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Abstract

The magnetic field due to a current flowing in a helical conductor placed inside a
cylindrical hole in iron is investigated. In order to calculate the contribution of an axially
symmetric iron yoke on the inner field of helical magnets, a 3-dimensional potential
problem is solved. The obtained analytical expressions are applied for the helical dipole
magnet for the Relativistic Heavy Ion Collider (RHIC), with good agreement.
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1 INTRODUCTION

The analytical expressions of the magnetic fields due to a single straight current inside a
hollow iron yoke whose inner surface is a cylinder is basically applied for the calculation
of the two-dimensional (2D) magnetic fields due to a long superconducting dipole for a
large accelerator. In this 2D magnet, it is revealed that the effect of iron on the inner field
can be calculated with the method of an image current if the iron is not saturated and the
permeability is uniform.

In this paper, the contribution of an axially symmetric iron yoke on the helical magnets
is studied, an the base of the analytical expressions of the magnetic fields due to a single
helical current. [1] The results obtained from the assumption of a helical image current
have some disagreements for the other numerical calculation and measured results. [1]

In order to obtain the rigorous expressions for the contribution of an axially symmetric

iron yoke without saturation on the interior field of helical magnets, a 3-dimensional
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potential problem is solved. Then, the calculation of the interior field of the helical dipole
magnet for RHIC is corrected by using the obtained analytical expressions. ‘

2 FIELD OF A SINGLE HELICAL CURRENT CONDUCTOR

In this paper, the magpetic induction B, the magnetic scalar potential ¢_ and the vector

potential A are defined as follows,
B=—-uvVeg =VxA : ¢y

Similarly, the relation between the magnetic induction B, and the magnetic field intensity
H is defined as follows,

B = uy(H + M) = uy(1+ x,,)H = pox, H = uH )

where W is the absolute permeability, %, is the magnetic susceptibility, and Km is the

relative permeability. ,
On the case that a single helical current carrying conductor with a pitch length L (=

2m/k) is located at some point (r=b, 6=¢) at the z=0 plane, as shown in Figs. 1 and 2, the

magnetic scalar potential ¢, and the field B due to a single helical current carrying

conductor without iron are written in the following forms, [1]
forr<b,

6, (r,0,2) = —EI;kz - ékbi K, (nkb)L, (nkr)sin[n(6 — ¢ — k2)] 3)
n=1 ‘

B,(r,6,2) = 2oL kS K (nkb)I (nkr)sinfn(6 - ¢ — k2)]

T n=1
$By(r,0,z) = Bl kbz nKé(nkb)Mcos[n(G —-¢p—kz)] \ (4)
T r

n=1

B,(r,08,2z)= g—j_[]k - %‘;—Ikzbz nK;, (nkb)I (nkr)cos[n(6 — ¢ — kz)]
. n=1

Similarly, for r> b,
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,(r,0,2) = —EO - —}r—kbi L (nkb)K, (nkr)sin[n(6 — o - kz)] (5)

r W |
1B (r,6,2) = ol % nIl(nkb)K,,(nkr)sin[n(6 - ¢ - kz)]
T n=1

1B,(r,8,2) = é‘—°£+i‘&{kbznzg(nkb)mcos[n(e~¢—kz)] 6)
r T

n=1 r

B,(r,0,z)= —ﬂ’lkzbi nl +(nkb)K, (nkr)cos[n(6 — ¢ - kz)]
: Vi1

n=1

3 3-DIMENSIONAL POTENTIAL PROBLEM OF HELICAL MAGNETS
On the case that a single helical current conductor with a pitch length L (= 2r/k) is

located at some point (r=b, 6=0) in the z=0 plane placed inside a cylindrical hole in iron
of U, = K I, as shown in Figs. 1 and 2, the general form for the magnetic scalar
potential ¢, of regions 1, (r < a) is expressed as a sum of the contribution <|>wal of a single-

helical current conductor and the contribution ¢, ;.. of an axially symmetric iron yoke in

they following from,
¢1(7’,9,Z) = ¢1,cm'1(r/912) + ¢1,inm(rrerz) 7

Furthermore, the magnetic scalar potential due to a single helical current conductor is
expressed by Eq.(3) for the interior region of the helical coil (r < b) or Eq.(5) for the
exterior region of the helical coil (b<r<a).

