitrary 
chosen location s = 0 at different times when the RF voltage has also different values, the 
lattice functions vary from one particle to the other according to their time lag. On the 
other hand, at a given time, say t = 0, the RF voltage distribution is constant around the 
ring and, in particular, it may acquire the maximum value. Thus, at the same time  
t = 0, all particles in the beam experience the same maximum value of the lattice and 
dispersion functions. It derives that, for a continuous and uniform circulating beam, after 
several revolutions, as long as the periodicity ns is not an integer, the cross-section at any 
location is circular with a radius corresponding to the large value of  βL. At the same time 
the divergence is also constant along the circumference and given by the inverse of βL.  
 
Transverse Space Charge Limitations 
 
Let a be the average radius of the cross-section, N the total number of ions in the beam, 
and introduce a bunching factor fb defined as the ratio of beam peak current to average 
current. Assuming also uniform transverse distribution, the electric field from space 
charge has the following components 
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Ex   =  Q e N fb x / π R a2                 (52) 
Ez   =  Q e N fb z / π R a2                 (53) 
 
After introducing the space-charge fields the equations of motion Eq.s (21 and 22) are 
modified as follows 
 
d2 u /d s2  −   (B0 / L2) u cos (k s)   −  (K/ a2) u  =  1/R         (54) 
d2 v /d s2  +   (B0 / L2) v cos (k s)   −  (K/ a2) v  =  1/R         (55) 
 
where 
 
K  =  Q2 e2 N fb / π R A m γ β2 c2                 (56) 
 
The space charge term is a constant along the circumference of the CRFQ and does not 
oscillate periodically like the restoring force. Both the restoring force and the space-
charge force have the same momentum dependence since both vary like 1/γβ2. The space 
charge effect is to reduce the focusing by the same amount in both planes. The phase 
advance per period will decrease by an amount depending on the constant K. Like in the 
straight RFQ [4] it is expected that a space-charge limit be encountered when the phase 
advance per period is lowered, for instance, from 90o down to 60o or 45o. At the same 
time also the lattice functions, orbit distortion and dispersion are modified by amounts 
that depend on the strength K of the space charge forces.∗ 
 
The space-charge limit corresponding to a phase advance depression from 90o down to 
45o is 
 
∆  =  KsLs

2/ π2 a2 = 0.044             (57) 
 
At the same time the amplitude lattice function βLs and the Twiss parameter αLs closely 
double their original values. For instance, βLs varies now between the minimum value 
1.84 Ls and the maximum value 3.69 Ls, whereas the maximum value of αLs is  ±2.88. 
The orbit distortion and dispersion are still given by Eqs. (30 and 39), except that the 
universal function w(s) now oscillates between wmin = 55.72 and wmax = 78.60. Thus, 
once the space charge limit of Eq. (57) is reached, the beam cross-section has increased 
by at most 40%.  
 
The space-charge limit as defined here for the CRFQ and expressed by Eq. (57) is of 
quite different nature than that usually encountered in a conventional storage ring with 
magnets. In the latter case the maximum beam current that can be stored is given by a 
small fraction of change of the betatron tune, that is of the total number of betatron 
oscillations per turn. The limit given by Eq. (57) is considerably higher and yields a 

                                                 
∗ Actually in principle it should be possible (in absence of errors) to lower the phase advance per period 
even down to zero. It is speculated [7] that at that level an organized formation of particles, called 
“crystalline beams” may appear with the help of a sufficiently fast cooling technique, like laser cooling. 
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reduction of the betatron tune by a factor of 2. The difference is caused by the different 
nature of the errors in the two rings and by the fact that in the CRFQ the ring 
circumference is not in an integral relation with the focusing periodicity, as it is always 
the case in the conventional storage ring. 
 
Racetrack-shaped RFQ 
 
We have described a Circular RFQ storage ring and have investigated the motion of 
particles. It is sometime more useful to consider a storage ring based on the same RFQ 
principle of focusing but of different shape. For instance the shape of a racetrack as 
shown in Figure 6 would also allow long straight sections to accommodate several 
functions and equipment. The racetrack has a geometrical periodicity of 2, with two arcs 
of radius R and two straight sections each of length H.  The equations of motion are still 
given by Eq.s (23 and 24) where the curvature term at the r. h. side is now a periodic 
function with period (πR + H). In the straight sections the r. h. side vanishes identically 
since, we assume, there is no external bending field. We continue assuming that R and H 
are much larger than the focusing periodicity L = βλ. The “free betatron” solution is 
unchanged and as described for the CRFQ, but the orbit distortion and dispersion have 
now a different behavior that we shall examine below. For simplicity we shall 
concentrate only on the solution of Eq. (23). Also we shall study only the case where 
there is no external field, or the case where the curvature 1/R is only partially 
compensated. In the case 1/R = 0 the orbit distortion u is always null all around the 
racetrack. 
 
 

C

D

B

A

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The Racetrack-shaped RFQ Storage Ring 
 
Consider a particle that starts its motion at the location A, at the beginning of the arc AB. 
Its motion can be described by a vector U(s) with components u(s) and u′(s) = du(s) / ds. 
The initial values, at the location A, are U0 = (u0, u′0). The equations of motion in the arc 
AB are, in vector notation, 
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U(s) = A1(s) C + U(s)                   (58) 
 
where C = (c1, c2) is a vector of two constants, and A1(s) is the transfer matrix from the 
starting point A (defined as s = 0) to any other point in the arc at the arc distance s. The 
first term at the r.h. side of Eq. (58) is the “free betatron” oscillation around the orbit 
distortion, described by the vector U(s) of components u(s) and u′(s). Obviously  
C = U0 − U0, with U0 the initial value of the orbit distortion. At the location B, at the end 
of the arc AB, of length πR, 
 
UB  =  A1(s = πR) (U0 − U0)  +  U1B             (59) 
 
where U1B =  U(s= πR) is the orbit distortion at the end of the arc. A mismatch is 
encountered at the location B when the particle leaves the arc with curvature 1/R and 
enters the straight section of length H and zero curvature. Carrying the particle through 
the end of the drift, to the location C, for the completion of one geometrical period of 
length H + πR, 
 
U1  =  B1 A1 (U0 − U0)  +  B1 U1B,                      (60) 
 
where A1 is the transfer matrix along the arc AB of the first geometrical period, and B1 
the one for the following drift between B and C. In the following we shall denote with Am 
and Bm the transfer matrices corresponding to the m-th geometrical period, and, more 
compactly, Mm = Bm Am. The second term at the r. h. side of Eq. (60) is a new oscillation 
induced by the mismatch of the curvature at the location B. Every time the particle leaves 
an arc and enters a drift, and vice versa, a new oscillation is induced. After iterating, at 
the end of the n-th geometrical period, that is n/2 revolution, 
 
Un   =  Mn (Un-1 – Un-1)  +  Bn UnB                        (61) 
 
Un   =  M1

n (U0 – U0)   +   Bn UnB    +    Σm=2,n  Mm
n (Bm-1 Um-1,B – Um-1)          (62) 

 
where Mm

n is a chain product of transfer matrices 
 
Mm

n      =     Mn Mn-1 Mn-2   …  Mm+2 Mm+1 Mm              (63) 
 
valid for m < n, and Mn

n = Mn. Each transfer matrix Mm is made of a phase advance per 
geometric period µ/2 that rotates the vector Um-1 by an angle of the same amount, and an 
ellipse dilation, measured by the lattice functions βL and αL, which varies from one 
geometric period to the next. It is convenient to decompose the transfer matrix 
 
Mm   =  Rm

-1 S (µ/2) Rm-1                      (64) 
 
where S (µ/2)  is a rotation by the angle µ/2. In general 
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   cos α  sin α 
S (α)        =           (           ).          (65) 
           − sin α  cos α 
 
The dilation matrix, defined at the end of the m-th geometric period, 
 
   1/√βm  0 
Rm           =          (           ).          (66) 
   αm /√βm √βm 
 
Thus  
 
Mm

n  = Rn
-1 S [(n–m+1) µ/2] Rm-1                          (67) 

 
and 
 
Mm

n Bm-1  = Rn
-1 S [(n–m+1) µ/2 + µL] Rm-1,B                   (68) 

 
with µL the phase advance per straight section. Let us operate the coordinate 
transformation Em = Rm Um that transforms ellipses to circles. Combining all together,  
Eq. (62) finally becomes 
 
En = S (nµ/2) (E0 – E0)  +   
 
        Σm=2,n+1 S [(n−m+1) µ/2 + µL] Em-1,B  −  Σm=2,n S [(n−m+1) µ/2] Em-1            (69) 
 
This is as far as we can go. The first term at the r. h. side of Eq. (69) represents the usual 
propagation of the “free betatron” oscillation. The second term is the orbit distortion 
caused by the mismatch in curvature when the particles leaves an arc and enter the 
subsequent drift. The last term is the same, except that the mismatch is between the drift 
and the following arc. It is easily seen that, in the limit H = 0, also µL = 0, EmB = Em  and 
the two orbit distortion terms cancel each other, leaving only the local orbit distortion En, 
recovering thus the result of the CRFQ.  
 
