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Abstract
The bunched beam stochastic cooling system for RHIC is different from typical coasting beam
stochastic cooling systems in two significant ways. The RHIC system is designed to keep beam
within the RF bucket, as opposed to cooling it to a small energy spread. Also, the fact that the
beam is bunched is used to minimize the kicker power requirements. These considerations allow for
a viable cooling system at moderate cost. This note summarizes the theory and implementation

of cooling in RHIC and shows what we may expect during FY05.
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I. INTRODUCTION

The value of stochastic cooling in RHIC has been appreciated for some time [1, 2] but
the implementation of a broad band kicker system with beam energies of 100 GeV /nucleon
was daunting. Progress in this area has been made and a longitudinal cooling system for
RHIC is under construction [3, 4].

The first test of cooling in RHIC is scheduled for F'Y05 and it is appropriate to summarize
our understanding of how the system will work. In section 1 the physics of cooling is
reviewed. In section 2 the particulars of the RHIC cooling system are discussed and Fokker-

Planck simulations of the cooling system are presented.

II. COOLING PHYSICS

Before discussing the details of the cooling system it is appropriate to review the under-
lying physics [1, 2, 5, 6]. The RHIC system will operate in the 4 — 8 GHz frequency range
and the Schottky signals in this range appear smooth with little evidence of individual syn-
chrotron sidebands. Additionally, the prominent synchrotron sidebands occur at low order
close to the revolution line and will be suppressed by the cooling filter. For such a case
it has been confirmed that the stochastic cooling rates for bunched beams are the same as
those for coasting beams with the same peak current [2]. Therefore, consider a coasting
beam with N particles. Let 6 denote azimuth with respect to the accelerator, Ty be the
synchronous revolution period, wy = 27/Ty, and ¢ be time as measured in the laboratory
frame. We use longitudinal coordinate # and its time derivative w = df/dt as dynamical

varibles. The phase space distribution function for the beam is decomposed as

U, w,t) = ;; 8]0 — 0k (2)]0]w — wi(t)] (1)
= Uy(w,t) + ¥ (w,0,t) + ¥y(w,6,1), (2)

Equation 1 is the Klimontovich distribution for the beam [7] which is just writing down
the trajectories of the individual particles. In equation (2) Wq(w,t) is the average coarse
grained phase space distribution, which evolves over the cooling time scale. The fine grained
Schottky distribution corresponding to W, is Wy, and ¥, is a coarse grained perturbation.

The maximum stable system gain is limited by the requirement that ¥; be well behaved.



Also, the effect of ¥; on the observed Schottky signal is refered to as signal suppression.
This is the primary tool for adjusting the gain of the system.
Over short time scales we neglect the time dependence of W,. The linearized Vlasov

equation for ¥y is,

2
01 4 O 9% v )6, (60 — 01) 20 =, (3)

ot 80  B2Er dw

where the stochastic cooling kicker is located at azimuth Og, the total voltage across the
kicker is Vi (t), Er = ymc? is the total energy of a synchronous particle, g is the charge per
particle, ,(6) is the periodic delta function, 7 is the frequency slip factor, and § = v/c.
The kicker voltage depends on the current at the pickup, located at fp. Consider the
response of a filter cooling system at a single frequency @ so that Vi(t) = V exp(—idt).
Then
V = —Zr(@)[1,(@,0p) + L(&,0p)], (4)

where Zr(w) is the transfer impedance of the cooling system, I;(w, fp) is the perturbation
current at the pickup, and I;(@, p) is the Schottky current at the pickup. The minus sign is
chosen so that a positive resistance results in energy loss. The plan is to take the Schottky
current as the driving term for a beam transfer function and calculate the resulting V self-
consistently including the effect of ;. This is conceptually the same as calculating the
effect of high intensity on the stability of an RF system.

To proceed consider the identity

o0

6p(0) = _Z exp(ik0) /2,
and set
Uy (w,0) = > frlw)exp(ik[d — O] — it + et). (5)

k=—00

The positive constant € has been included to insure a causal response [8] and will be set to
zero at the end. It is worth noting that we are not worried about exponential damping due
to the feedback system, so the difficult parts of Landau’s original work are not needed.

