

BNL-99322-2013-TECH C-A/AP/171;BNL-99322-2013-IR

Results From The RHIC PC CNI Polarimeter for 2003

O. Jinnouchi

September 2004

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

C-A/AP/#171 September 2004

Results from the RHIC PC CNI Polarimeter for 2003

O. Jinnouchi, I.G. Alekseev, A. Bravar, G. Bunce, S. Dhawan,
H. Huang, V. Hughes, G. Igo, V. Kanavets, K. Kurita, Z. Li,
W. Lozowski, W.W. MacKay, H. Okada, S. Rescia, T. Roser,
N. Saito, H. Spinka, D.N. Svirida, D. Underwood, C. Whitten and J. Wood

Collider-Accelerator Department Brookhaven National Laboratory Upton, NY 11973

RESULTS FROM THE RHIC PC CNI POLARIMETER FOR 2003

O. Jinnouchi⁵, I.G. Alekseev¹, A. Bravar², G. Bunce^{2,5}, S. Dhawan³, H. Huang²,
V. Hughes³, G. Igo⁴, V. Kanavets¹, K. Kurita⁶, Z. Li², W. Lozowski⁷, W.W. MacKay²,
H. Okada⁸, S. Rescia², T. Roser², N. Saito⁸, H. Spinka⁹,
D.N. Svirida¹, D. Underwood⁹, C. Whitten⁴ and J. Wood⁴

 Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow, 117259, Russia
 Brookhaven National Laboratory, Upton, NY 11973, USA
 Yale University, New Haven, CT 06511, USA
 UCLA, Los Angeles, CA 90095, USA
 RIKEN BNL Research Center, Upton, NY 11973, USA

(6) Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
(7) Indiana University Cyclotron Facility, Bloomington, IN 47405, USA
(8) Kyoto University, Kyoto 606-8502, Japan

(9) Argonne National Laboratory, Argonne, IL 60439, USA

1. INTRODUCTION

The RHIC proton-carbon CNI polarimeters use pC elastic scattering in the coulombnuclear interference region to measure the beam polarization. Sensitivity to polarization is due to the coulomb spin-flip amplitude that is also responsible for the proton anomalous magnetic moment. The interference term arising from this amplitude, electromagnetic spinflip \times hadronic spin nonflip, is calculable, but an additional interference term, from a hadronic spin flip amplitude \times electromagnetic spin nonflip, is not.

The polarimeter analyzing power A_N was determined at 22 GeV by measuring the beam polarization in an external beam at the AGS, experiment E925 [1], while simultaneously measuring the CNI asymmetry in the AGS ring, experiment E950 [2]. E925 used proton-proton elastic scattering in a larger *t* region (-t = 0.15 (GeV/c)²), where the analyzing power was known (and non-zero), from polarized target experiments. A_N for pC CNI was determined to $\pm 30\%$ at 22 GeV (Fig. 1)[2]. The analyzing power for RHIC at 100 GeV will be determined for the first time using a new polarized atomic hydrogen gas jet target in RHIC, over the next two years (2004-5).

The RHIC polarimeters include a carbon target that can be introduced into the RHIC beam for the measurements, and silicon detectors that measure the energy and time

FIGURE 1. Analyzing power for proton-carbon elastic scattering for 22 GeV protons, vs. recoil carbon energy. Dots with error bars are the data points in our energy domain from E950 [2]. Top curve is a fit to the E950 data points, including points not shown at higher recoil energy, from Larry Trueman. [3] Lower curve is the fit used for the 2003 online analysis.

FIGURE 2. (a) The time of flight is plotted as a function of kinetic energy of the detected particle. (b) Sub-figures show the reconstructed invariant mass distribution, discussed in the text. The carbon mass peak $(11.18 \text{ GeV}/c^2)$ is clearly separated from an alpha mass peak $(3.7 \text{ GeV}/c^2)$.

of arrival of the recoil carbon ions. For very small angle scattering, elastic reactions dominate, and measurement of the recoil gives predominantly elastic events. The CNI region that we measure covers -t = 0.006 to 0.03 (GeV/c)², or carbon energies of 300 keV to 1.3 MeV range. The carbon recoil polar angle is nearly 90 degrees. The time of arrival provides time-of-flight for the recoil, by comparing to the time the rf-bunched beam crosses the target. The flight times are of order 50 ns to 100 ns for detectors at 15 cm from the target. This is ideal, since this is a quiet time–most backgrounds arrive close to the crossing time. The time-of-flight and energy measurements are used to identify carbon, see Fig. 2. An asymmetry is measured for counts in a left detector vs. a right detector, $\varepsilon_{LR} = (N_L - N_R)/(N_L + N_R)$, after selection of carbon events. The polarization is obtained from $P = -\varepsilon_{LR}/A_N$. The beam polarization can also be obtained from the asymmetry in counts observed for beam polarization up vs. polarization down, for each detector. In practise, both the left-right asymmetry and the polarization up-down asymmetry are used to measure and control systematic errors in the measurement.

FIGURE 3. The layout of the silicon detectors inside the 15*cm* radius vacuum pipe of each RHIC polarimeter. The polarized proton beam direction is into the paper, and the carbon target is represented by the vertical line at the center of the vacuum pipe.

In the following sections we describe the RHIC polarimeters and the measurements during the 2003 RHIC run.

2. EXPERIMENTAL SETUP

The RHIC polarimeters are located near the 12 o'clock intersection region, with separate polarimeters near Q4 in each beam. The beams are referred to as the Blue and Yellow beams. A schematic of the polarimeters is shown in Fig. 3. The RHIC polarized proton beam passes through an ultra-thin carbon ribbon target, and carbon recoils from CNI scattering are observed in six silicon strip detectors placed as shown. Very thin carbon ribbon targets have been developed at IUCF [4]. A typical target is 2.5 cm long, 3.5- $\mu g/cm^2$ thick (150 Å) and 5- μm wide. The target is mounted on a mechanism which rotates into the beam, with a choice of 3 vertical and 3 horizontal targets. The detector has $10 \times 24mm^2$ total active area, divided into 12 strips of $10 \times 2mm^2$ each. The thickness of the detectors are $400\mu m$, fully depleted with the operation bias voltage of 100V. The strips are made by p^+ -doping (B implantation) to a depth of 150 nm on the n-type Si bulk on the side facing the target. The back side is the n^+ -doped layer with an Al contact.