In view of the transformation from elliptical to circular variables, the orbit distortion 
vectors Em and EmB can be treated essentially as constants and taken out of the 
summations at the r. h. side of Eq. (69). Also, we have 
 
Σm=2,n+1 S [(n–m+1) µ/2 + µL]   = S (µL) Σm=2,n S [(n–m+1) µ/2]   +  S (µL)            (70) 
 
and, using complex notation, 
 
    {1  –  exp[i(n–1)µ/2]} [exp(iµ/2) – 1] 
Σm=2,n S [(n–m+1) µ/2]     =    -------------------------------------------------             (71)  
                     2 ( 1 – cos µ/2 ) 
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Thus, an instability appears when the phase advance per revolution  µ  = 4πq and q is an 
integer. In terms of betatron tune, this corresponds to the first order resonance ν = 2q. 
This result was expected: at the resonance, the orbit distortion would grow indefinitely 
and cause the loss of the beam. Because the racetrack storage ring has a geometric 
periodicity of 2, betatron tunes with even integer values are to be avoided. For instance, 
one can adopt the range 
 
2q + 1/2   <   ν  <  2q + 3/2                 (72) 
 
in which case the orbit distortion will grow no more than a factor 2 of the original value. 
 
This analysis can be easily extended to the case of a number of insertions larger than 2. 
Increasing the number of geometrical periods is expected to improve the stability of 
motion, so that one can relax on the stability condition of Eq. (72). 
 
Rods with Convolution 
 
To allow acceleration in the CRFQ we need a longitudinal field along the main axis of 
motion. Shaping the four rods so that they show convolution on the sides opposite to each 
other as shown in Figure 7 can create this. 
 

b1
b2 s

 

Ls

Ψ = s = 0 

 
Figure 7. Coils shaped with convolution to provide for acceleration. 

 
As in the conventional linear RFQ [4], the period of the convolution equals that of the 
focusing Ls = βsλ. We shall denote with b1 the inner minor radius, and with b2 the major 
inner radius. Since the ring has to close mechanically on itself, it is now required that the 
number of periods ns = 2πR/Ls is exactly an integer, with the consequences we have 
already discussed. 
 
The addition of the coil convolution modifies the field potentials in the way discussed in 
details in Appendix C. Retaining only the linear terms, and in the approximation that  
L >> b, it can be shown that the equations for the transverse motion, Eq.s (23 and 24), are 
essentially unchanged. A longitudinal electric field appears on axis (ρ = 0) 
 
Eψ  = V0 ξ ks sin (kss) cos(ωt)                (73) 
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where the factor ξ is given in Appendix C by Eq. (C14). The longitudinal motion of the 
particle is thus no longer a drift, but it is described by energy oscillations. Let E be the 
total energy of any given particle; the energy gain per unit of path length is 
 
d E / d s = Qe V0 ξ ks sin (nsψ) cos(ωt)               (74) 
 
Introduce the RF phase angle 
 
φ =  nsψ    –   ωt             (75) 
 
After neglecting a fast oscillating term, Eq. (74) becomes 
 
d E / d s = (1/2)Qe V0 ξ ks sin φ                (76) 
 
At the same time the time derivative of both sides of Eq. (75) gives 
 
d φ / dt  = ns ωo(E) –    ω                       (77) 
 
where ωo(E)= dψ/dt  is the angular revolution frequency which varies with the beam 
energy.  
 
By definition, the reference particle, that has momentum ps and total energy Es, has the 
angular revolution frequency ωos satisfying the synchronous condition nsωos = ω. The 
reference particle is thus also called the synchronous particle. The RF phase angle φs of 
this particle is constant, and the energy equation is 
 
d Es / d s = (1/2)Qe V0 ξ ks sin φs                (78) 
 
It is convenient to take as canonical variables the energy difference w = E – Es, and the rf 
phase angle φ, and use the path length s along the reference distorted orbit as the 
independent variable. With a linear expansion around the synchronous particle 
 
ωo(E)  = ωos   +  ωos (ηs / βs

2 Es) w.               (79) 
 
where 
 
ηs  = γs

–2   –   γT
–2            (80) 

 
and γT is the transition energy defined by Eqs. (42-44). We derive the equations of 
motion for any particle expanded around the synchronous conditions 
 
 
d w / d s = (1/2)Qe V0 ξ ks (sin φ  – sin φs)              (81) 
d φ / ds  = (ks ηs / Amc2 γsβs

2) w                (82) 
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These equations are similar to those describing synchrotron oscillations in conventional 
particle accelerators. One can then use the same approach to estimate particle trajectories 
and the stability region in the phase space (RF bucket area and height). In particular, we 
can linearize the motion around the synchronous conditions to derive the equations for 
the energy oscillations 
 
d2 w / dt2 + Ωs

2 w      =     0                (83) 
 
where the angular oscillation frequency 
 
Ωs

2 = – QeV0 ξ ks
2 ηs cos φs  /  2Am γs          (84) 

 
In order for the motion to be stable it is required that  ηs cos φs <  0. 
 
Longitudinal Space-Charge Limitations for Bunched Beams 
 
In case of acceleration in the CRFQ the beam is bunched. Because of the very large 
frequency the beam bunches have a very small length that may be comparable to the 
transverse size. Each bunch is made of Nb = N / ns particles, and has typically the shape 
of an ellipsoid of full length 2l and cross-section radius a. We shall assume uniform 
charge distribution within the ellipsoid, that yields an electric field that has components 
exactly linear with the displacement of the test particle (x, z and s) from the center of the 
bunch. The three field components are 
 
Ex,z =  3QeNb [ 1 – f(l/a)] (x or z) / 2a2l            (85) 
Es = 3Qe Nb f(l/a) s / a2 l             (86) 
 
where [8] 
 
f(p) = [(1 – p2)1/2 – p arccos (p)]  /  (1 – p2)3/2 for p < 1     (87a) 
 = 1/3      for p = 1     (87b) 
 = [p arccosh (p) – (p2 – 1)1/2] / (p2 – 1)3/2 for p > 1     (87c) 
 
In the limit of long bunches, l/a -> ∞, 
 
f(l/a) ~ ( a2 /l ) ln (l/a)            (88) 
 
The equations of motion Eqs. (54 and 55) still apply with the exception that now, instead 
of Eq. (56), we have 
 
K   =   3Q2 e2 Nb (1 – f) / 2 l A m γ β2 c2               (89) 
 
All the considerations made earlier for the debunched beam still apply. In particular, the 
space-charge transverse limit given by Eq. (57) still holds. 
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Similarly, the equation for the small-amplitude longitudinal oscillations, Eq. (83), is 
modified with introducing a term due to space charge as follows 
 
d2 w / dt2 + (Ωs

2  –  ∆sc) w      =     0               (90) 
 
where 
 
∆sc = 3Nb Q2e2 f / A m l a2 βs

2 γs
3           (91) 

 
The longitudinal motion is stable as long as* 
 
Ωs

2   >  ∆sc              (92) 
 
Applications of the CRFQ Storage Ring and Accelerator 
 
There are several applications we foresee for the CRFQ. We shall list below six of these 
applications; but, presumably, many more are possible. For each of the six applications 
we shall give an example in the following sections.  
 

1. First of all, we are interested in a prototype for the demonstration of the principles 
of operations of the CRFQ. We need to demonstrate that indeed it is possible to 
achieve, through the very strong focusing, small beam dimensions. Also that it is 
possible to reach a space-charge limit considerably higher than that of 
conventional storage rings. The case of the storage of a 100-keV proton beam is 
discussed. The four coils have no convolution since here there is no need to 
provide acceleration. The ring is of modest dimensions, with a radius R = 0.5 m. 
No external bending field is required since the bending of the particle trajectory is 
accomplished entirely with the help of the RF forces.  

 
2. The next application is the storage of light and heavy ions (including protons) at 

low non-relativistic energies (for instance few MeV/u) for studies in Molecular 
and Atomic Physics. Acceleration is not required here. An external bending field 
may be necessary to control the orbit distortion and keep it within the aperture 
between the coils. The stored beam can be made to collide with a laser or other 
photon beams, electron beams or, head-on with beams of other ion species. The 
use of jets or foil targets during repetitive passages can also be exploited for 
research. This storage ring can also be used with laser/electron cooling, and for 
the demonstration (eventually) of “crystalline beams” [7]. Two such rings can 
also be made to intersect with each other for head-on collision of counter-moving 
light ions, like protons and boron, for the exploration of production of nuclear 
fusion power [9]. 

 

                                                 
* It is actually speculated [7] that, in the limit the longitudinal space-charge forces cancel exactly the 
oscillation external restoring force, the motion reduces to drifts again, and an ordered state is reached called 
“crystalline beams”. 
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3. Storage of 1.75 to 3.24 MeV proton beam with an intensity of 10-100 mA. 
External bending field in this case is required. The device can be used as a 
compact source of collimated gamma and neutrons rays. For this purpose, a 
carbon foil is inserted and crossed by the beam turn-after-turn. Protons, by 
impinging on the target, produce secondary beams. A possible application of this 
device is the screening of objects and inspection of their content. Protons suffer a 
systematic energy loss when crossing the target that needs to be compensated; a 
modest acceleration is thus required. At this purpose, the coils have a convolution. 