Substituting equation (5) into equation (3) yields the set of equations

(6 = i@) folw) + iwnf, = V199 Po(w) (6)
o BE, duw




which gives

e+i(nw —Q)2rB*Ey,  dw

Integrating (7) over w and normalizing appropriately yields the perturbation current for

each harmonic. A
I - Vnquw? o dwl d¥ (w) (®)
2132 By 2w € +i(nw — @) dw ’

where I is the average beam current, the full frequency spread of the beam is +Aw, and the
normalized frequency distribution ¥ (w) satisfies [ dwW¥(w) = 1. The perturbation current

at the pickup is then given by

L@ op)= Y [, ™0p = 0x). (9)
Now set I (@, 0p) = Y,V B(&) where
’Lk(ep - HK) A
0 \\J
B@) =w? Y lim [ dws d¥(w) (10)
k=00 0" e+i(kw —@) dw
is the beam transfer function with
I
Yy = —21 (11)
27T52E0

A closed form for the infinite sum is given in Appendix A. With these definitions equation
(4) becomes

V = —Zp(@)[L(@,0p) + VY, B(@)],

yielding
7o —Zr(@)Is(@,0p) (12)
1+ Z7 (@)Y, B(®)
= —Zp(®)I;(@,0p), (13)

where we have defined the “dressed” impedance, Zp(w). Equation (12) relates the total
kicker voltage to the Schottky current, including the coherent effects of the beam. Since
the circuitry between the pickup and the kicker is linear the supression by 1+ Z7(@)Y,B(®)

is present in the signal at the pickup, upstream of any filtering. Also, since the derivation



nowhere relied on V; being a Schottky signal, the same suppression will be operative in beam
transfer function measurements.

To understand how including the coherent response limits the system gain consider the
denominator on the right side of equation (12). If there is a value of @ where the denominator
is very small then a small I; can yield a large V. When the gain is just right so that
1+ Z;(@)YyB(@) = 0, one can have an arbitrary V for no drive at all. This is the stability
limit. If the gain is increased one gets exponentially growing V for no drive. To check
whether a given gain is stable one makes a parametric plot of Zy (&)Y, B(w) on the complex
plane, as a function of @. If this curve does not encircle —1, the system is stable.

To proceed we must construct the equations of motion for ¥y[9]. To do this consider a
time interval At that is large compared to the revolution period but small compared to the
cooling time. Let T'(w, 2)dS2 be the probability that a particle with revolution frequency w at
time ¢ has a revolution frequency in the interval [w+ Q,w+Q+dQ)] at ¢+ At. Since particles
are conserved [T (w,Q)d2 = 1. Also, since At contains a large number of independent kicks
we may use the central limit theorem and put

L —(@- Q)?/20°
V2ro? '
The particle motion during At is the combination of a smooth force and a random walk.

Hence Q = F(w,t)At 4+ o(At) and 02 = 2D(w, t)At + o(At). [14]

T(w,Q) =

(14)

Applying the conditional probability to the phase space distribution gives,
Vo(w,t + At) — Uy (w,t) = /dQ [T(w—Q,QV(w—N,t) — T(w, Q) ¥y(w, t)]. (15)

Assuming At is short compared to the time interval over which ¥, changes appreciably and

expanding the integrand in a Taylor series in 2 yields

\\J
ard¥ _ 9| g / AT (w0, )0 + -2 {wy(e,) [ 97w, 2022} | + o(th16)
ot ow | ow
[ 2
= 9 — Q04 (w, t) + 9 O—\Ilo(w,t) + o(At). (17)
ow | ow | 2
Dividing out At and taking At — 0 yields
O _ 9\ B, t)Wolw, ) + L {Dlw, 1) Ws(w, 1)} (18)
ot ow ow



To calculate D and F consider the dressed wake potential

Wo(t) = 2i 7ZD(w)e — W, (19)

where the dressed impedance is defined in equation (12) and the integral is well defined for
stable cooling. Using the dressed wake potential the kicker voltage as a function of time is

given by
Vie(t) = [ 1,(0p,t = 7)Wp(r)dr, (20)
0

where the Schottky current is due to N uncorrelated particles.