The six detectors are mounted inside of the vacuum chamber with readout preamplifier boards directly attached to the chamber detector ports through vacuum feedthrough connectors.

Figure 2 shows a scatter plot of time of flight versus energy for one silicon strip in the polarimeter. The silicon detectors are 15 *cm* from the target, and the RHIC bunch length was about 2 *ns*. The insets in the figure show mass distributions derived from velocity and energy. The carbon and α peaks are clear, with little background under the carbon peak. The beam polarization is measured by counting the number of events in the carbon band in each strip versus the azimuthal angle of the strip around the beam (Fig. 3). A vertical polarization generates a left-right asymmetry in the detectors and a radial polarization generates an up-down asymmetry in the detectors. The rates are very high, so we chose a readout system without dead time based on waveform digitizers (WFD) [5]. The WFDs consist of a high frequency video ADC chip (used for laptop screens) and a Xilinx FPGA.

The waveform from each strip was digitized every 2.36 ns, and pulse height and time of flight, compared to the RHIC rf clock, was determined in real time. The 1.18 ns timing resolution is obtained through the interpolation algorithm, and compared to a look-up table which accepted the carbon band (as in Fig. 2). On-board scalers kept the number of events for each strip, and for each beam bunch. The 55 beam bunches of polarized protons in RHIC for the 2003 run, spaced 212 ns apart, alternated in polarization sign. Therefore, the on-board scalers collected data for both signs, and for bunches set up with zero polarization, for each strip. 48 strips were read out, 8 for each detector (Fig. 3), and the same WFDs were used for blue and yellow measurements. Also, the orientation of the strips for the left and right 90 degree detectors (Fig. 3) were set up with the strips perpendicular to the beam direction, to measure the polar scattering angle. The 45° detectors were oriented along the beam direction to reduce the azimuthal acceptance for each strip, reducing the rate compared to the 90° central strips. Due to the multiple scattering in the target, the measurement of scattering angle gives only a weak constraint on elastic scattering. For the 2003 run, we typically had 4×10^{12} protons in each ring, and 2×10^7 carbon elastic events were collected in about 20 seconds, with the target then rotated out of the beam. The data were then transfered to a PC, the asymmetry and various monitor asymmetries were calculated, and the result was sent automatically to the accelerator and experiments in minutes. A detailed description is given in [5].

3. UPGRADES FOR 2003

For the 2003 RHIC run we added the capability to store the carbon energy (pulse height and integral), time of arrival of the recoil (1/4 pulse height timing), and bunch number for each event for each silicon strip. Each WFD module was equipped with a 16MB SDRAM, which holds about 45M events in on board memory in a total of twelve modules. This readout mode (event mode) was in addition to the scaler mode where histograms are stored, that were previously used for asymmetries. The scaler mode contains the sum of events for each strip and each bunch number, for events passing a preselected banana cut of time of flight vs. recoil pulse height, corresponding to carbon events. A selected carbon energy range is required for the scaler results. Histograms are also kept by carbon energy bin for events within the banana cuts, for each strip, for +,-,0 polarization signs. The polarization signs are obtained from the bunch numbers, via downloaded CDEV information, and not through hardware signals.

RHIC operators selected the mode for collecting data, scaler or event+scaler. The event mode readout time from on board memory to a PC hard drive was about 5 minutes, so a typical pattern used was to use scaler mode for the measurement of 1 beam, with a quick result readout, followed by event mode for the second beam, alternating these between beams. Also, we typically took only one measurement at injection because the multiple scattering from the target increased the beam emittance. Polarization values reported during the run were based on scaler data, from either the scaler mode or from the event+scaler mode. This analysis uses the refined calibrations and event selection available from the event data.

FIGURE 4. Asymmetry measurements made during the 2003 run, using the scaler mode readout. Top plots for BLUE and the bottom plots for YELLOW. In the left plots, each polarization measurement is shown as a data point, black points represent the injection measurements and colored ones are for the flattop measurements.

4. POLARIMETER MEASUREMENTS DURING 2003 RUN

Fig. 4 shows polarization measurements taken from the scalers during the run. These measurements combine the polarization sign (+, -) data and the left-right (or up-down) data using a geometric mean (the square root formula). The data from during the run are shown for yellow beam injection (24 GeV), and flattop (100 GeV), and for blue beam. We also show a false asymmetry check as Fig. 5, where the 45 degree detectors are combined to cancel any real polarization effect: the cross asymmetry between, referring to Fig. 3, (#1+#4) vs. (#3+#6).

To summarize the observations from the run measurements: Vertical polarization is observed as expected. We also observed a radial polarization asymmetry for blue flattop throughout the run. The cross asymmetry (false asymmetry) for blue was non-zero. Finally, the t-dependence of the vertical polarization asymmetry in blue follows the curve for A_N in Fig. 1, as it should for a real signal. However, the radial polarization asymmetry t-dependence for blue was flat, implying that this may be a false asymmetry.

FIGURE 5. Unphysical asymmetry (cross asymmetry) from the scaler data. Top plots for BLUE and the bottom plots for YELLOW. In the left plots, each measurement is shown as a data point, black points represent the injection measurements and colored ones are for the flattop measurements.Deviation from zero indicates the fact that the wrong dead layer correction had been applied at the online level.

5. OFFLINE, POSTRUN ANALYSIS PLAN

The observed false cross asymmetry and the unexpected radial signal implied that different strips and/or detectors may have different behavior. For example, 45 degree detectors can generate a false up-down asymmetry from a real left-right asymmetry (pointed out by Vadim Kanavets) if there is a large difference in A_N between the detectors. We therefore decided to treat each strip as an independent polarimeter, to compare the behavior for each strip.

To use each strip as a polarimeter, we measure the asymmetry for events from + polarization bunches vs. - polarization bunches, ε_{+-} , where we must normalize by the luminosity ratio for the +/- polarization bunches, R:

$$\varepsilon_{+-} = (N_+ - RN_-)/(N_+ + RN_-)$$
, where $R = L_+/L_-$.

We used the counts in the 90 degree detectors (#2+#5) to determine L_+ and L_- . Then

$$P_i = (\varepsilon_{+-,i}/A_{N,i})$$

for strip *i*. $A_{N,i}$ is the analyzing power for the strip *i*, as determined from the fit to Fig. 1, weighted by the observed carbon energy distribution for strip *i*.