 
4. It is possible to use the CRFQ to accelerate ions (protons) over a relatively low 

energy range where the particle velocity varies appreciably. As an example, a 
compact medical accelerator is investigated. By properly convoluting the coils, a 
proton beam is accelerated from 20 to 250 MeV at the repetition rate of 60 beam 
pulses with an intensity of about 109 protons per pulse. There is obviously need of 
an external bending field that in turn needs also to be ramped. This device is 
certainly useful for the demonstration of the principle of acceleration in the 
CRFQ. 

 
5. We shall also consider acceleration of relativistic ions (and protons, and electrons) 

with velocity close to the speed of light (β ~ 1). Because of the large beam energy 
the device has now a very large size. The external bending field needs to be 
ramped with the change of the particle momentum but, because the particle 
velocity does not change much, the RF frequency also does not vary and it is kept 
constant during the operation.  

 
6. Finally, we shall study the application of the CRFQ as a compact synchrotron 

radiation source. The example we report below deals with a 800-MeV beam for 
the production of UV radiation. Because of the special behavior of the lattice and 
dispersion functions in the CRFQ storage ring, we expect a high beam brilliance 
and collimation. The conventional synchrotron radiation integrals to estimate the 
beam dimension at equilibrium and the properties of the radiation are given. Since 
the beam energy is constant, the external bending field is also kept constant. 
Acceleration is required to compensate for the energy lost to radiation but, at the 
same time, the RF will be also kept constant during operation. 

 
The CRFQ Prototype 
 
The main parameters of the prototype are listed in Table 1 below. This device serves for 
the demonstration of operation principles of the CRFQ. There are two major goals: (1) 
the demonstration of strong focusing by which it is possible to obtain very small beam 
dimensions, and (2) the achievement of large beam intensities well above those that can 
be obtained in conventional magnet storage ring. 
 
The ring is small, with only 1-meter diameter, and thus of easy and inexpensive 
construction. Since acceleration is not required, the metal coils are smooth with a 
cylindrical shape of 1-centimeter diameter. The internal radius of the structure  
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b = 1 cm. The RF excitation proposed is 200 MHz, with a wavelength λ = 150 cm. For 
the study and experimental demonstration we plan the storage of 100-keV proton beams. 
At this energy β = 0.0146, and the resulting focusing period is L = βλ = 2.2 cm. Aiming 
to a phase advance per period of 90o, in the limit of zero beam current, the peak RF 
voltage required is 142 kV, which yields an electric field of 14.2 MV/m, below the 
surface limit. The estimated orbit distortion is at most 2 mm, well within the coil 
aperture, so that there is no need of an external bending field to help confining the beam. 
Also the radius of the beam cross-section a ~ 1 mm fits well within the available aperture. 
All the other lattice parameters are given in Table 1. 
 

Table 1. Parameters of the CRFQ Prototype 
Type of particles Protons
Charge State, Q 1
Mass Number, A 1
Rest Energy, mc2 938.26 MeV
Kinetic Energy 100 keV
β 0.01460
γ 1.00011
Momentum, p 13.70 MeV/c
Magnetic Rigidity, Bρ 0.4570 kG-m
Excitation RF 200 MHz
Wavelength, λ 149.9 cm
Focusing Period, L 2.19 cm
Internal Radius, b 10 mm
RF Peak Voltage, Vo 142.2 kV
Phase Adv. / Period 90o

βL - max 4.11 cm
Major Radius, R 50 cm
Max. Orbit Distortion 1.92 mm
Max. Dispersion 0.383 cm
No. of Periods, ns 143.56
Betatron Tune, νs 35.89
Transition Energy, γT 12.34
Chromaticity  0.99956
Norm. Emittance 0.30 π mm mrad
Actual Emittance 20.55 π mm mrad
Beam Radius, a 0.919 mm
No. of Protons, N 1.25 x 1011

Revol. Frequency 1.393 MHz
Beam Pulse Length 0.54 µs
Beam Current 37 mA
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Adopting the space-charge limit given by Eqs. (56 and 57), with a bunching factor  
fb = 1.33, the expected intensity that can be stored is N = 1.25 x 1011, two orders of 
magnitude larger than that can be reached in a equivalent conventional magnetic storage 
ring. 
 
Another function of the CRFQ prototype is learning how it is possible to inject a short 
beam pulse, how to power the device with RF, and how to provide instrumentation for 
the beam diagnostic. The experimental apparatus may look like the one shown 
schematically in Figures 8 and 9. An ion source sits on a platform at 35 kV and provides 
a short proton pulse at relatively low duty cycle. The beam pulse is accelerated in a short 
linear RFQ to 100 keV operating at the same frequency of 200 MHz. A short section 
joins the linear RFQ to the CRFQ providing matching and beam transfer. The CRFQ is 
encased in a tank with an opening at the bottom for the location of a vacuum pump. The 
four coils sit on a platform and are supported with blocks of G-10. A number of RF 
cavities excite the structure from the outside. Feed-through are provided on the top and 
bottom of the tank for connections to power supplies, beam diagnostics and RF sources. 
To perform the experiment is sufficient to run and store one beam pulse every few 
minutes for just few seconds. The low duty cycle will remove the need of water-cooling. 
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Figure 8. Experimental layout of the CRFQ prototype 
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Figure 9. Encasement of the CRFQ Prototype 
 
 
 
 
 
 
 
 
CRFQ Ion Storage Rings 
 
There are several storage rings for protons and ions in the world. They usually operate at 
a relatively low energy and have the capability to store different ion species one at the 
time, of course. Thus, instead of the particle energy the maximum magnetic rigidity of 
the ring is quoted. The main requirement of these storage rings is a beam with very small 
momentum spread and high particle density. We believe, as the example below 
illustrates, that the CRFQ can be used as an ideal storage ring for ions. It allows 
considerably more compactness of device, and very dense and intense ion beams. We 
shall consider, as an example, a magnetic rigidity of 3 T-m. The main parameters of the 
storage ring are listed in Table 2. Three species are considered: proton, 9Be+ and 24Mg+. 
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Table 2. Parameters of a CRFQ Storage Ring for Ions 
 Proton 9Be+ 24Mg+ 

Charge State 1 1 1 
Mass Number 1 9 24 
Kin. Energy, MeV/u 361.4 5.31 0.75 
β 0.6920 0.1059 0.0399 
γ 1.3852 1.0057 1.0008 
Momentum, MeV/u/c 899.4 99.9 37.5 
Excitation RF, MHz 40 40 40 
Wavelength, λ, cm 749.5 749.5 749.5 
Focus. Period, L, cm 518.6 79.4 29.9 
Int. Radius, b, cm 1.0 1.0 1.0 
RF Voltage, Vo, kV 7.9 51.5 136.6 
Phase Adv. / Period 90o 90o 90o 
βL – max, m 9.74 1.49 0.56 
Major Radius, R, cm 300 300 300 
Max. Dispersion, m 17.9 0.42 0.060 
No. of periods, ns 3.634 23.75 63.02 
Betatron Tune, νs 0.909 5.937 15.755 
Transition Energy, γT 0.433 2.052 5.420 
Chromaticity 0.0173 0.9770 0.9967 
Norm. Emit., π mm mrad 0.30 0.30 0.30 
Act. Emit., π mm mrad 0.313 2.817 7.511 
Beam Radius, a, mm 1.75 2.05 2.05 
No. of Ions, x 1012 0.109 1.35 3.60 
Rev. Frequency, MHz 11.06 1.684 0.635 
Beam Pulse Length, µs 0.068 0.445 1.182 
Beam Current, A-part 0.191 0.363 0.366 

 
The device is intended only as a storage ring and no acceleration is required. Thus, the 
coils have no convolution. In absence of an external bending field the orbit distortion is 
too large and would exceed the aperture between the coils, therefore, an external bending 
field is required. We take Bext = 10 kG giving a bending radius ρ = 3 m. The bending 
field is constant, and is provided by an annular dipole magnet covering the entire 
circumference of the CRFQ, as shown in Figure 10. The magnet gap needs to be only few 
centimeters high. To cancel exactly the residual curvature, that is 1/R = 0, we adjust the 
radius of the CRFQ so that R = ρ = 3 m. The radius a of the beam cross-section is no 
more than 2mm, in all cases, and thus fits the available aperture between the coils. We 
have taken an excitation RF of 40 MHz. The required peak RF voltage is reasonable. 
There are some major differences between the case of storage of protons to that of 
heavier ions. The number of periods is low in the case of protons and comparable to that 
of a conventional magnetic storage ring, but it is fractional and, thus, one would expect 
also for the protons a considerable more stability of motion, with less susceptibility to 
errors. The lattice and dispersion function are also comparable, and even larger, to that of 
conventional rings. This may suggest that a higher RF frequency could be chosen for the 
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proton case. A larger space-charge limit is expected also for protons, but only a few 
factor larger than that compared of a conventional storage ring. In the case of heavier ions 
the number of periods is considerably larger, and the lattice and dispersion functions are 
considerably reduced. In all cases higher intensities and beam densities are expected.  
 