15(0’ t) — % @ i eim[e - ok(t)]

k=1 271 m=—o0

(21)
Assume that wy varies slowly compared to the decay time of Wp(t) so that Ox(t — 7) =~
Ok (t) — Twi(t). This gives

Ve =-3 3 Ol =07, o), 22

The voltage is localized in # so the particle energy changes in discrete steps. Assuming
no overlap of the Schottky bands and dropping the fast terms in the force yields the single

particle equations of motion df;/dt = 6; = w;(t) and

Lbj _ éi i eim[ﬁp—0K+0j(t)—0k(t)]

k=1m=—00

w(t) Zp [mwy ()],

¢ s MOl ) Zpfmns o)

+é ; i ¢ml0p = 0+ 05(8) = 0c()] oy 7t (0) (23)
= F(wj) -+ Z G[GJ — Gk, wk] (24)
k#j

where C' = ng¢?/(T¢B%Er) and the force has been decomposed into a self-force and the force
due to the other particles. Since D = O(C?) we need first order perturbation theory to

calculate D. For F the leading term is first order in C' but a second order term is also



present. To start the expansion set 6;o(t) = wjot + ¢; then

silt) = Flop)t+ 3 [ dtGlos0(t1) = o 1), wral, (25)
01() = [ dhn(t), (26)

where 0,,(t) & V¥ + Wnot + Om1 (t). Next expand all terms to second order in C and get the

total force on particle j,

wj,all = F(wj() + O.)jl(t)) + g G[gjo (t) + Ojl(t) — 0k0 (t) — gkl (t), Wgo + wkl(t)]. (27)
~ Flwjo +wj ()] + ; G[0;0(t) — Oro(t), wio] + w1 (t)Gu[Bi0(t) — Oko(t), wio]
+ ;[ejl(t) — Ok1(£)]Go[0j0(t) — Oko(t), wrol, (28)

where the subscripts on G denote partial derivatives. Upon averaging, the terms proportional
to Ox1(t) and wy(t) in (28) describe the effect of particle j acting on the each of the other
particles in the beam and having these particles subsequently back react on particle 5. This
effect was included completely when the impedance was dressed, so the terms proportional
to fk1(t) and wy; (¢) will be ignored. The term proportional to #;; describes the effect of the
random voltage from the other particles causing the phase of particle j to change, altering
the cooling rate. This term will be kept. To second order the net force on particle j is then

(,l)j = F[wj() + le(t)] + I; G[ejo(t) - eko(t), ka] + ejl(t)GG[ejO (t) - eko(t), ka]- (29)

The Fokker-Planck coefficients are

Ploy) =+ <o7twj(t)dt>wko,¢k,¢j (30)
Bluy) = ;At<07twj<t>dt2> (31)

Wk, Yk ¥j
where the angular brackets denote averages over all initial phases and over the energies of

the particles other than particle j. The time interval At is short compared with the cooling
time but long compared to the coherence time of any statistical fluctuations. A detailed

calculation is given in Appendix B.

D(w) = wC? io: w?| Zp(mw)|? Yo(w)

oo m

(32)



P Z—D s, i: &P =0kl ] = P(w). (33)

This is the usual result [5, 6] and the density obeys a damped diffusion equation

0% _ 0 —F(w)To(w, t) + D(w,t)% . (34)

ot ow Oow
ITI. THE RHIC SYSTEM

Intrabeam scattering rates for gold beams in RHIC are of order one hour [1, 3, 4], setting
the scale for the cooling system. Optical fibers will transmit the signal from the pickup to
the kicker. To keep cost down the cables are inside the tunnel and we are working on the
yellow (counter-clockwise) ring first. The pickup is in the 12 o’clock straight section and the
kicker is in the 4 o’clock straight section. At storage energy the frequency slip is dominated
by dispersion in the arcs and the pickup and kicker are in straight sections. Therefore, the
efffective delay will be very close to 0.66 turns or T, = 8.5us.