Since the terms of the modified Bessel function of the second kind, K (nkr) are
excluded by the condition that the origin be a regular point for the contribution of iron, the

general solutions at z=0 for the magnetic scalar potential ¢, and ¢, of both regions can be

written in the following forms with the unknown constants of A , By, and B,

forb<r<a,

I

191 =0)=-——
¢,(r,6,2=0) 7

6- ikbz I (nkb)K  (nkr)sinn6 — iZAnzn(nkr)smne (8)
T 4 T

n=1

similarly, forr > a,
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/61 =O ==
¢:(7.6,2=0) o

I . ,
B,6- =Y B,K,(nkr)sinng )
P . .
The constants may be determined by the use of the boundary conditions on the interface, r

= a, between regions 1, (r <a) and 2, (r > a). On the boundary between the region 1 (U,

= W,) and the region 2 (1, = K1), the following conditions must be fulfilled,

{Htl =H,
(10)

Bnl = BnZ

The continuity of the tangential component of H at the boundary r = a is equivalent to the

continuity of ¢,,, while the continuity of the normal component of B demands that

0 d
ﬂ1%=l‘2%

atr = a. Then, the above boundary conditions are equivalent with the following condition

for the magnetic scalar potential.

¢1=¢2
%_ Qﬂ— . _ (an
i > =HU, o .

From the first condition of Eq. (11), the following relations are obtained,

kbl (nkb)K,(nka) + A,I, (nka) = B,K, (nka)
, (12)
B, =1
Similarly, from the second condition of Eq.(11), the following relation is obtained,
kbI/(nkb)K (nka) + A I (nka) = x, B, K’ (nka) (13)
From Eqs.(12) and (13), the unknown constants are determined as follows,
- 1)K (nka)K’(nk
A =—kb (i, = DK, (nka)K; (nka) I’ (nkb) (14)
K, 1, (nka)K(nka)— I, (nka)K, (nka)
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B L b I, (nka)K, (nka) - I (nka)K (nka)

I (nkb
n K,,L,(nka)K. (nka) - I(nka)K (nka) +(nkb) )
; . 8))
o 1 I’ (nkb)
na 1, (nka)K; (nka) — I (nka)K (1ka)

Therefore, the magnetic scalar potential ¢, ;,, at z=0 due to the contribution of an axially

symmetric iron yoke on the region 1 is expressed as follows,

Ie (k. - K, (nka)K (nka) .
iron’ = - - = kbI’ (nkb)I (nk 0
¢1,zron e ; K'mIn(nk(Z)K;(nkﬂ) _ I,’,(nka)K"(nka) n(n ) n(n r)S]IU’l 6
s k-1 K, (nka) . , _
=— " 2 kbl (nkb)I, (nkr)sinn@

T, (ka)K,, (nka
T Ky = O OR) ok oy L (k)

Especially, on the case of iron with the infinite permeability (x, =), the above equétion

becomes simple,

I & K (nka) ,
o = — Y —2——kbl’(nkb)I_(nk 0 17
¢1,zron 71'; In(nka) n(n ) n(n r)smn ( )

from the following equation,

lim Ky — 1 =1 a8y

I;, (nka)K,, (nka
LT Y

On the other hand, on the inner surface of iron with the infinite permeability (i, =c°),

the simple boundary condition of ¢, ., + ¢, ;.. = 0 is used by Caspi for helical magne‘ts.