Another feature is the different behavior of the transition energy and the chromaticity 
between the case of protons and that of the heavier ions. Whereas for heavier ions the 
chromaticity is about unit and the beam energy is well below the transition energy, for the 
case of protons the chromaticity is negative and small, and the transition energy γT is less 
than unit. This could be an interesting beam-dynamics feature for some beam 
applications.  
 
The CRFQ ion storage ring can be used for molecular and atomic physics and other low-
energy applications. The stored beam can be made to collide with another counter-
moving ion beam of the same or different species, with an electron beam, or with a 
photon beam (X-ray and ultraviolet radiation). Cooling techniques can also be applied, 
like electron and/or laser cooling. For this purpose the ring can be made of a racetrack 
shape. In this case, of course there is no external bending field in the straight sections. 
This device is ideal [7] for the demonstration of “Crystalline Beams”. Moreover, in 
colliding beam mode, two intersecting storage rings, as shown in Figure 11, can be used 
to learn about nuclear fusion between protons and ions of boron [9]. 
 
Like in the previous example, one needs again to learn how to input the RF power into 
the device. Moreover, to reach the high intensity the device is capable of storing one 
needs to develop a method of multi-turn injection. 
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Figure 10. An Ion CRFQ Storage Ring within a Dipole Magnet 
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Figure 11. Colliding CRFQ Storage Rings [9] 
 
A  FAA Application 
 
This is a CRFQ storage ring for the storage of 1.75-MeV protons at an intensity of 10-
100 mA. The main parameters are reported in Table 3. The primary application of the 
storage ring is the production of intense and collimated γ-rays at about the same proton 
energy. The radiation is used for screening of objects and the examination of the 
contained, for instance at airports. For this purpose, a carbon foil with a thickness  
τ = 1 µg/cm2 is inserted along the path of the beam. The following reaction occurs 
 

p     +     13C     →    14N      +     γ 
 
The cross-section of the event σ = 1 barn. With a similar reaction, and the same carbon 
target material, it is also possible to produce a beam of neutrons essentially thermal. 
Neutrons can also be used for medical and other industrial applications. In this case the 
proton energy is to be adjusted to 3.24 MeV. The case of neutron production is also 
shown in Table 3. It is found that it is necessary to add an external field to confine the 
beam within the coil aperture, and a lower excitation RF frequency. 
 
Considering the nature of the application, we have intentionally taken a small and 
compact ring with a major radius R = 75 cm. The minor radius, b1 = 1 cm, is sufficiently 
large to accommodate the beam with a radius of the cross-section of at most a = 2 mm. At 
the same time, the beam angular divergence is 2.9 mrad at 1.75 MeV, and 2.5 mrad at 
3.24 MeV. At 1.75 MeV the bending field required for the exact cancellation of the 
curvature is 2.55 kG; at 3.24 MeV it is 3.47 kG.  
 
Since, as we shall see below, acceleration is required and the coils have thus convolution, 
we have adopted an integer value for the number of periods per turn ns = 15. For a given 
beam energy we could then determine the RF frequency that ranges between 58 and 79 
MHz. The required RF peak voltage correspondingly is 12 and 22 kVolt.  
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In the following we shall concentrate to the case of γ-production (1.75 MeV). The rate of 
production is given by 
 
dnγ / dt  = τ Ip σ / e mp A            (93) 
 
with e = 1.6 x 10-19 C the electron charge, mp = 1.67 x 10-24 g the proton mass, and  
A = 13 the Carbon mass number. With τ = 1 µg/cm2 and an average proton circulating 
intensity I = 34 mA, the production rate is 0.98 x 1010 γ/s. This corresponds to an 
instantaneous radiation level of 0.26 Curie. Every time a proton impinges on the target 
and a γ is emitted, it is of course lost. The corresponding beam loss rate is dIp / dt = −1.6 
nA/s. Assuming a one-second long pulse, the beam intensity drop is of only 1.6 nA, and 
there is thus no need to refill continuously the proton beam. 
 

Table 3. Parameters of the CRFQ for the FAA Application 
 γ - radiation n - radiation 
Kinetic Energy, MeV 1.7476 3.2357 
β 0.0609 0.0828 
γ 1.0019 1.0034 
Momentum, p, MeV/c 57.29 77.99  
Mag. Rigidity, kG-m 1.911 2.601  
Excitation RF, MHz 58.162 79.047  
Wavelength, λ, cm 515.4 379.3  
Focus. Period, L, cm 31.42 31.42  
Internal Radius, b1, mm 10 10  
RF Voltage, Vo, kV 12.05 22.29 
Phase Adv. / Period 90o 90o 
βL – max, cm 59.00 59.00  
Major Radius, R, cm 75 75  
Max. Dispersion, cm            26.32 26.32  
No. of Periods, ns 15 15 
Betatron Tune, νs 3.75 3.75 
Transition Energy, γT 1.838 1.838 
Chromaticity  0.9924 0.9859 
Norm. Emitt., π mm mrad 0.30 0.30 
Actual Emitt., π mm mrad 4.91 3.61 
Beam Radius, a, mm 1.70 1.46 
No.  Protons, N, x 1010 5.45 7.40 
Revol. Frequency, MHz 3.877 5.270 
Beam Pulse Length, µs 0.193 0.142 
Beam Current, Ip, mA 33.8 62.4 

 
At the moment of production, the γ-ray spot size and divergence are equal to those of the 
incident proton beam, that is, 1.7 mm and 2.9 mrad. If the object to be irradiated and 
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screened is located at a distance of 1.5 m, the γ-ray spot size on it has a diameter of 1 cm. 
Thus, the γ-ray is well collimated and intense for the proposed FAA application. 
Protons that do not produce γ’s, continuously traversing the target turn-after-turn, 
undergo to multiple Coulomb scattering with the atoms of Carbon in the foil. This causes 
an increase of the beam divergence, and thus of the beam emittance, a systematic energy 
loss, and an increase of the energy spread. The photo-production is a resonance reaction 
with a very narrow peak. The width of the resonance is about 150 eV; therefore, the beam 
energy spread is to be about 0.01 % or less at all time if all the protons are to be involved 
in the γ-production. The systematic energy loss is about 150 eV per target crossing. The 
beam would lose all its energy in only ten thousand turns. Moreover, it takes only few 
revolutions for the beam to exit the resonance condition. There is, thus, need to 
compensate instantaneously the energy loss. This is done with RF acceleration that just 
preserves the beam energy to the reference value. 
 
To provide acceleration the coil are to be convoluted internally. Moreover, the number of 
period ns per turn is to be exactly an integer. According to Eq. (78), the energy gain per 
turn is 
 
∆E = πns eVo ξ sin φs            (94) 
 
ξ = (b2 – b1) / b1 defines the ratio of the convolution internal diameters. Clearly a small 
RF phase angle is required. We take φs = 0.15o. For ∆E = 150 eV/turn, a relatively small 
convolution is required, b2 – b1 = 1 mm.  
 
But energy straggling is a problem. Every time the beam traverses the carbon target there 
is an rms energy spread increase of 270 eV that of course adds only quadratically turn-
after-turn, but it is still too large compared to the resonance width of about 150 eV. At the 
same time, also the emittance increase due to multiple scattering is a concern. The 
estimate is an increase of the rms emittance of 0.005 mm-mrad per turn. The beam 
emittance would thus double in value after about ten thousand revolutions (~ 3 ms). 
 
The device has a layout similar to the one show in Figure 8, with the exception that the 
linear RFQ accelerates to 1.75 MeV (or 3.24 MeV) and that, together to the matching 
linear section, operates at the same frequency adopted for the CRFQ. Provided that the 
ion source has the intensity capability, only a short single-turn beam pulse is injected per 
cycle. The duty cycle can be reasonably low so that water-cooling and radiation shielding 
can be eliminated or, at least, minimized. The recommended mode of operation is to 
pulse the device at a reasonable low repetition rate, with a pulse period short enough to 
minimize the effects on the beam quality deterioration. A reasonable and feasible choice 
is a repetition rate of 60 pulses per second, each pulse having a period of few 
milliseconds. Even a low duty cycle of only one percent still gives a sufficient amount of 
γ-radiation: an average 3 mCi. 
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A Medical Application 
 
This is a compact accelerator for the acceleration of protons from 20 to 250 MeV. The 
required repetition rate is 60 pulses per second and the beam intensity is 109 protons per 
pulse. There is an external bending field that is also ramped with the beam energy during 
acceleration. The four coils are convoluted to create an accelerating longitudinal field. 
The main parameters at injection and extraction energy are given in Table 4. The radius 
of the accelerator R = 250 cm. The RFQ parameter B is constant during the acceleration 
cycle and adjusted for a phase advance per period of 90o. There are exactly ns = 13 
focusing periods. The magnet that creates the external bending field, to cancel the local 
curvature, covers the entire circumference of the CRFQ accelerator. The magnetic field 
ranges between 2.60 kG at injection and 9.73 kG at extraction. Considering the high 
repetition rate, a sinusoidal excitation of the guiding field is assumed. The intensity of 109 
protons per pulse is modest and well below the space-charge limit. It is to be observed 
that the lattice and dispersion functions are constant during the acceleration cycle, but 
that the chromaticity varies. The beam energy during the entire acceleration cycle is 
below the transition energy. 
 