Substituting exp(—imwyTy) for exp(im[fp — Ok]) in equation (33) and writing Zr(mw) =

Zy(mw) exp(imwTy) yields

Fw)=C 3 eide(w — wo)w Zy(mw) .
m=—o0 1+ ZT(mw)Y},B(mw)

(35)

The standard solution for Z;(w) is to use a one turn delay notch filter. For an input
signal V;, exp(—iwt) one gets Vo = [1 — exp(iwTy)|Vin. For two such filters in series V,,; =
[1 — exp(iwTy)]?Vin- To judge the relative effectiveness of various schemes consider the
dimensionless variable £ = m(w — wy)T,. Figure 1 shows plots of the various filters. From
the plots it is clear that the two filters in series have cooling out to a larger value of x than
the single filter. This translates into a larger allowable frequency range for the two filters
in series. Another property of the two filters in series is that both the cooling and diffusion
terms, and their derivatives, vanish at £ = 0. With the two filters in series the cooling
system is “blind” to particles near the center of the bucket. It is worth noting that the
imaginary parts of [1 — exp(iz)]™” exp(ixTy/Ty) are plotted in Figure 1. The cooling force in
(35) is real so these filters require broad band phase shifters.

Along with the low level system one must create the necessary voltage. Previous esti-

mates [11] gave rms values between 1 and 4kV, depending on beam parameters. Taking
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FIG. 1: Plots of various filter schemes: lavendar, Im{exp(izTy/Ty)[1 — exp(iz)]}; dark blue,
Im{exp(izTy/Tp)[1 — exp(iz)]?}; red, |exp(izTy/To)[1 — exp(iz)]|; light blue, |exp(izTy/Ty)[1 —

exp(iz)]?|. The delay is set to Ty/Ty = 0.66, as in RHIC.

a 1k transfer impedance gives a kicker power of 16kW. In principle one could scale up
the broad band kickers used at FNAL or CERN to supply the necessary voltage but this
would involve 10 or more broad band kickers and traveling wave tube amplifiers. Such a
system is quite complicated and an alternate solution is desirable. The key to the problem
involved reinterpreting earlier work [10]. In Boussard’s original paper the fact that the beam
is bunched allowed for a large reduction in data transmission rates. With modern fiber optic
links this is no longer an issue, but his notion of using a Fourier series to decompose the
signal from the bunch naturally leads to using a Fourier series to represent the kicker voltage.
The concept is illustrated in Figure 2. For bunches of length 7, a cooling voltage covering
the band from f =n_/7, to fy = n, /7 can be represented as
n4
V(t) = Y an(t)sin(2rkt/7) + by (t) cos(2mkt/T), (36)
k=n_
where a,(t) and b,(t) have appropriate values as each bunch passes and vary smoothly
between bunches. Each term in the sum is generated using a narrow band cavity. With
a bunch length of 7, = 5ns = 1/200MHz we need 21 cavities to span the 4-8GHz band.
The broad band phase shifter is replaced by a A/4 length of cable for each cavity. With

9
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FIG. 2: Illustration of the narrow band kicker concept. The blue trace is the voltage one would
have using a broad band system, and the bunch is present only during the time it is non-zero. The

red trace is a set of narrow band cavities with frequencies 1/7,2/7 .. ..

21 cavities incoherently adding to produce 4kV the voltage per cavity is less than 1kV.
The cavities have R/Q) ~ 100€2. With 100ns between bunches a 10MHz bandwidth gives 3
e-folding times for the voltage to settle between bunches. With 40W amplifiers the 8 GHz
cavity can generate an rms voltage of 1.8kV, which should be adequate.

To take advantage of the narrow cavity bandwidth the drive signal for each cavity is
piecewise sinusiodal. The raw signal from the pickup, Sy(¢) is lagged and added producing

M-1

Sl(t) = Z S()(t— ka)

k=0

M-t 1kwT
Si(w) = So(w) D e
k

=0
g sin Mwa/Q)einb(M -1)/2

= Sple) 22 (37)
sin(wmy/2)

where M = 16 for the present configuration and both time and frequency domains are
shown. Signals vary in time as exp(—iwt). The filter S;(w)/Sp(w) is composed of lines with
3dB full width = 0.885/v/M? — 17, = 11MHz, separated by 1/7, = 200MHz. Next, Si(t) is
processed through the one turn delay notch filters giving.