We used the event mode data to recalculate the silicon dead layer energy loss and the bunch crossing time. During the run this was done by approximating the energy loss vs. energy with a linear response with offset. This is a reasonable approximation only for small dead layers. Fig. 6 shows curves for energy loss vs. energy for carbon

FIGURE 6. The left plot shows the energy loss, dE/dx, for different thickness dead layers, for carbon ions incident on silicon /citedEdx, vs. carbon energy. The right plot shows the fractional energy loss.

incident on silicon [6], and for the fractional energy loss vs. energy for different dead layer thicknesses. A linear relationship would give a flat line for fraction vs. energy, which is only reasonable for small thickness and larger incident energy domain, as seen in the figure. For the offline, the curves in the figure were described by a forth order polynomial in E, with the single parameter w, the deadlayer thickness. A fit was then made to the central value of the time-of-flight vs. energy banana (or, equivalently, to the carbon mass), with only two parameters: w and the time offset t_0 . This fit to the carbon mass was much improved from the linear approximation for the dead layer. Fig. 7 shows the dead layer thicknesses for each strip from this two parameter fit, done independently for each strip. As seen in the figure, the same detectors show nearly the same thickness for each strip. We then used the average thickness for each detector, indicated by the red points. None of the detectors came from the same wafer, so no correlation between detectors is expected. This new dead layer correction shifted the carbon energies from the online by about +100 keV. This shift leads to a change in effective analyzing power from online of about -10% (see Fig. 1.)

Fig. 1 also shows a lower curve marked "Online 2003". This curve was used for the effective analyzing power in the online results. A mistake was found in this curve, which is just a fit to the E950 data shown. The correct fit is shown as "Larry's fit to E950", the fit by Larry Trueman [3]. The revised fit increases A_N by 10% from the online.

The two effects together, the new deadlayer and the fit correction, largely cancel in their effects on the effective analyzing power for the polarimeter in 2003.

For the event selection in the offline, we used a number of standard deviations from the central carbon mass. For the online, we used fixed time cuts from the carbon locus (+/-12 ns from the carbon locus, independent of energy). This is shown in Fig. 8. The offline cut was considerably tighter and more controled vs. background from, for example, alphas. For the offline, the carbon mass center and sigma was calculated for each run (some runs

FIGURE 7. Measured deadlayer thickness for each strip, based on two parameter fit to carbon mass locus. A polynomial was used to describe dE/dx vs. E for carbon incident on silicon.

FIGURE 8. Comparing two cut criteria, two outside lines (light green) are the online cut condition, i.e. +/-12nsec, and two lines inside are the cut for 3σ deviation around the carbon mass.

had better timing resolution than others).

6. OFFLINE RESULTS I

We then calculated the polarization for each strip, for injection and flattop. Our intention was to compare the stability of the asymmetry for different carbon mass cuts, and to compare the 48 strips for each beam, for injection and flattop. To display the results, we convert the asymmetry to polarization using the effective analyzing power from

FIGURE 9. Beam polarization in yellow ring for 20 days accumulated, May 1-20, 2003. Each strip acts as an independent polarimeter. Both injection (left) and flattop (right) are shown, with statistical errors only. Two event selection cuts are shown, 1.5 σ (blue data points) and 3.0 σ (red data points) around the carbon mass. All bunches are assigned the same relative start time, t_0 . The designation #N refers to the silicon detector number in Fig. 3

weighting the fit shown in Fig. 1 by our energy distribution for each strip, and correcting for the azimuthal dependence of the analyzing power (the 45 degree detectors have a $\sqrt{2}$ lower analyzing power than the 90 degree detectors for vertical polarization). We also flip the sign for the detectors to beam-right. Roughly $A_N = \pm 0.012 \cos\phi$, with the + sign for detectors to beam left, and - sign for beam right detectors. For a vertical polarization only, all 48 detectors should give the same value for polarization.

Fig. 9 shows the result for yellow. Asymmetries for two cuts are shown: 1.5 σ and 3 σ from the central carbon mass. We note several points. The results are fairly stable with the two cuts. The edge strips of the 90 degree detectors see many fewer carbon events and also show lower polarization (these detectors measure scattering polar angle, and most events are in 2 or 3 central strips). Strips within a 45 degree detector roughly agree, but the scatter seems non-statistical, particularly for injection (note that the error bars for injection are larger because we took fewer measurements there). The six detectors don't show the same polarization.

There is some structure between the detectors for the polarization results in yellow, which is noticable at flattop. Pairs of detectors, #1 and #4, #2 and #5, and #3 and #6 measure similar polarization. This is the structure that would be observed for a combination of vertical and radial polarization. Yellow flattop shows evidence of radial polarization. For yellow injection, a systematic error is evident for detector #6 compared to the others.

Fig. 10 shows the blue result. In addition to the remarks made for yellow above, we also see that the polarization values are unstable with the mass cuts.

Due to the instability of the result for blue, we investigated the bunch dependence of the start time t_0 . Fig. 11 shows the carbon mass peak position for each bunch, for 20 days of data, for blue flattop, for strip 27 (detector #3). The mass shows a systematic variation with bunch number. A zoom of this strip also shows a mass shift for even vs. odd bunches. These shifts are presumably from t_0 , the timing of the bunch crossing.

Fig. 12 shows the calculated carbon mass difference for + bunches vs. - bunches, for

FIGURE 10. Beam polarization in blue ring for 20 days accumulated, May 1-20, 2003. Each strip acts as an independent polarimeter. Both injection and flattop are shown, with statistical errors only. Two event nass. All

FIGURE 11. The top plot shows the calculated carbon mass for one strip, #27 blue, for flattop measurements over 20 days, versus bunch number. 11 GeV is subtracted from the carbon mass in these plots. A zoom is shown in the bottom figure.

blue and yellow at flattop. This is shown for each strip. We see that blue shows a very large fluctuation, vs. much smaller fluctuations for yellow.

We have not yet understood the origin of these variations, but we assume that the bunch rf time is at fault, and we have calculated t_0 for each bunch for each run and each strip. Our goal is to have a stable carbon mass to use to select events.

FIGURE 12. Carbon mass differences for + bunches vs. – bunches, for blue (right plot) and yellow (left plot) flattop, for accumulated data over 20 days.

FIGURE 13. Beam polarization in yellow ring for 20 days accumulated, May 1-20, 2003. Each strip acts as an independent polarimeter. Both injection and flattop are shown, with statistical errors only. Three event selection cuts are shown, 1.0 σ (black), 2.0 σ (red), and 3.0 σ (blue) around the carbon mass. Bunches are assigned a relative start time, t_0 , to center the carbon mass, for each strip and fill.