Table 4. A CRFQ Accelerator for Medical Application 
 Injection Extraction 

Kinetic Energy, MeV 20 250 
β 0.2032 0.6136 
γ 1.02132 1.2665 
Momentum, MeV/c 194.8 729.1 
Magnetic Rigidity, kG-m 6.496 24.321 
Bending Field, kG 2.60 9.73 
RF Excitation, MHz 50.43 152.24 
Wavelength, λ, cm 594.5 196.9 
Period Length, L, cm 120.83 120.83 
Inner Coil Radius, b1, cm 1.0 1.0 
Outer Coil Radius, b2, cm 1.2 1.2 
RF Peak Voltage, kV 11.54 130.41 
β – max, cm 226.92 226.92 
Dispersion – max, cm 116.8 116.8 
No. of Periods, ns 13 13 
Betatron Tune, νs 3.25 3.25 
Transition Energy, γT 1.593 1.593 
Chromaticity 0.9152 0.2273 
Norm. Emitt., π mm-mrad 0.30 0.30 
Act. Emitt., π mm-mrad 1.445 0.386 
Beam Radius, a, mm 1.811 0.936 
Rev. Frequency, MHz 3.879 11.711 
Tot. No. of Protons, x 109 1 1 
Ave. Beam Current, mA 0.62 1.87 
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In order to provide for acceleration several conditions are to be satisfied. First of all, the 
period length, L = βλ, has to be kept constant and integer. As the beam is accelerated its 
energy and velocity vary. Consequently, the RF wavelength has also to vary as λ = L/β. 
The RF frequency will vary accordingly as c/λ. In the example of the medical accelerator 
described in Table 4, the ratio of changes of β, λ and RF frequency is about three. 
 
During the acceleration cycle, the RFQ parameter B, Eq. (18), is also kept constant to 
preserve the same lattice functions and phase advance per period. Consequently, the peak 
RF voltage varies with the beam energy as follows (A = Q = 1) 
 
eVo = m c2 b1

2 B γ β2 / 2 (1 − ξ) L2           (95) 
 
with ξ = (b2 - b1) / b1 = 0.2. As shown in Table 4, the range of variation of the peak 
voltage Vo during the acceleration cycle is between 11.54 kV at injection and 130.41 kV 
at extraction. At the same time, the energy gain per turn, as function of the beam energy 
during the acceleration cycle, is given by 
 
∆E = mc2 b1

2 B ns
3 ξ (sin φs) (β2 γ) / 8πR2 (1 – ξ)                       (96) 

 
The external bending field, Bext is adjusted to cancel exactly the local curvature. 
Moreover, it follows its own variation with time that, as we have said, we take to be 
sinusoidal. Denoting with T the cycle period 
 
Bext = B1 – B2 cos(2πt/T)            (97) 
 
The beam momentum p has to follow the variation of the bending field according to 
 
pc = 1.0 x 10-7 c R Bext            (98) 
 
with pc = βγ mc2 in MeV, R in meter, the speed of light c in m/s, and Bext in kGauss. Also 
the energy gain per turn has to follow the variation of the bending field according to 
 
∆E = 2.0 x 10-4 πR2 (dBext/dt)                    (99) 
 
with ∆E in keV/turn, R in meter, and dBext/dt in kGauss/s. Finally, combining Eqs. (96, 
98 and 99) yields the following relation between the RF phase angle φs and the guiding 
field Bext, that is to be satisfied during the acceleration cycle, 
 
sin φs = 16 π2 R3 (1 – ξ) (dBext/dt) / B Bext cβ ξ b1

2 ns
3           (100) 

 
Knowing the RF phase angle φs and amplitude Vo it is possible then to estimate the area 
and the height of the RF buckets and the longitudinal oscillation frequency in the usual 
way. The RF peak voltage Vo and sinφs for our example of medical accelerator are 
displayed in Figure 12 and 13 respectively. 
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The CRFQ Accelerator 
 
It is possible to operate the CRFQ also at large beam energies when β ~ 1. Also in this 
case there are considerable advantages over the conventional magnetic rings but also 
some peculiar behavior of the lattice appears. To illustrate the possible application of the 
CRFQ as a high-energy accelerator we shall consider two cases. One is a proton 
accelerator of 30 GeV that assumes a 1.5 GeV injector, for instance, a Super-Conducting 
Linac. We shall require a beam intensity of 1012 protons per pulse at the repetition rate of 
one beam pulse every few seconds. As a practical example, we assume a linear ramp of 
the external bending field over a period of 1 second. This accelerator can be used, for 
instance, as the source for Proton Radiography [10]. The second example is an electron 
accelerator of 800 MeV with injection at 50 MeV. Also here the intensity is 1012 
electrons per pulse; but the repetition rate can be higher, for instance 15 pulses per 
second. For this purpose, the ramp of the bending field is taken to be sinusoidal. The 
main parameters for the two accelerators are given in Table 5. 
 

 
Figure 12. The RF Voltage Vo (kV/turn) vs. time (s) during the acceleration cycle  

for the CRFQ Medical Accelerator 
 

 
Figure 13. sinφs vs. time (s) during the acceleration cycle 

for the CRFQ Medical Accelerator 
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The design considerations for the proton accelerator are similar to those we have 
described for our medical accelerator model. The RF voltage Vo varies about linearly 
with time during the acceleration cycle. The RF phase program is shown in Figure 14. If 
indeed the CRFQ has a higher space-charge limit, it would be the major advantage for the 
high-energy application. The intensity of 1012 protons is still well below the limit given 
by Eqs. (56 and 57) also with a small beam emittance; we have thus adopted a phase 
advance per period of 60o that requires B = 4.6023. The beam radius is 1.75 mm at 
injection and 0.47 mm at extraction. In our example, to avoid an exceedingly large RF 
voltage, we have adopted a small number of long periods, giving lattice parameters 
similar to those of conventional magnetic accelerators. Nevertheless, the transition energy 
is located somewhere in between injection and extraction. Crossing the transition energy 
in the CRFQ accelerator may present interesting beam performance issues to be explored. 
At the same time, the chromaticity is very large and negative with unpredictable 
consequences that need to be investigated in more details. 
 

Table 5. CRFQ High-Energy Accelerators 
 Protons Electrons 
 Injection Extraction Injection Extraction

Kinetic Energy, GeV 1.5 30 0.050 0.300
β 0.9230 0.9995 0.99995 1.00000
γ 2.599 32.974 98.847 1566.56
Momentum, GeV/c 2.25 30.92 0.05051 0.80051
Magnetic Rigidity, T-m 7.507 103.15 0.1685 2.670
Bending Field, Tesla 0.100 1.375 0.0674 1.068
RF Excitation, MHz 27.60 29.89 209.93 209.94
Wavelength, λ, m 10.86 10.03 1.428 1.428
Period Length, L, m 10.026 10.026 1.428 1.428
Inner Coil Radius, b1, cm 1.0 1.0 1.0 1.0
Outer Coil Radius, b2, cm 1.2 1.2 1.2 1.2
Major Radius, R, m 75 75 2.50 2.50
RF Peak Voltage, kV 5.94 88.4 7.15 112.9
β – max, m 25.57 25.57 3.50 3.50
Dispersion – max, m 5.58 5.58 3.40 3.40
No. of Periods, ns 47 47 11 11
Betatron Tune, νs 7.833 7.833 1.833 1.833
Transition Energy, γT 3.965 3.965 0.928 0.928
Chromaticity -0.7483 -1.0503 -1.0520 -1.0522
Norm. Emitt., π mm-mrad 0.30 0.30 3.0 3.0
Act. Emitt., π mm-mrad 0.125 0.0091 0.030 0.0019
Beam Radius, a, mm 1.75 0.473 0.326 0.082
Rev. Frequency, MHz 0.587 0.636 19.08 19.08
Tot. No. of Particles, x 1012 1 1 1 1
Ave. Beam Current, Amp 0.094 0.102 3.05 3.05
Space-Charge Parameter ∆ 0.0130 0.0120 0.0051 0.0051
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In the case of the electron accelerator the excitation RF frequency is constant during the 
acceleration cycle and equal to about 209.9 MHz. Also in this case it is expected that the 
beam intensity is considerably below the CRFQ space-charge limit and, as a consequence 
we have adopted again a phase advance per period of 60o. In contrast, the behavior of the 
chromaticity is not problematic. At all times the beam energy is well above the transition 
energy. The major difference is that electrons lose energy to synchrotron radiation. In the 
case under consideration an electron loses at most 14.5 keV per turn at top energy. At that 
time the power lost is about 60 kW that is given back by the same accelerating RF 
system.  
 