[2] Caspi has studied the more versatile sjtuation of helical magnets by using the more
éomplicated expressions. [2] This simple boundary condition can be applied for the
system with the additional return current at origin, as remarked by Halbach. [3] Actually,
on the case that a single helical current conductor together with the straight return current

at origin,

¢1(T’,9,Z = 0) = ¢1,cail(rl G,Z = O) + ¢1,re£urn (T, Q,Z = O) + ¢1,iron(r' 9’2 = O) = O (19)
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—5—9——kb21’(nkb)K (nkr)s1nn9+-——6——2A a(nkr)sinn6 =0 (20)

n=1

As aresult, the following expression equivalent with Eq.(17) is obtained,

K, (nka)
I, (nka)

—kb =2 17 (k) @

The asymptotic forms for the following terms with the modified Bessel functions and

their derivatives as k — 0 (L ~o0) are as follows,[4]

I (nka)K, (nka)

~ -1 ‘ (22)
I (nka)K] (nka)

K, (nka) 1f(r " ‘ ‘

I (nka )ka L (nkb)I (nkr) = n(‘%] (23)

Then, it can be revealed that the magnetic scalar potential ¢,, results the potential on the

case of the straight image current, as k — 0 (L —). [5,6,7]

. I x,-1&( 7 " sinn6 ‘
¢1,imn,stmight = lklf;% ¢1,iron = —__—Z(_z—) - (24)

2rk, +15\%4 n

Similarly, the magnetic scalar potential ¢, on the region 2, (r > a) is written as the

following form,

I & 1 b
Tz nkb)K, (nkr)sinn@
ngxn L (nka)K; (nka) — I (nka)K (nka) na I (nkb)K,, (nkr)sin o
Lo, L3 1 b I(nkb) _
=Tty ; ———r K, (nkr)sinn@
27 n; K, — BT a1 (nka)K (nka) L (nkr)sin

The asymptotic form for the following term as k — 0 (L —eo) are as follows, [4]

(g/g‘



b I(nkb)

na I (nka)K (nka) n\r

K, (nkr )~__1_(b)n = _ A (26)

Then, it can also be revealed that the magnetic scalar potential ¢, results the potential of

the 2-dimensional case, as k — 0 (L. —). [5,6,7]

. I I 1 (b)Y sinnd
¢2,stmighl _£1_I_};)1¢2 _'2_7;6__"2_1’( +1( ) n (27)

Finally, on the case that a single helical current carrying conductor with a pitch length L
(= 2m/k) is located at a point (r=b, 6=0) at the z=0 plane, the general form for the

magnetic scalar potential ¢, ; . due to an axially symmetric iron yoke on the region 1 is

expressed as follows,

Ig K‘m -1
. ¢l,iron(r/e’z) = EZ{K __ I, (nka)K, (nka) }

n=1 1, (nka)K;, (nka) (28)

I;(‘”k”)) Kb (kD)1 (k) sin[n(6 - - 2]
Therefore, the general form for the magnetic scalar potential in region 1, (r < a) is

expressed as a sum of Eq.(3) and Eq.(28) for the interior region, (r < b) of the helical

coil or as a sum of Eq.(5) and Eq.(28) for the exterior region, (b < r < a) of the helical
coil. Similarly, the general form for the magnetic scalar potential ¢, on the region 2, (r >

a) is expressed as follows,

I
=—-—0
9, o o0
iz I (nka)K (:}lka) i In(ﬂk,b) K, (nkr)sin[n(6 — ¢ — kz)]
T :1 " " /,,(nka)K;,(nka) na In (lea)Kn(T’lka)
Then, the field B can be calculated from the following equation,
{Bl = - Ve =-1, Ve, (30)
B, =-w,V¢, = -x,1,V9,

(%



Especially, the fields, B, ;o Bioions Bisiron due 1o the contribution of an axially

symmetric iron yoke on the region 1 is expressed as follows,

'Blr,mm (T, 6’ Z) =

ol 12 <G
% kb)Y n

I/ (nkb)I! (nkr)sin[n(6 — ¢ — kz)]