Sg(t) = Sl(t — Td) — QSl(t — Td — T()) + Sl(t — Td — 2T0)
2
wly wTh

Sa(w) = Si(w)e 1—e (38)

where the time is now referenced to the kicker via the delay 7}, Tj is the revolution period,
and we have taken two cascaded one turn delay notch filters. Next this signal is split and

put through bandpass filters of full width 100 MHz centered on multiples of 200 MHz. Each

10
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FIG. 3: Realistic simulation of the narrow band kicker system. The red trace is the ideal voltage
for a broad band system, and the bunch is present only during this time it is non-zero. The blue
trace is the voltage from 21 narrow band cavities. Three bunches preceeded the one shown. There

is very little cross talk.

of the signals is nearly piecewise sinusiodal and each goes to its kicker. Figure 3 shows
simulation results for the actual system, including realistic errors.

During the FY05 copper run we plan on having the 7-8 GHz band of the stochastic cooling
system operational in the yellow ring. A computer code was written to evaluate the dressed
impedance and numerically integrate equation (34). The distribution Fy(w,t) was assumed
symmetric about wy, and the inital distribution was taken to be that for the center of the
RF bucket. The boundary condition at the edge of the RF bucket was ¥y = 0. Figure 4
shows the expected Schottky suppression at 7 GHz for a typical copper bunch and optimal
gain with 4MV on the storage cavities. Figure 5 is for 6 MV. Cooling calculations were
done with and without intrabeam scattering (IBS). For IBS calculations the first step was

to calculate IBS growth rates using a simple model [13].

Lo e (39)
n ol dt 88 < B> \[n/20
1 _lde _o <D§ + (Dl + axDz)2> 1 w0
T €; dt €x By

T

In equations (39) and (40), o, is the rms value of (p—po)/po, €, is the rms un-normalized

11
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FIG. 4: Schottky signal suppression upstream of the notch filters at 7 GHz for 2 x 10° copper ions
with 4AMV of RF and near optimal gain. The spectrum on the upper half of the revolution line

closest to 7 GHz is shown.

horizontal emittance, r; is the classical radius of a copper nucleus, NN, is the number of ions
per bunch, A ~ 18.5 is the Coulomb logarithm, < 3}/ >= 5.5m'/? is the average of the
root of the transverse beta function, and
<D§ + (D},Bz + oy D,)?
Ba

> =~ 0.045m

is the average dispersion squared over beta. The transverse distributions were assumed to

be fully coupled and Gaussion. The rms momentum spread was calculated using U,

/(w — wo) 2o (w, t)dw
/\Ilo(w,t)dw .

o2 (t) =

The diffusion coefficient was modified to

27(t)

so that the evolution of the rms agreed with the simple model. Simulations for copper with
and without IBS and 4 MV on the storage cavities are shown in Figure 6. Figure 7 is for

6 MV.

12
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FIG. 5: Schottky signal suppression upstream of the notch filters at 7 GHz for 2 x 10° copper ions
with 6MV of RF and near optimal gain. The spectrum on the upper half of the revolution line

closest to 7 GHz is shown.
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FIG. 6: Cooling with 7-8 GHz system for 2 x 10 copper ions with 4MV of RF and near optimal

gain.
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FIG. 7: Cooling with 7-8 GHz system for 2 x 10% copper ions with 6MV of RF and near optimal

gain.
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APPENDIX A: EVALUATION OF THE INFINITE SUM IN EQUATION (10)

The infinite sum is given by G(0p — 0k ) with

. eik@

GO)= > : (A1)
k=—co \ + tkw

where A\ = € —4@. The trick is to find a differential equation for G(#) that has a closed form
solution. Consider
iG = ik

T oy (A2)
do k=—oco \ + tkw

1k0
1 & (kw4 A= Ae
-2y ! ) ®
W k=—o0 A+ ikw
1 & 3
=Ly M _2ae (A4)
W k=—00 w
2
_ 2m6,(0) _ ig(g)' (A5)
w w

For 0 < 0 < 27 we have G(f) = Aexp(—\f/w), where A is a constant. From equation (A1)
we see that G(0) = G(0 + 27), so for small positive z, G(21 + z) = Aexp(—Az/w). Next
we integrate both sides of equation (A5) from 27 — x to 27 + = and then take the limit as

x — 0. This gives

A (1 —e 27r)\/w> =27 /w. (A6)
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Substituting this expression for A gives

o A/ w

—9 ’
Wy, AW

where this expression is good for 0 < 0 < 27 and G(0) = G(6 + 27).