 
Figure 14. sinφs vs. time (s) during the acceleration cycle 

for the CRFQ Proton Accelerator 
 
 
 
 
To estimate the RF acceleration cycle, Eq. (99), that gives the energy gain per turn, is 
also modified to include a term for the energy loss 
 
∆E = 2.0 x 10-4 πR2 (dBext/dt)  +   Urad            (101) 
 
with 
 
Urad = (88.5 keV/turn) EGeV

4 / Rmeter         (102) 
    
The RF Voltage Vo and sinφs for the electron accelerator are shown in Figures 15 and 16. 
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Figure 15. The RF Voltage Vo (kV/turn) vs. time (s) during the acceleration cycle  
for the CRFQ Electron Accelerator 

 
 

 
 

Figure 16. sinφs vs. time (s) during the acceleration cycle 
for the CRFQ Electron Accelerator 

 
If the CRFQ has the racetrack shape of Figure 6, it is sufficient to provide acceleration to 
shape the rods with convolution only in the straight sections and leave the rods smooth in 
the arcs. With the proper length of the straight accelerating sections is then possible to 
adjust the convolution depth ξ to a technically more feasible value. Of course, in this case 
one should insure rational relation between period length L, straight section length H, and 
circumference 2πR so that particles enter the accelerating straights always in phase with 
the RF. 
 
Compact Synchrotron Radiation Facility 
 
The CRFQ can be used as a compact storage ring for synchrotron radiation. There are 
some special features that make the application peculiar and interesting. First of all, the 
arrangement of the four rods (shown in Figures 1 and 2) rotates the transverse modes of 
oscillation to 45o with the normal axis x and z, as shown in Figure 3. Aside from a 
longitudinal shift of 180o, the amplitude lattice function βL and dispersion η are exactly 
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equal for the two modes of oscillation. The excitation of quantum fluctuation is also the 
same for the two modes and, as a result, the beam shape is everywhere about round with 
the same cross-section radius along the horizontal and vertical direction. We shall first 
consider the case that an external bending field is added to cancel exactly the local 
curvature. 
 
We remind that the energy loss per electron and per turn is 
 
U =  (88.5 keV/turn) EGeV

4 / Rmeter         (103) 
 
The critical radiation wavelength 
 
λc = (18.6 Ao) / Bext (Tesla) EGeV

2               (104) 
 
The repartition factors 
 
J0 = 16.776 (L/πR)2        (105a) 
JE = 2   +   J0         (105b) 
Juv = 1   –   J0         (105c) 
 
The damping times, along the (u, v) normal modes of oscillation, 
 
τEuv = ( 0.476 ms ) Rm

2 / JEuv EGeV
3            (106) 

 
The equilibrium rms energy spread 
 
σE / E  = 0.62 x 10-6 γ / ( JE Rm )1/2         (107) 
 
The equilibrium rms emittance (σ2/βL, along the (u, v) normal modes of oscillation, in 
mm-mrad ≡ µm) 
 
εuv = (0.374 µm) γ2  J0

3/2 / (1 – J0)            (108) 
 
Thus the equilibrium emittance is proportional to (L/R)3. It is possible to obtain a very 
brilliant radiation source with a large size ring having a small period. An example is 
given in the following Table 6. The phase advance per period has been set to 90o. 
 
The beam dimensions and intensity shown in Table 6 correspond to the case when the 
effects of the synchrotron radiation are neglected. That is, the beam dimension and 
intensity depend only on the injector performance. The beam values in equilibrium with 
synchrotron radiation are summarized in Table 7. The case in question has the same beam 
size with or without the effect of the synchrotron radiation. As consequence, the beam 
intensity is at the space charge limit in both cases. A large RF frequency has been 
adopted, with a significant large RF voltage. It would be desirable to reduce the internal 
dimensions of the CRFQ to the point that tolerances become very tight. Moreover, the RF 
phase is small because the actual longitudinal field is very large compared to the amount 

 38



of energy lost per turn. The control of the RF phase is also a point of concern. The case 
we have illustrated is just an example not necessarily optimized. Other cases may be 
possible.  
 
It is seen that in the case J0 << 1, equivalent to L/R << 0.77, the normalized equilibrium 
emittance is given by 
 
γεuv = (168 µm) Bext

3 λ3          (109) 
 
with Bext in Tesla and the RF wavelength λ in meter. For instance, by letting Bext = 1 
Tesla and λ = 20 cm, corresponding to a RF frequency of 1.5 GHz , the normalized 
emittance  γεuv ~ 1 µm. This result is independent of beam energy. 
 
 

Table 6. CRFQ Synchrotron Radiation Facility 
Kinetic Energy, MeV 800
β 1.00000
γ 1566.56
Momentum, MeV/c 800.51
Magnetic Rigidity, kG-m 26.702
Bending Field, kGauss 10.68
RF Excitation, MHz 1202.4
Wavelength, λ, cm 24.933
Period Length, L, m 24.933
Inner Coil Radius, b1, cm 0.5
Outer Coil Radius, b2, cm 0.6
Major Radius, R, m 2.50
RF Peak Voltage, MV 1.370
β – max, cm 46.8
Dispersion – max, cm 4.973
No. of Periods, ns 63
Betatron Tune, νs 15.75
Transition Energy, γT 7.72
Chromaticity -1.0522
Norm. Emitt., π mm-mrad 3.0
Act. Emitt., π mm-mrad 0.0019
Beam Radius, a, µm 29.9
Rev. Frequency, MHz 19.085
Tot. No. of Particles, x 1010 2
Ave. Beam Current, Amp 0.0611
Space-Charge Parameter ∆ 0.0429
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Table 7. CRFQ Synchrotron Radiation Parameters 

Kinetic Energy, MeV 800
Energy Loss/Turn, keV 14.5
Critical Wavelength λo,  Ao 27.21
Critical Energy, keV 0.455
Flux, photons / s mrad 1%BW 8.0 x 1011

J0 0.0169
JE 2.0169
JXZ 0.9831
Damping Time, τE, ms 2.88
Damping Time, τXZ, ms 5.91
Energy Spread, σE/E, % 0.0432
rms Emittance, mm-mrad 0.00205
Equil. Beam Radius, a, µm 31.00
rf Phase, φs, degrees 0.0153
Tot. No. of Particles, x 1010 2
Ave. Beam Current, Amp 0.0611
Space-Charge Parameter ∆ 0.043

 
 
 
Engineering 
 
There are several engineering issues for the design of a CRFQ storage-accelerator ring 
that need to be investigated. Outstanding issues are listed below. 
 
• Mechanical engineering and design of the ring 
• How to input RF power in the device. 
• Design of the RF Cavities. 
• Injection of a short single-turn beam pulse. 
• Multi-turn injection of a long beam pulse. 
• Design of the Matching Section between Injector and the CRFQ. 
• Beam diagnostic and instrumentation. 
• Vacuum requirements. 
• Power requirements and considerations. 
• Design of the external Bending Magnet. 
• Intra-beam scattering in the high intensity mode of a single beam. 
• Beam-beam scattering of two colliding beams, and beam-beam interaction. 
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Error Analysis 
 
The error analysis is somewhat different from that of conventional, magnetic storage and 
accelerator rings. Some issues for further investigation are: 
 
• Control of the level and quality of the external bending field. 
• RF Excitation and distribution of the RF field around the ring. 
• Coil alignment. 
 
Conclusions 
 
We have investigated the motion of particles in a Circular RFQ (CRFQ) storage and 
accelerator ring. We believe that the CRFQ ring described in this paper represents a new 
challenging product of the accelerator technology that can have several useful and 
interesting applications. The CRFQ ring has with no doubt several advantages over the 
conventional magnetic accelerators, in summary: compactness, high beam intensity, 
small beam dimension, and less susceptibility to errors. 
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Appendix A 
 
In the main toroidal coordinate system, the wave equation Eq. (1) is 
 
∂ (A (η, θ)  ∂V / ∂η) / ∂η   +   ∂ (A (η, θ)  ∂V / ∂θ) / ∂θ   +   

+ R2 q2 B (η, θ) V    =      0          (A1) 
 
where [3] 
 
A (η, θ)   =    sinh η / ( cosh η -  cos θ ),                     (A2) 
B (η, θ)   =    sinh η / ( cosh η -  cos θ )3.              (A3) 
 
In the region ρ <  b between the rods, η is very large, and in particular η = ∞ in proximity 
of the circumference with radius R. Thus, in good approximation,  sinh η  ~  cos η  >>  
cos θ, and A (η, θ)  ~ 1.  
 
In the cylindrical coordinate system, a toroidal surface is described by the equation 
 
r2  +  z2  +  R2  =  2 Rr coth η,                      (A4) 
 
or, in the reduced toroidal system, 
 
coth η =  1  +  ρ2 / 2 R (R + x).                      (A5) 
 
In the region ρ <  b between the rods,  e η  ~  2R / ρ,   ∂ / ∂ η  ~  − ρ ∂ / ∂ρ,  and   
∂2 / ∂ η2   ~   ρ2 ∂2 / ∂ρ2   +   ρ ∂ / ∂ρ.  
 