—r—

K1 K, (nka)
Kom = I;(m)K"("‘m%,(nJmK;mka) I, (nka)

I

Ble,imn(r/ 81 Z)

ol <& K, -1 | K nka) 1, L (nkr)
- kb - L I’ (nkb)—Lcos[n(0 -9 —kz
7 Zn{x‘m _1"(nka)xmka)I"(n}m)K;(m)J I (nka) A(nkb) ; cos[n(6 - ¢ )

n=1
Blz,mm(rfelz) =
Bl 2 < K, =1 | K (ka) ,,
+=2 kb n - I’ (nkb)I (nkr)cos[n(@ — ¢ —kz
T ; {Km __I,.(nka)](,:(nka}l/"(mm;:(nka)I I,,(nka) "( ) ”( ) [ ( o )]

(3D

The qualitative difference between the interior fields of a single helical conductor, as

shown in Figs. 1 and 2 due to a single helical conductor and an axially symmetric iron
yoke comes from the existence of the first term independent on 0 of the expression for B,

of Eq. (4), in comparison with B, of Eq. (31). Then, it is realized that the method of
helical image currents is not applicable for the helical magnets with an axially symmetric
iron yoke, though the difference becomes unclear with the cancellation of the first term
due to the paired conductors comprising the dipole symmetry for the helical dipole
magnets.

For the simple case that a single helical current conductor is placed inside a cylindrical

hole in iron, with radius of a cylindrical hole in iron, a = 0.3 m, radius of helical line

current, b = 0.25 m, relative permeability of iron, K, = 10, angle of helical line current at

the z=0 plane, ¢=0, current, I = 10° A, pitch length, L = 0.2 m, and k = 2n/L = 10w

rad/m, as shown in Figs. 1 and 2, as an example, the vector plot of (B,, B,) at the z=0
plane, and the contour plot of H_, is analytically calculated, as shown in Figs. 3 and 4,
respectively. The fields calculated with Eqs. (4), (6), and (31) oscillates in the immediate
neighborhood of the boundary of radius of helical line current (r = b) and radius of a
cylindrical hole in iron (r = a), depending on the number of terms for summation. In
Figs. 3 and 4, The calculated results based on the analytical expressions of Egs. (4), (6),
and (31) to N=50 for the double summations, as expressed in Eq. (39) of reference [1]
(Cesaro's method) are plotted. With Cesaro's method of summation, however, the
convergence is quite low. This means that the analytical method has some difficulties in

the immediate neighborhood of the boundaries. In Fig. 3. the iron is represented with the

&)



gray region, and the circular position of a single helical current conductor is also shown
by the dashing line. On the contour plot of H,, the white region corresponds to the high
value, otherwise, the dark region corresponds to the low.

For this simple case, TOSCA is also applicable. [8] Actually, it can be confirmed that
the analytically calculated results coincide with those numerically calculated by TOSCA
for this simple case with the constant permeability for iron.

4 FIELD CALCULATION FOR HELICAL DIPOLE PROTOTYPE

4.1 Analytical expression of the magnetic field

As an extension of 2D magnetic field, the interior magnetic potential and field of helical
dipole magnets with an infinite length can be expressed with the definition of the helical

dipole reference field, B,,,, the helical normal and skew multipole coefficients, b, and a,,

ref *

the reference radius, r,, in the following forms,

B 7 < ' -
6,(r,0,2)=-—23 L n!( 2 ) 1, (nkr){ =4, cos[n(6 - k2)] + b, sin[n(6 k)] (32)
Hy wmim \7kn
9,

m

B,(r,0,2) = -1,

or
.= 2 Y } -
=B,1, én![ ok ] kIn(nkr){—an cos[n(6 — kz)]+ b, sin[n(6 — kz)]}
2
B,(r,0,2) = -,uor—gg-
= 2 Y I (nkr) @3)
=B . | = | 22205 o _ b k>
B,g,r%n (”krn] ; {a sin[n(6 — kz)] + b, cos[n(6 h)]}
o9
B.(r,6,z) = —4, %m
= qurog(—k)n![%) I,,(nkr){c}n sin[n(6 - kz)]+ I;n cos[n(6 - kz)]}