APPENDIX B: FOKKER-PLANCK COEFFICIENTS

Going back to explicit expressions, and neglecting the terms that will disappear upon
averaging, equation (29) becomes
w; = F(wjo) +C 3 wioZp (muwko)[1 — imbi]e — im(0j0 = Oxo + 0p — HK), (B1)
k#j m
where 0;0 = 0;0(t) etc. Since w is a real number we were free to complex conjugate the terms
in the sum and Zj, is the complex conjugate of Zp. For F the average of the first term
yields F'(w;). For the second term , since < [ X >= [ > < X > for arbitrary X, we may

consider

)
Wro, Yk, Yj

f(wj’ m, t) = <wk0ZE(mwko)[1 — imejl(t)]e B Zm(gj (t) - gkO(t) +0p — HK)>

with
(@5 g iy = Fwio) + NC 37 f(wjm,t) (B2)

m=—0o0

Only the term proportional to 6;; will survive averaging over 1,

t

Flim, 1) = =i <‘*’koZE(mwk0) / dtywji (t)e im(B50(t) — Oko(t) + Op — Oxc)
0

Wko Yk ,Yj

Using equation(25) and the fact that the ;s are independently distributed

t t1 )
f(w]7 m, t) = _Zmé <|wk0ZD(mwk0) |2 / dtl /dt2€ - 'Lm(wjo — wko)(t _ t2)>
’ ’ Wko

Using the generic formula

7dac1 7g(x2)dx2 = 7(36 — x1)g(z1)dzy
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t .
flwj,m,t) = —imC <\wkoZD(mwko)|2 [ats(t—te” im(wjo — wro) (£ — t1)>
0

WEo
t .
= é—a <|kaZD(mwk0)|2 / dtre im{wso = wio)(t = t1)>
6wj0 0 Wro
t .
_a 9 <|wk0ZD(mwk0)|2 / dtre Wi w’“")t1> (B3)
6wj0 0 Wro

Inserting (B3) into (B2) and noting that f(w;,m,t) = f*(w;, —m,1)

: NC? & 9 SR
<wj(t)>w1c05'¢ka'¢j = F(wjo) + > <\wk0ZD(mwko ? /dt1 ~ im{wio — wo) 1>

2
meTee 6(,0]0 Wk

(B4)
Equation (B3) gives the average force on particle j. Now we use the assumption that At
is large compared to any statistical correlation time, which turns the integral over ¢; into a
delta function. This gives the final result

Fluy) = P(w) + 702 Sy Zo(may) [ 2012 (B5)

Owj m=—c0 |m|

For the diffusion coefficient we only need the term

~ 1
D(w)) = = (|wii (At)? i (B6)
2A¢t Wr0 Wk )

Since At is small compared to the cooling time the term F'(wjp)t in equation (25) will be
neglected. This gives

2
N 00

/ e DD ¢ml0p = O+ 05o(t) = Ok (D)), o o]

k=1 m=—o00

D) = 55 <

Wko ;’lpk a’lpj

(B7)

Writing out the double sum and averaging over 1, diagonalizes with respect to k£ and m

D(wj):%éf<mi |kaZD[mwko]|/ dtl/Atdtge m(wjo — wko)(t1—t2)> (BS)

Wko

Set T = tl - t2 and To = (tl + t2)/2 so that dtldtg = dTldTQ.

» NCNQ 279
D(wj):2—m< > |wkZp [muwko] | / dTQ/ dT16 m(wjo = wk0)7-1> (BY)

m=—0o0 %0
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Now we use the assumption that 0t is large compared with any correlation time so that the
value of 79 may be considered large over almost the whole range of integration. This turns

the second integral into 2md[m(w;o — wko)| yielding

D(w]') = ﬂ'CNQ i |wj0ZD[mwj0]|2 M, (BlO)

= mi

the desired result. It is worthwhile to note that a comparable result holds for bunched

beams [12].
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