At the same time B ~  4 e − 2η     ~  ρ2 / R2. 
 
By transforming to the reduced toroidal coordinate system, and by retaining only the 
lowest order terms, we finally derive Eq. (2). 
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Appendix B 
 
The electric E and magnetic B field vector components can be expressed as usual in 
terms of scalar V and vector A potentials 
 
E   =  −  grad V  − (1/c) ∂ A / ∂t               (B1) 
B   =      rot A                  (B2) 
 
related to each other by the Lorentz condition 
 
div A  +  (1/c) ∂ V / ∂t   =   0.              (B3) 
 
Both potentials satisfy the wave equation 
 
∇2 V  −  (1/c2) ∂ V / ∂t   =   0               (B4) 
∇2 A  −  (1/c2) ∂ A / ∂t   =   0               (B5) 
 
The symmetry of the geometry under consideration is such that V and A do not depend 
on the angular coordinate ψ. Moreover 
 
V   =   V (η, θ) cos (ωt)                (B6) 
A   =   A (η, θ) sin (ωt)                (B7) 
A   =   [Aη,  Aθ, 0] sin (ωt)                (B8) 
 
and 
 
E   =   [Eη,  Eθ,    0] cos (ωt)               (B9) 
B   =   [  0,   0,  Bψ] sin (ωt)             (B10) 
 
Using approximations similar to those of Appendix A valid in the region ρ < b, we derive 
 
V       =        Σn  an Jn ( qρ ) sin (nθ)  cos (ωt)            (B11) 
Aη     =     − Σn  an Jn+1 ( qρ ) sin (nθ)  sin (ωt)           (B12) 
Aθ     =     − Σn  an Jn+1 ( qρ ) cos (nθ)  sin (ωt)                 (Β13) 
 
Observe that because of the definition of the toroidal coordinate η, which increases in 
magnitude moving toward the center P of the CRFQ internal structure, the component Eη 
is positive when directed toward the center P. At the same time, the component Eθ is 
positive when directed clockwise. Transforming to the reduced toroidal coordinate 
system, 
 
Ex   =        Eη  cos θ     +    Eθ    sin θ           (B14) 
Ez   =   −   Eη  sin θ     +    Eθ    cos θ           (B15) 
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We retain only the lowest order term n = 2. Also, we shall assume that qb << 1; that is, 
the RF wavelength λ is considerably larger than the minor radius, 2πb << λ. We obtain 
then, by using approximations similar to those of Appendix A valid in the region ρ < b 
and by expanding the Bessel functions, 
 
Ex   =      2V0 (z / b2) [ 1 +  q2 (3x2 – z2) / 12] cos (ωt)         (B16) 
Ez   =      2V0 (x / b2) [ 1 +  q2 (3z2 – x2) / 12] cos (ωt)         (B17) 
 
which are derived from Eqs. (B1 and B2). The linear term is derived directly from the 
scalar potential V. The higher order terms are the contribution from the vector potential 
A.  
 
Similarly, the magnetic field component 
 
Bψ   =    V0 q [(x2 − z2) / b2] sin (ωt)           (B18) 
 
that being of higher order can be neglected. 
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Appendix C 
 
In terms of the local toroidal coordinates (ρ, θ, ψ), the convolution of the rods introduces 
a ψ-dependence in the wave equation for the scalar potential. That is, Eq. (1) is replaced 
by 
 
∇2 V (ρ, θ, ψ) + q2 V (ρ, θ, ψ)  =  0.            (C1) 
 
Let us follow the same details of the computation shown in Appendix A, except noting 
that now a term C ∂2 V/ ∂ ψ2 is to be added at the r.h. side of Eq. (A1), with 
 
C (η, θ)   =   1 / sinh η ( cosh η −  cos θ ).              (C2) 
 
In the region ρ < b, between the rods, and where η is large, all the approximations of 
Appendix A are used again. Moreover, 
 
C    ~    B    ~   ρ2 / R2               (C3) 
 
and Eq.(2) now becomes 
 
ρ2 ∂2 V / ∂ ρ2  +  ρ ∂ V / ∂ ρ   +   ∂2 V / ∂ θ2   +  (ρ2 / R2) ∂2 V / ∂ ψ2  +   q2 ρ2 V = 0   (C4) 
 
The solution of this equation can be written as a double summation 
 
V (ρ, θ, ψ)   =   Σn,m  anm fnm ( ρ ) sin (nθ) cos (mψ) cos (ωt)             (C5) 
 
By substitution in Eq. (C4) we derive the Bessel second-order differential equation 
 
ρ2 ∂2 fnm / ∂ ρ2  +  ρ ∂ fnm / ∂ ρ   −   (n2   +  qm

2 ρ2) fnm   =   0           (C6) 
 
which has for solution a Bessel function of either the first Jn(|qm|ρ) or the second kind 
In(qmρ) depending on whether qm

2  =  m2 / R2  –  q2 is negative or positive, respectively.  
 
We shall assume that the origin ψ = 0 corresponds to a minimum of the convolution as 
shown in Figure 7. Moreover, we retain in the double summation of Eq. (C5) only the 
lowest order terms. These are n = 2 and m = 0 corresponding to fields with no 
longitudinal dependence, equivalent to Eq. (4); and n = 0 and m = ns where ns is the 
number of convolutions, that is, the number of periods per turn. Thus, with  qm  = ks / γs, 
 
V (ρ, θ, ψ)    =       a20 J2 ( qρ ) sin (2θ)  cos (ωt)    + 
  + a0m I0 ( qmρ ) cos (nsψ)  cos (ωt)        (C7) 
 
The constants a20 and a0m are estimated by letting 
 
a20 J2 ( qb1 )    +   a0m I0 ( qmb1 )     = V0         (C8) 
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a20 J2 ( qb2 )    −   a0m I0 ( qmb2 )     = V0         (C9) 
 
from which we derive 
 
a20 = V0 [I0 (qmb2)  +  I0 (qmb1)] / [J2 (qb1) I0 (qmb2)  +  J2 (qb2) I0 (qmb1)]    (C10) 
a0m = V0 [J2 (q b2)   −  J2 (q b1)] / [J2 (qb1) I0 (qmb2)  +  J2 (qb2) I0 (qmb1)]    (C11) 
 
In the case of smooth rods, with no convolution, b2 = b1 = b and a0m = 0 identically, 
whereas 
 
a20 =  V0 / J2 (qb)                   (C12) 
 
and thus one recovers the result given by Eq. (4). 
 
More generally, the first term at the r.h. side of Eq. (C7) corresponds to the potential of 
Eq. (4) multiplied by a factor 
 
1 – ξ  =    J2 (qb1) [I0 (qmb2)  +  I0 (qmb1)] / [J2 (qb1) I0 (qmb2)  +  J2 (qb2) I0 (qmb1)] (C13) 
 
By treating the arguments of the Bessel functions as small compared to unit and by 
expanding we have 
 
ξ = [(b2/b1)2 – 1] / [(b2/b1)2 + 1]        (C14) 
 
that, since b2 > b1, has a value always between 0 and 1. 
 
Thus the transverse equations of motion Eqs. (15 and 16), or their coupled form Eq.s (23 
and 24), are still valid except that the restoring force is reduced by a factor (1 – ξ). As 
long as b2 ≈ b1 this reduction factor can be ignored. 
 
The second term at the r.h. side of Eq. (C7) represents the contribution to the field of the 
rod convolution. In order to satisfy the Lorenz relation given by Eq. (B3) we need to add 
to this term also a vector potential that has only the η-component not vanishing. 
Following the approximations and the procedures of Appendices A and B we can write 
the new contribution to the potentials from the rod convolution as 
 
Vc =   V0  ξ [I0(qmρ) / I0(qmb1)] cos (nsψ) cos (ωt)      (C15) 
Ac = –V0 ξ [I1(qmρ) / I0(qmb1)] cos (nsψ)  sin (ωt)        (C16) 
 
where ξ is given in good approximation by Eq. (C14). 
 