The interior magnetic fields of helical dipole magnets with an infinite length can easily be
derived from the summation of many helical line currents. Then, the helical normal and

skew multipoles for the helical dipole magnet with m helical line currents with current I,

radius b, and angle ¢;, (j=1.2 ...m) can be expressed with the definition of l;l:l (ie.,

B”,,,: B)) in the following forms. Each multipole component is expressed as the sum of

the contributions due to coil and iron,

(Yo



for the dipole component (n=1),

4—B

iron,1

coil, 1

= 2o 23 1b Ki(kb)Ycos,
2 3

and

K,(ka),

B o= Mg Ky—1 2
iron,1 I (ka)K, (ka)
e L A I =t

for the normal multipole components,

B, =B,b,=B

coil,n Bmm,n

where

5 _H 1
Boin= (nk k Ib
coil,n T 2“(}’[ 1), 7’1 70 z

and

L(ka) 7

K,—1

;(nkb].)cosn(p]

7w 2"(n-1ly,

Blruu,n S ! (nkrc )nk{
KYII

2 ”k“ bI/(nkb,)cosn,

for the skew multipole components,

((O

_ 1L Gda)K, (ka)

13)

/1, (nka)K,’,(n}m)}

b.I (kb )cos e,

(34)

(35

(36)

(37

(38)

(39

(40



w1 R .
A, =Ho 1 g VES b K (kb )sing 41
coil,n T 2”(7’1—1)!70 ( O) ; ivi ( /)S]II (P7 ( )

and

A AuO 1 n Km -1
Azmn n= T n nkr k M
' 7 2"(n-1lr, (i) {Km — O Rk K ik @2)

& K (nka) .
I.—=——=b I'(nkb,
xg; T ok #(nkb;)sinng,

In the case of the iron yoke with the infinite permeability (k,=<), the above expressions

of Egs. (31), (34), and (37), become simple with Eq. (18).

4.2 Field calculation for a helical dipole prototype for RHIC

For the R & D of superconducting helical dipoles used in ‘Siberian Snake’ and ‘Spin
Rotator’ for RHIC, the magnetic structure of the slotted helical dipole prototype with the
half-length has been extensively studied. [9] The main parameters of the slotted helical
dipole prototype with the half-length for RHIC are listed in Table 1 of reference [1]. The
cross section of the slotted helical dipole prototype with the half-length for RHIC is also
shown in Fig. 12 of reference [1].

The analytically and numerically calculated and measured results of the multipoles for a
single current of 200 A are listed in Table 1, together with the newly calculated results.

Table 1 is revised from Table 2 of reference [1]. In Table 1, the reference radius is
defined as ry = 31 mm, and Bmf,wi, (= Bm“ shown in Egs. (34) and (35)) is the

contribution due to the helical coil for the helical dipole reference field. The analytically
calculated results for the interior magnetic field of the helical dipole are obtained from the
summation for the field contribution of all 1728 (= 864 X 2) turns or 864 sets of four
helical line currents. The measured data is the results by the rotating coil of the tangential
winding. The calculated results by TOSCA are shown with three different values which
derived from the distributions of B, B,, or B, respectively, on the circle of of 31 mm
(reference radius) of the middle plane of magnet.