7. OFFLINE RESULTS II

Fig. 13 and Fig. 14 show the results for polarization for each strip after adjusting the rf bunch time t_0 to center the carbon mass for each bunch for each fill, and for each strip. The results are stable for different mass cuts.

With the stable results, we then discuss the differences for the strips. We have not understood the lower polarization measured for blue strip 27, and for the edge strips for the 90 degree detectors in blue and yellow. For strip 27, we had a very large variation in t_0 for + and - bunches. For the edge strips, the events there come from multiple scattering in the target [2]. We have decided to eliminate these strips from the measurement: strip 27 blue, and 2 edge strips from each edge of each 90 degree detector.

The blue injection polarization has general agreement for the remaining 39 strips. Blue flattop polarization has structure indicating a significant radial polarization.

Fig. 15 shows the difference in asymmetry measured with different mass cuts, normalized by an error that accounts for one set of data being a subset of the other [7]. This is shown for yellow flattop. The histogram is the projection. If we consider the excess beyond statistics to be a systematic error, we have $\sigma_{sys} = \sqrt{\sigma^2 - 1} \times \sigma_{meas}$. We then

FIGURE 14. Beam polarization in blue ring for 20 days accumulated, May 1-20, 2003. Each strip acts as an independent polarimeter. Both injection and flattop are shown, with statistical errors only. Three event selection cuts are shown, 1.0 σ (black), 2.0 σ (red), and 3.0 σ (blue) around the carbon mass. Bunches are assigned a relative start time, t_0 , to center the carbon mass, for each strip and fill.

FIGURE 15. Study of asymmetry dependence on the recoil carbon mass cut. The top plot shows the difference in asymmetry measured for two mass cuts, 2σ and 3σ around the carbon mass, normalized by the statistical error. The statistical error takes into account that one set of data is a subset of the other. The histogram is a projection. The average significance should be 1, if the errors are only statistical.

have σ_{sys} =0.5% for yellow flattop, 1.5% for yellow injection, 1.1% for blue flattop, and 1.3% for blue injection., where these numbers are for polarization. These systematic errors are fairly small.

We then studied the *t*-dependence of the measured asymmetries. A real beam polarization signal should have a *t*-dependence that follows the analyzing power, Fig. 1. The

FIGURE 16. The four-momentum, *t*, dependence of the measured asymmetries for the yellow beam at flattop. The solid lines are fits to the left-right asymmetries (blue closed points) with $k \times A_N$. The dashed line is the fit for the flattop up-down asymmetries (red closed points) with $k' \times A_N$. The black closed points around zero are the cross asymmetries.

results for the yellow beam are shown in Fig. 16. In this figure we see that the left-right asymmetry follows the expected dependence for flattop. The cross asymmetries are zero. A small up-down asymmetry at flattop has the expected *t*-dependence, consistent with interpreting the data from Fig. 13 as indicating some radial polarization.

Fig. 17 shows the *t*-dependence for the blue beam polarization measurements. Again, the left-right asymmetry follows $A_N(t)$, Fig. 1, for flattop. The cross asymmetries are zero. The up-down asymmetry at flattop follows $A_N(t)$, indicating a radial component of the polarization. We also show the ratio of up-down to right-left asymmetry vs. -t. The ratio is constant, with a χ^2 =13 for 8 degrees of freedom.

8. ESTIMATES OF SYSTEMATIC ERRORS

We have decided to estimate the systematic errors for two cases: for vertical polarization only (V), and for vertical and radial polarization both allowed (V+R). The systematic error is estimated from the error required to give a $\chi^2/ndf = 1$. For the yellow flattop, the fits of the strip asymmetries to azimuthal angle ϕ are shown in Fig. 18. For vertical polarization only the asymmetry results for the 39 strips are divided by the analyzing power, including dependence on ϕ . For the case where radial polarization is allowed, the figure shows the raw asymmetry divided by A_N . For vertical polarization only, the derived systematic error is $\pm 4\%$ out of a yellow polarization of 22% for these runs. When radial polarization is allowed, a radial component is measured pointing at 12 degrees to the inside of the ring. The derived systematic error is then $\pm 1\%$, out of 23% total polarization.

FIGURE 17. Same for the blue beam. The ratio of the up-down asymmetry to the left-right asymmetry, vs. t, is also shown.

Fig. 19 shows data and fits for the blue beam polarization measurements vs. detector azimuth. For vertical polarization only, the derived systematic error is $\pm 9\%$, out of a polarization of 32% for these runs. When we allow a radial polarization, the radial component points to 17 degrees toward the inside of the ring, and the derived systematic error is $\pm 3\%$ out of a polarization of 34%. Table 1 shows the result for flattop.

Injection is shown in Fig. 20 for both yellow and blue. No significant radial polarization is observed for yellow or blue, and systematic errors are small. (Here the χ^2 for blue without radial polarization is smaller than when radial polarization is allowed. This is our artifact of the treatment of the errors for the 45° detectors for the top right figure.)

FIGURE 18. The top plot shows a fit of the measured polarizations for each of 39 strips for the yellow beam flattop, assuming a vertical polarization, vs. azimuthal angle of the detectors. The bottom plot shows the strip raw asymmetries divided by A_N , versus the detector phi. The top plot is fitted with a flat line, i.e. vertical polarization only. The bottom plot fit allows radial polarization.

Condition	Ring	error	polarization
Vertical polarization only	Blue	0.09	0.32
	Yellow	0.04	0.22
Allow radial component	Blue	0.03	0.34
	Yellow	0.01	0.23

TABLE 1. estimated systematic errors in different assumptions

9. DISCUSSION

At the March 19, 2004 RHIC Spin Collaboration meeting, Joanna Kiryluk presented STAR local polarimeter data from the run. A small radial raw asymmetry is observed at flattop for the yellow beam $\varepsilon_{radial}^{yellow} / \varepsilon_{vertical}^{yellow} = -0.16 \pm 0.03$. None was observed for blue,

FIGURE 19. The top plot shows a fit of the measured polarizations for each of 39 strips for the blue beam flattop, assuming a vertical polarization, vs. azimuthal angle of the detectors. The bottom plot shows the strip raw asymmetries divided by A_N , versus the detector phi. The top plot is fitted with a flat line, i.e. vertical polarization only. The bottom plot fit allows radial polarization.