The potentials given by Eqs. (C15 and C16) give rise to an extra transverse electric field 
which is linear in the displacements x and z. This field should be added to the equations 
of motion Eqs. (15 and 16), Nevertheless, as long as b << Ls this field is small and could 
in principle be ignored. The effect of this field will not be considered further. 
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The potentials combined of Eqs. (C15 and C16) give rise to a longitudinal electric field, 
that, on the axis ρ = 0, is 
 
Eψ = − (1 / R) ∂ Vc / ∂ ψ  
 = V0 ξ ks sin (nsψ) cos (ωt)          (C17) 
 

 47



Appendix D 
 
The general equations of motion are given by Eq.s (54, 55). We shall describe the 
solution of Eq. (54). That of Eq. (55) is then obtained by shifting ks of 180 degrees. It is 
convenient to replace the path length s with the angular variable 
 
θ =  π s / L             (D1) 
 
and the displacement u with the scaled variable 
 
w(θ) = (π2 R / L2) u(s)            (D2) 
 
so that Eq. (54) reduces to 
 
d2 w /d θ2     –    2q w cos (2θ)     –     ∆ w = 1            (D3) 
 
where 
 
q = B / 2 π2            (D4) 
∆ = KL2 / π2 a2            (D5) 
 
and K is the space-charge parameter defined by Eq. (56). The total solution of Eq. (D3) is 
given by the sum of the general solution of the homogenous equation 
 
d2 w /d θ2     –    2q w cos (2θ)     –     ∆ w = 0            (D6) 
 
that can be expressed in terms of the Mathieu functions of the first kind Ce(-∆, q, θ) and 
Se(-∆, q, θ), and of a particular solution w(θ), periodic in θ with period π, of the in-
homogenous Eq. (D3) itself, namely 
 
w(θ) = c1 Ce(-∆, q, θ)   +   c2 Se(-∆, q, θ)    +   w(θ)        (D7) 
 
where c1 and c2 are two constants to be determined from initial conditions. The motion 
described by Eq. (D7) is that of a free betatron oscillation around a closed orbit of period 
L in the path length s, and of period π in the arc length θ. The free betatron oscillation has 
a betatron frequency that can be expressed by the betatron tune per period ν, that is the 
phase advance per period normalized to 2 π. It is plotted in Figure 17 versus the RFQ 
parameter B given by Eq. (18). The corresponding amplitude βL-function, equivalent to 
that of a FODO focusing structure, is plotted in Figures 18 and 19.  
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B

 
Figure 17. Betatron Tune ν per period versus the RFQ parameter B. The top curve 

corresponds to ∆ = 0, and the others, in descending order, to ∆ = 0.01, 0.02, and 0.044. 
 

The rotation of the beam ellipse in the phase space is given by the Twiss parameter   
αL = –(1/2) dβL/ds. The maximum absolute value of this parameter is plotted in Figure 
20.  
 
Inspection of Figures 17, 19 and 20 clearly indicates a region of motion stability that is 
allowed by the presence of space charge forces. The larger is the space charge parameter 
∆ the narrower is the stability region. 
 
The closed orbit distortion is a solution of Eq. (D7), periodic with θ with period π. For its 
determination the two constants c1 and c2 appearing in Eq. (D7) are solved for so that 
w(π) = w(0) and w'(π) = w'(0). We remind that Se(0) = Ce'(0) = 0. We also impose that 
w(0) = w'(0) = 0 by choosing the particular solution of the in-homogeneous Eq. (D3) in 
the form 
 
w(θ) = ∫{[Se(θ) Ce(t) – Ce(θ) Se(t)] / [Ce(t) Se'(t) – Se(t) Ce'(t)]} dt     (D8) 
 
where the integral is between 0 and θ.  The resulting orbit distortion wc(θ) is plotted in 
Figures 21 and 22.  
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Figure 18. The ratio βL/L over the length of a Period L normalized between 0 and π, for 

B = 6.80928. The top curve corresponds to ∆ = 0.044, and the others, in descending 
order, to ∆ = 0.02, 0.01, and 0.0. 
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Figure 19. The maximum value of the ratio βL/L versus the RFQ parameter B. The curve 

to the left corresponds to ∆ = 0, and the others, moving toward the right,  
to ∆ = 0.01, 0.02, and 0.044. 
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Figure 20. The maximum absolute value of αL versus the RFQ parameter B. The curve to 

the bottom corresponds to ∆ = 0, and the others, moving toward the right, to ∆ = 0.01, 
0.02, and 0.044. 

 

 
θ

 
Figure 21. The orbit distortion wc (θ) over the length of a Period L normalized between 0 

and π, for B = 6.80928. The top curve corresponds to ∆ = 0.044, and the others, in 
descending order, to ∆ = 0.02, 0.01, and 0.0. 

 
The actual orbit distortion uc(s) is related to the reduced orbit distortion wc(θ) through the 
relation 
 
uc(s) = wc(θ) L2 / π2 R            (D9) 
 
where wc(θ) acts as a weighting universal function. In the special case that 1/R = 0 as, for 
instance in the case where the bending radius rL of the external magnetic field cancels 
exactly the geometrical radius R, the actual physical orbit distortion uc(s) vanishes 
identically no matter what is the value of the wc(θ) function.  
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The path length per period L is increased by the physical orbit distortion. The relative 
increase can be determined as follows 
 
∆L / L  = (L2 / π3 RR) ∫wc(θ) dθ          (D10) 
 
where the integral extends over the arc of a period, from 0 to π. Again, in the limit 1/R = 
0 the increase of the path length vanishes identically. The integral I =∫wc(θ) dθ is plotted 
in Figure 23. 
 

 
B

 
Figure 22. The maximum value of the orbit distortion wc(θ)versus the RFQ parameter B. 

The curve to the left corresponds to ∆ = 0, and the others, moving toward the right, 
to ∆ = 0.01, 0.02, and 0.044. 
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Figure 23. The plot of the integral I = ∫wc(θ)dθ needed to determine the relative path 

length increase due to the orbit distortion (Eq.(D10)), versus the RFQ parameter B. The 
curve to the left corresponds to ∆ = 0, and the others, moving toward the right, 

to ∆ = 0.01, 0.02, and 0.044. 
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The dispersion function η(s) is the displacement from the physical orbit distortion uc(s) 
due a momentum error δ of the particle. In linear approximation we can write 
 
uc(s) = uco(s) + η(s) δ         (D11) 
 
where uco(s) is the central value of the orbit distortion, given by Eq. (D9) with δ = 0. We 
shall consider two cases. In the first case there is an external bending magnet with a field 
to cancel exactly the geometrical radius of curvature, that is rLs = R. In this case the 
dispersion is exactly equal to the orbit distortion itself (with R replaced by R) 
 
η(s) = uco(s)           (D12) 
 
In the other extreme case where there is no external bending field, R = R, and 
 
η(s) = uco(s) (2/γs

2 – χw βs
2)         (D13) 

 
where the maximum value of χw =  (B / wc) (∂ wc / ∂ B) is plotted in Figure 24. Thus the 
dispersion follows closely the behavior of the orbit distortion. 
 

 

B 

 
Figure 24. Plot of the maximum value of χw =  (B / wc) (∂ wc / ∂ B) (at θ = π/2) versus B. 

The top curve corresponds to ∆ = 0, and the others, in descending, order to ∆ = 0.01, 
0.02, and 0.044. 

 
The momentum compaction factor αp, that is the relative change ∆L/L of the path length 
per unit of the relative change δ of the momentum error is essentially given by Eq. (D10). 
More precisely 
 
αp =  (L/πR)2 I f / π          (D14) 
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where I =∫wc(θ) dθ is plotted in Figure 23; f =1 with an external bending field such that 
rLs = R, and f = 2/γs

2 – χw βs
2 in the case there is no external bending magnet. From Eq. 

(D14) we can also derive the transition energy 
 
γT = (1/αp)1/2 = (πR / L) (π / I f)1/2      (D15) 
 
The quantity (π / I)1/2 is plotted in Figure 25. 
 

 

B

 
Figure 25. Plot of (π / I)1/2, that is related to the transition energy γT, versus the RfQ 

parameter B. The top curve corresponds to ∆ = 0, and the others, in descending, order to 
∆ = 0.01, 0.02, and 0.044. 

 
The number ν of betatron oscillations per period is related to the phase advance  µ = 2π ν 
per period, and that depends only on the RFQ parameter B. The natural chromaticity is 
the relative variation of the betatron tune ν with the relative momentum error δ 
 
ξµ =  (1 /ν) d ν / dδ = – βs

2 χµ       (D16) 
 
where χµ =  (B/ν) ∂ν / ∂B is plotted in Figure 26. Similarly, the amplitude lattice function 
βL varies with the momentum error δ, which is another chromatic effect. The ratio βL/L 
depends only on the RFQ parameter B and we can define 
 
ξβ =  (L / βL) d (βL/L) / dδ = – βs

2 χβ     (D17) 
 
where χ β =  (BL / βL) ∂ (βL/L) / ∂B is plotted in Figure 27. To get the actual variation of 
βL alone with the momentum error δ, one should multiply the ratio βL/L by the period L 
that has its own momentum dependence as L = Ls (1 + δ /γs

2). 
 
We have seen that the dispersion η is the variation of the orbit distortion with the 
momentum error. But, to second order, also the dispersion has a chromatic effect and it 
varies with the momentum error δ. We shall not calculate this here. 
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Figure 26. The tune chromaticity χµ =  (B/ν) ∂ν / ∂B versus the RFQ parameter B. The 

bottom curve corresponds to ∆ = 0, and the others, in ascending, order to ∆ = 0.01, 0.02, 
and 0.044. 

 

 
 

Figure 27. The amplitude chromaticity χ β =  (BL / βL) ∂ (βL/L) / ∂B, estimated in the 
middle of a period where has the maximum value, versus the RFQ parameter B. The top 
curve corresponds to ∆ = 0, and the others, in descending, order to ∆ = 0.01, 0.02, and 

0.044. 
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