On the previous calculation, the contribution of an axially symmetric iron yoke or the
effect of the iron yoke is approximately calculated with the simple assumption that the
helical image current is the same with the case of the straight current for the position (or

radius) and the intensity of the image current. This calculated results are referred as the

(‘Mg



old analytical calculation (old analytical) in Table 1. The contribution of an axially

symmetric iron yoke is newly calculated, using Eqgs. (36), (39), and (42) derived from
Eq. (31), with the assumption of the infinite permeability (x,=o°), based on the rigorous

treatment of the potential problem, while the contribution of the helical coil is calculated,
using Eqgs. (35), (38), and (41) derived from Eq. (4), similarly with the previous
calculation. The agreement with the numerical calculation by TOSCA and the measured
result is greatly improved, as shown in Table 1. This newly calculated results are referred
as the new analytical calculation (new analytical) in Table 1. On this analytical
calculation, the length of the magnet is assumed to be infinite. On the other hand, the
numerical calculation by TOSCA is made for the geometry of the actual magnet with finite
length and coil ends, and for the iron yoke with the nonlinear B-H characteristics.

From the comparison among the analytically and numerically calculated and measured
results, listed in Table 1, firstly, on the numerical calculation by TOSCA, it seems
reasonable that there are small differences among each multipoles, deviated from the ideal
distribution with identical or common multipole coefficients for each field components, as
shown in Eq. (33). Secondly, from the existence of the forbidden multipoles
(quadrupole, octupole, etc.) and the skew multipoles on the measured results, it implies
that the actual geometry of this helical dipole prototype deviates from the perfect dipole
symmetry. Actually, on the numerical calculation by TOSCA for the helical magnet with
the perfect dipole symmetry, the values of the forbidden multipoles (quadrupole,
octupole, etc.) and the skew multipoles are quite small.

The comparison among the analytical calculations of the new or revised (solid) and the

old (dashing) results, and measured results by rotating coils (line with dots) for the
current dependence of the helical dipole reference field E,ef is shown in Fig. 5. The

measured data contain the results by three rotating coils, dipole #1, dipole #2, and

tangential windings. [10] The difference among the results of the helical dipole reference
field Bm, by three rotating coils is quite small, as shown in Fig. 5. Contour plot of the

vertical field component, B,, derived (or synthesized) from the new analytical calculation
up to 18-pole at I = 200 A listed in Table 1, is revised, as shown in Fig. 6, instead of Fig.
13 of reference [1]. The difference between both the new and old contour plots looks

quite small, as speculated from the small difference between 2 calculated results for the

helical normal multipole coefficients b, .

5 CONCLUSION

For the analytical field calculation for the helical magnets with an axially symmetric iron

yoke, the 3-dimensoinal potential problem for the case that a single helical current
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carrying conductor is placed inside a cylindrical hole in iron is rigorously solved. As a
result, it is realized that the method of image currents is not applicable for the helical
magnets, even qualitatively.

On the low excitation without the iron saturation, the obtained analytical expressions for
the contribution due to an iron yoke are applied for the field calculation of the slotted
helical dipole prototype with the half-length for RHIC, with good agreement among the
other numerical calculations and measured results.

Furthermore, it is expected that this analytical method can be extended for the
fundamental field calculation of electric machines with a skewed rotor, which basically
consist of helical current conductors lying in the air gap between concentric iron

cylinders.
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Table Captions

Table 1. Helical multipole coefficients (10*) for the half-length helical dipole

prototype, at I = 200 A.
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Figure captions

Fig. 1. Schematic view of a single helical coil placed inside a cylindrical hole in iron.

Fig. 2. Cross section of a single helical coil placed inside a cylindrical hole in iron

(z=0).

Fig. 3. Vector plot of (B,, B,) at z=0 analytically calculated to N=50 (Cesaro's

method).
Fig. 4. Contour plot of H, at z=0 analytically calculated to N=50 (Cesaro's method).
Fig. 3. Comparison among the new analytical calculation (solid), the old analytical

(dashing), and measured results by rotating coils (line with dots) for the current

dependence of the helical dipole reference field Brzf‘

Fig. 4. Contour plot of B, at I = 200 A (new analytical calculation).
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