 $\varepsilon_{radial}^{blue}/\varepsilon_{vertical}^{blue} = -0.03 \pm 0.02$. This was for running with the STAR spin rotators off, and PHENIX spin rotators on. At this meeting also, Naohito Saito showed PHENIX local polarimeter measurements for data with all spin rotators off. The radial raw asymmetry for yellow was $\varepsilon_{radial}^{yellow}/\varepsilon_{vertical}^{yellow} = 0.19 \pm 0.21$. For blue, $\varepsilon_{radial}^{blue}/\varepsilon_{vertical}^{blue} = 0.15 \pm 0.02$. A radial polarization in yellow at flattop was expected, due to the loss of one of the

A radial polarization in yellow at flattop was expected, due to the loss of one of the yellow snake magnets. With one yellow snake operating as a partial snake, a horizontal component of the polarization was predicted. The amount of radial polarization depends on the RHIC beam energy ($G \times \gamma$, with G the anomalous magnetic moment coefficient of proton, and γ the Lorentz factor) and position of the polarimeter in the ring. This was apparently observed by the pC CNI polarimeter, STAR. PHENIX did not have sufficient sensitivity (PHENIX only ran for a short time with the spin rotators off and the yellow measurement were done with a fill with very small polarization, P=8%). Unfortunately, the beam energy isn't known with sufficient precision to predict the degree of radial

FIGURE 20. The top plots show a fit of the measured polarizations for each of 39 strips for the yellow (left) and blue (right) beam injection, assuming a vertical polarization, vs. azimuthal angle of the detectors. The bottom plots show the strip raw asymmetries divided by A_N , versus the detector phi. The top plot fits use a flat line, i.e. vertical polarization only. The bottom plot fits allow radial polarization.

polarization at each location. However, it appears reasonable to attribute the observed yellow radial polarization at flattop to a real effect. Therefore, we assign the yellow beam systematic error from the spread of results for the 39 strips to be $\pm 1\%$ in polarization.

No radial polarization in blue was expected.

Waldo Mackay discussed possible radial polarization in blue from a mistuning of the snakes and spin rotators. He does not expect a radial polarization of the observed size in blue. None is observed by STAR, and a statistically significant radial asymmetry is observed by PHENIX.

The blue radial asymmetry is either real, or it is a mistake, which we have not yet uncovered. The measured blue right-left asymmetry at injection matches the AGS polarimeter measurements, so that the measurement of the vertical polarization for the blue polarimeter appears to be robust. The *t*-dependence of the blue radial signal (up-down asymmetry) matches the *t*-dependence of the analyzing power, implying that the

signalis real. No false cross asymmetry is observed. The run-dependence of the radial signal is stable. Thus, all measurements from the CNI polarimeter indicate a real radial polarization. Therefore, we conclude that we should use the systematic error for blue from the case where a radial polarization is allowed. This is $\pm 3\%$ in polarization at flattop.

10. SUMMARY

Differences from the online included a corrected curve for $A_N(t)$, evaluation of the dead layers for the detectors using a parameterization of dE/dx for carbon incident on silicon, and calculation of the bunch timing for each bunch to center the data at the recoil carbon mass. After this work, the mass was stable vs. energy, the event selection dependence was small, the cross asymmetries (false asymmetries) were zero, and the *t*-dependence of the asymmetries matched the analyzing power.

The measured systematic error for the polarization measurements in 2003 were $\pm 3\%$ in polarization, for which we have taken the largest measured systematic error. This error comes from an evaluation of the blue and yellow measurements at injection and flattop, treating each silicon strip (39 strips for each polarimeter) as independent polarimeters. We have allowed a radial polarization, as well as vertical. We have observed a small radial polarization in yellow and a large radial polarization in blue, both at flattop, and both with good consistency and with the expected t-dependence of a real signal. A radial polarization was expected in yellow, and none was expected in blue. The systematic errors in yellow were less than blue, $\pm 1\%$ in polarization.

The polarization in blue at flattop increased by 3%, from 28.5% to 31.4%, from the online result. The yellow flattop polarization increased by 1%, from 24.2% to 25.2%. This is for all runs from April 15 to May 30, excluding the special pp2pp runs. A spreadsheet has been distributed to the experiments, for STAR and PHENIX, in the Appendix, giving the new polarization results for each polarimeter run. The data include bunch selection for each experiment, where non-colliding bunches are excluded.

A. POLARIZATION RESULTS FOR EACH POLARIMETER RUN

The tables in the following three appendices give the RHIC polarimeter results for run 3. The first two appendices give the polarization values based on event mode data, analyzed after the run. The offline analysis included changes in the analyzing power and the carbon energy from a more precise treatment of the silicon dead layer. The beam crossing timing as measured by the polarimeter waveform digitizers was found to vary by bunch number, and was determined for each bunch in the offline analysis. Carbon data were selected based on a 3 sigma cut on the reconstructed carbon mass, rather than using a fixed time window around the carbon locus in the time of flight vs. carbon energy distributions (banana plots).

It was found that, after these improvements to the analysis, the results were stable with different carbon selection cuts, a false asymmetry (cross asymmetry) that had appeared

for some runs in the online was eliminated, and the asymmetry vs. t behavior followed the analyzing power fit to the E950 data. The details of the systematic error estimation are described in the main chapters.

B. OFFLINE BLUE BEAM POLARIZATION RESULTS

In each line of the table, following values are listed for each CNI measurement for blue beam. Note that offline values are available only for those runs measured with event mode.

- fill RHIC fill number
- run CNI run number within the fill
- P polarization result without bunch selection
- dP statistical error of P
- P_PH result with bunch selection customized for PHENIX (IP8)
- dP_PH statistical error of P_PH
- P_ST result with bunch selection customized for STAR (IP6)
- dP_ST statistical error of P_ST Carbon energy spectrum)

Fill run	P dP	P_PH	dP_PH	[P_S]	Г dP_ §	ST
3427 7	-0.309	0.230	-0.043	0.234	-0.219	0.245
3476 2	0.201	0.046	0.225	0.048	0.204	0.049
3547 4	0.283	0.035	0.270	0.038	0.283	0.037
3547 5	0.334	0.035	0.335	0.038	0.317	0.037
3586 4	0.367	0.036	0.363	0.038	0.371	0.038
3602 2	0.372	0.036	0.382	0.038	0.374	0.038
3603 2	0.348	0.036	0.365	0.038	0.362	0.038
3604 2	0.331	0.036	0.319	0.038	0.352	0.038
3604 3	0.338	0.037	0.323	0.039	0.360	0.040
3606 3	0.294	0.035	0.285	0.038	0.282	0.037
3606 4	0.294	0.035	0.316	0.038	0.327	0.037
3612 4	0.393	0.038	0.355	0.040	0.416	0.039
3612 5	0.343	0.035	0.336	0.038	0.347	0.037
3612 6	0.287	0.035	0.289	0.038	0.285	0.037
3613 3	0.328	0.036	0.324	0.038	0.311	0.038
3614 3	0.340	0.035	0.334	0.037	0.345	0.037
3614 4	0.316	0.035	0.322	0.037	0.317	0.038
3614 5	0.364	0.035	0.371	0.037	0.348	0.037
3615 2	0.241	0.036	0.220	0.038	0.241	0.038
3615 3	0.271	0.035	0.286	0.037	0.253	0.038
3615 4	0.361	0.035	0.367	0.037	0.380	0.037
3620 2	0.316	0.036	0.303	0.038	0.329	0.038
3620 3	0.340	0.036	0.340	0.038	0.327	0.038
3620 4	0.298	0.036	0.308	0.038	0.312	0.038
3620 5	0.267	0.035	0.267	0.038	0.282	0.038
3622 2	0.281	0.036	0.280	0.039	0.285	0.039
3622 3	0.342	0.036	0.343	0.038	0.354	0.038
3624 4	0.366	0.036	0.356	0.038	0.392	0.038

3627	2	0.261	0.041	0.257	0.044	0.258	0.044
3630	2	0.310	0.042	0.303	0.045	0.305	0.045
3634	3	0.404	0.042	0.406	0.045	0.428	0.045
3637	11	0.288	0.042	0.263	0.045	0.304	0.045
3640	3	0.291	0.036	0.260	0.038	0.281	0.038
3644	2	0.412	0.047	0.407	0.051	0.420	0.051
3646	2	0.363	0.036	0.368	0.038	0.356	0.038
3646	4	0.317	0.036	0.298	0.038	0.328	0.038
3654	1	0.263	0.037	0.251	0.040	0.273	0.039
3654	2	0.273	0.037	0.260	0.040	0.257	0.039
3675	3	0.206	0.050	0.207	0.053	0.217	0.054
3676	4	0.285	0.036	0.291	0.039	0.275	0.038
3677	4	0.291	0.037	0.303	0.039	0.271	0.039
3677	5	0.301	0.037	0.299	0.039	0.289	0.039
3678	2	0.305	0.055	0.312	0.059	0.305	0.059
3679	3	0.324	0.039	0.339	0.042	0.337	0.041
3680	4	0.312	0.036	0.311	0.038	0.286	0.038
3680	5	0.290	0.037	0.299	0.039	0.280	0.039
3682	2	0.311	0.038	0.304	0.041	0.285	0.040
3684	3	0.390	0.037	0.396	0.039	0.356	0.039
3691	8	0.338	0.034	0.322	0.036	0.341	0.035
3696	3	0.270	0.037	0.261	0.039	0.295	0.039
3699	3	0.348	0.037	0.333	0.039	0.225	0.039
3702	3	0.352	0.037	0.355	0.039	0.352	0.039
3703	2	0.332	0.036	0.335	0.032	0.321	0.039
3703	3	0.364	0.037	0.320	0.039	0.321	0.030
3705	3	0.354	0.037	0.343	0.039	0.354	0.040
3705	5	0.320	0.036	0.345	0.039	0.334	0.039
3708	2	0.320	0.036	0.303	0.032	0.227	0.038
3708	$\frac{2}{4}$	0.301	0.030	0.303	0.050	0.207	0.050
3708	т 6	0.301	0.035	0.204	0.041	0.222	0.041
3713	3	0.331	0.030	0.332	0.038	0.328	0.038
3713	1	0.342	0.036	0.324	0.038	0.333	0.038
3713	5	0.342	0.035	0.302	0.038	0.322	0.037
3713	6	0.322	0.035	0.372	0.038	0.372	0.037
3713	7	0.322	0.035	0.335	0.038	0.304	0.037
3717	6	0.270	0.035	0.270	0.038	0.207	0.037
3714	5	0.340	0.035	0.329	0.038	0.340	0.038
2721	5	0.290	0.030	0.201	0.038	0.279	0.038
3721	5	0.312	0.030	0.299	0.039	0.312	0.039
2725	2	0.371	0.030	0.337	0.038	0.303	0.038
3723	4	0.330	0.030	0.300	0.038	0.324	0.038
3731	4	0.380	0.030	0.383	0.030	0.371	0.038
2722	4	0.141	0.030	0.142	0.039	0.155	0.038
2724	0	0.299	0.055	0.303	0.038	0.313	0.038
3734	2	0.341	0.030	0.329	0.038	0.308	0.038
3734	2	0.294	0.037	0.331	0.040	0.290	0.040
3/33	3	0.343	0.030	0.330	0.038	0.335	0.038
3/33	4	0.400	0.045	0.377	0.048	0.425	0.047
3/31	2	0.416	0.041	0.458	0.045	0.424	0.045
5/31	2	0.410	0.041	0.458	0.045	0.424	0.043
5151	5	0.3/6	0.040	0.381	0.043	0.391	0.043
5151	2	0.3/3	0.040	0.3/1	0.043	0.365	0.043
3/39	5	0.360	0.039	0.367	0.042	0.383	0.042
3759	4	0.362	0.040	0.351	0.043	0.360	0.043
3759	5	0.417	0.040	0.410	0.043	0.428	0.043
3764	2	0.004	0.094	-0.052	0.100	-0.053	0.102

3764	3	0.340	0.041	0.353	0.044	0.316	0.043
3764	4	0.435	0.040	0.445	0.043	0.429	0.043
3764	5	0.438	0.040	0.429	0.043	0.406	0.043
3764	6	0.371	0.040	0.369	0.043	0.356	0.043
3765	3	0.363	0.040	0.382	0.044	0.348	0.044
3767	3	0.227	0.040	0.226	0.043	0.205	0.043
3769	3	0.296	0.049	0.278	0.052	0.337	0.052
3769	5	0.304	0.046	0.274	0.049	0.300	0.048
3770	3	0.354	0.045	0.368	0.047	0.367	0.047
3774	3	0.150	0.049	0.139	0.052	0.176	0.052
3779	3	0.055	0.039	0.039	0.042	0.075	0.042
3780	3	0.308	0.042	0.286	0.044	0.299	0.044
3780	5	0.304	0.040	0.296	0.042	0.305	0.042
3780	7	0.304	0.040	0.296	0.042	0.305	0.042
3780	9	0.219	0.040	0.210	0.042	0.210	0.042
3780	11	0.290	0.039	0.260	0.042	0.304	0.042
3780	13	0.279	0.039	0.290	0.042	0.270	0.042
3780	15	0.280	0.039	0.288	0.042	0.279	0.041
3784	3	0.373	0.059	0.367	0.062	0.365	0.062
3793	3	0.216	0.059	0.188	0.062	0.247	0.062
3793	6	0.398	0.041	0.383	0.043	0.417	0.043
3793	8	0.280	0.041	0.266	0.043	0.292	0.043
3793	10	0.304	0.039	0.310	0.041	0.318	0.041
3796	2	0.279	0.039	0.289	0.041	0.284	0.042
3796	3	0.241	0.039	0.262	0.041	0.264	0.041
3797	3	0.417	0.039	0.408	0.042	0.411	0.042
3799	2	0.274	0.040	0.242	0.042	0.303	0.043
3799	3	0.213	0.039	0.189	0.042	0.232	0.042
3799	4	0.358	0.039	0.362	0.041	0.358	0.042
3799	5	0.261	0.039	0.263	0.041	0.249	0.041
3801	4	0.326	0.038	0.322	0.041	0.341	0.041
3803	3	0.202	0.043	0.173	0.046	0.194	0.046
3803	5	0.199	0.042	0.197	0.045	0.204	0.045
3803	6	0.280	0.041	0.238	0.044	0.277	0.044
3803	7	0.199	0.041	0.203	0.044	0.199	0.044
3803	8	0.204	0.041	0.186	0.043	0.212	0.043
3803	9	0.189	0.041	0.177	0.044	0.187	0.044
3810	2	0.194	0.042	0.177	0.044	0.192	0.044

C. OFFLINE YELLOW BEAM POLARIZATION RESULTS

The table below is the result of the offline analysis for yellow beam polarization. The definitions of the each column are the same as in blue. **Fill run P dP P_PH dP_PH P_ST dP_ST**

34271150.0580.0440.0950.0480.0440.0473476102-0.0080.0290.0240.031-0.0170.03135471050.3230.0280.3400.0310.3290.03035471060.2690.0280.2960.0310.2530.03035861020.3450.0280.3500.0300.3420.0303602102-0.0080.029-0.0040.031-0.0110.030

3603	102	0.012	0.028	0.017	0.030	-0.004	0.030
3604	102	0 279	0.029	0.278	0.031	0.290	0.031
3604	102	0.275	0.029	0.270	0.031	0.250	0.031
2606	103	0.331	0.029	0.307	0.031	0.559	0.031
2000	105	0.109	0.029	0.162	0.031	0.195	0.031
3606	104	0.198	0.029	0.226	0.031	0.200	0.031
3612	102	0.267	0.029	0.267	0.031	0.269	0.031
3612	103	0.319	0.029	0.309	0.031	0.328	0.031
3612	104	0.281	0.029	0.272	0.031	0.286	0.031
3612	105	0.320	0.029	0.303	0.031	0.349	0.030
3612	106	0.259	0.029	0.273	0.031	0.255	0.031
3613	102	0.275	0.029	0.280	0.031	0.274	0.030
3613	103	0.231	0.029	0.239	0.031	0 2 2 0	0.031
3614	102	0.271	0.029	0.200	0.031	0.265	0.031
3614	102	0.271	0.020	0.250	0.031	0.205	0.031
2614	103	0.240	0.029	0.230	0.031	0.243	0.030
3014	104	0.334	0.029	0.337	0.031	0.343	0.030
3615	103	0.218	0.028	0.223	0.030	0.199	0.030
3615	104	0.292	0.028	0.281	0.030	0.295	0.030
3615	105	0.257	0.028	0.245	0.030	0.258	0.030
3620	102	0.250	0.029	0.269	0.030	0.252	0.030
3620	103	0.289	0.029	0.263	0.030	0.292	0.030
3620	104	0.258	0.029	0.245	0.031	0.261	0.030
3620	105	0.233	0.029	0.241	0.030	0.243	0.030
3621	102	0 277	0.029	0.278	0.031	0.281	0.031
3622	102	0.271	0.029	0.259	0.031	0.289	0.031
3622	102	0.271	0.029	0.203	0.031	0.207	0.031
2624	104	0.312	0.029	0.303	0.031	0.311	0.031
2625	102	0.204	0.029	0.190	0.030	0.201	0.031
3023	100	0.101	0.055	0.171	0.035	0.155	0.035
3627	103	0.153	0.033	0.150	0.035	0.149	0.035
3630	103	0.207	0.034	0.183	0.036	0.224	0.036
3634	102	0.287	0.033	0.294	0.035	0.301	0.035
3637	103	0.162	0.033	0.173	0.035	0.163	0.035
3644	103	0.019	0.029	0.016	0.031	0.000	0.031
3646	106	0.025	0.029	0.034	0.031	0.026	0.031
3654	104	0.236	0.029	0.244	0.031	0.232	0.031
3654	105	0.282	0.029	0.290	0.031	0.266	0.031
3672	103	0.264	0.029	0.253	0.031	0.275	0.031
3675	105	0.231	0.028	0.239	0.030	0.278	0.030
3676	105	0.251	0.020	0.237	0.030	0.220	0.030
2677	103	0.131	0.020	0.145	0.030	0.101	0.030
2677	104	0.239	0.040	0.240	0.045	0.235	0.045
30//	105	0.271	0.028	0.203	0.030	0.270	0.030
3677	106	0.182	0.028	0.184	0.030	0.1//	0.030
3677	108	0.218	0.029	0.227	0.031	0.223	0.031
3678	103	0.322	0.028	0.310	0.031	0.339	0.031
3679	104	0.211	0.028	0.205	0.031	0.218	0.031
3680	105	0.155	0.027	0.158	0.030	0.147	0.029
3682	102	0.224	0.028	0.232	0.031	0.235	0.031
3684	103	0.081	0.028	0.101	0.030	0.086	0.031
3691	107	0.311	0.028	0.334	0.030	0.329	0.030
3698	106	0.136	0.038	0.169	0.041	0.148	0.040
3699	102	0 311	0.020	0.316	0.031	0.316	0.031
3600	104	0.157	0.029	0 171	0.031	0.1/2	0.030
2707	104	0.157	0.020	0.1/1	0.030	0.145	0.030
3702	102	0.219	0.028	0.213	0.030	0.231	0.030
3703	102	0.142	0.029	0.151	0.031	0.158	0.031
3705	103	0.286	0.028	0.288	0.030	0.284	0.030
3705	104	0.317	0.029	0.336	0.031	0.310	0.031
3708	103	0.347	0.029	0.327	0.031	0.350	0.031

3708	105	0.236	0.028	0.263	0.031	0.227	0.031
3708	107	0.136	0.065	0.126	0.070	0.116	0.069
3713	102	0.223	0.028	0.231	0.030	0.228	0.030
3713	104	0.327	0.028	0.329	0.030	0.322	0.030
3713	105	0.322	0.028	0.333	0.030	0.326	0.030
3713	108	0.246	0.030	0.241	0.032	0.233	0.032
3714	105	0.302	0.028	0.320	0.030	0.302	0.030
3720	108	0.275	0.031	0.279	0.033	0.270	0.033
3720	110	0.300	0.031	0.299	0.033	0.324	0.033
3721	102	0.253	0.031	0.248	0.034	0.270	0.034
3721	105	0.269	0.031	0.270	0.033	0.285	0.034
3721	107	0.285	0.031	0.292	0.033	0.275	0.034
3731	103	0.298	0.031	0.286	0.033	0.304	0.033
3733	105	0.269	0.031	0.268	0.034	0.256	0.034
3734	102	0.231	0.031	0.203	0.033	0.242	0.034
3734	103	0.268	0.031	0.259	0.033	0.242	0.033
3735	103	0.170	0.031	0.169	0.033	0.189	0.034
3735	104	0.242	0.031	0.254	0.033	0.247	0.033
3756	102	0.321	0.055	0.376	0.059	0.364	0.058
3756	103	0.293	0.045	0.401	0.048	0.366	0.047
3757	103	0.335	0.037	0.376	0.039	0.369	0.039
3757	105	0.328	0.039	0.326	0.041	0.318	0.041
3780	103	0.245	0.034	0.239	0.036	0.230	0.036
3780	105	0.231	0.034	0.237	0.036	0.235	0.036
3780	107	0.231	0.034	0.237	0.036	0.235	0.036
3780	108	0.238	0.033	0.241	0.035	0.240	0.035
3780	110	0.240	0.033	0.226	0.036	0.233	0.035
3780	112	0.215	0.033	0.227	0.036	0.211	0.036
3780	114	0.264	0.033	0.283	0.036	0.264	0.036
3780	116	0.173	0.033	0.172	0.036	0.197	0.036
3784	102	0.262	0.035	0.294	0.038	0.253	0.038
3793	103	0.265	0.048	0.273	0.051	0.241	0.051
3793	105	0.245	0.034	0.225	0.036	0.241	0.036
3793	107	0.195	0.034	0.198	0.036	0.182	0.036
3793	109	0.186	0.033	0.186	0.035	0.201	0.035
3796	104	0.195	0.032	0.197	0.034	0.187	0.034
3797	104	0.220	0.032	0.217	0.034	0.229	0.034
3799	102	0.296	0.032	0.318	0.034	0.304	0.034
3799	103	0.280	0.032	0.283	0.034	0.264	0.034
3799	104	0.260	0.032	0.271	0.034	0.254	0.034
3801	104	0.250	0.033	0.246	0.035	0.274	0.035
3803	103	0.302	0.034	0.281	0.036	0.310	0.036
3803	104	0.249	0.033	0.244	0.035	0.244	0.035
3803	105	0.251	0.033	0.235	0.035	0.241	0.035
3803	106	0.240	0.033	0.237	0.036	0.250	0.036
3803	107	0.289	0.033	0.296	0.036	0.276	0.036
3803	112	0.368	0.066	0.366	0.071	0.377	0.070
3810	102	0.126	0.034	0.134	0.037	0.130	0.037
3810	102	0.126	0.034	0.134	0.037	0.130	0.037

D. ONLINE (SCALER) POLARIZATION RESULTS

These results are for Run 3, and are based on the scaler polarimeter information which was also distributed to experiments through CDEV during the run period. The analyzing power used is an effective analyzing power from a fit to the E950 data, weighted by the observed carbon energy distribution. In the offline analysis, the fit was corrected, and the carbon energy values changed, due to a more precise treatment of the silicon dead layer. These corrections changed the offline polarization values relative to the online values by dP/P=+0.09 for blue and +0.05 for yellow both at flattop (blue: +0.16, yellw: +0.01 for injection). The polarization values for the run should be taken from the event mode values (appendices above), except when event mode data are not available. In that case, the scaler values below can be used, corrected by the factor above.

Fill.run Beam Energy date time P dP

3407.005	24.3	Apr 7	03:25:48	-0.32049	0.02753
3407.006	24.3	Apr 7	03:30:04	-0.34853	0.02840
3407.007	24.3	Apr 7	03:34:01	-0.29483	0.02901
3407.008	24.3	Apr 7	03:38:39	-0.32903	0.02950
3407.009	24.3	Apr 7	03:45:31	-0.27227	0.03663
3407.010	24.3	Apr 7	03:51:43	-0.31629	0.02917
3407.011	24.3	Apr 7	03:56:00	-0.30015	0.01891
3407.101	24.3	Apr 7	04:20:20	0.06922	0.04836
3407.102	24.3	Apr 7	04:21:45	-0.01567	0.01938
3407.103	24.3	Apr 7	04:28:05	-0.00944	0.01931
3408.002	24.3	Apr 7	05:55:46	0.34829	0.04030
3408.003	24.3	Apr 7	06:53:50	0.31157	0.02026
3408.101	24.3	Apr 7	06:19:17	0.12177	0.03368
3408.102	24.3	Apr 7	06:30:01	0.01084	0.04448
3408.103	24.3	Apr 7	07:07:07	-0.04177	0.01935
3420.001	24.3	Apr 8	04:34:52	0.39080	0.03646
3420.002	24.3	Apr 8	05:32:11	-0.01677	0.03762
3420.101	24.3	Apr 8	04:44:26	0.01182	0.02455
3420.102	24.3	Apr 8	05:23:49	-0.26656	0.02179
3424.001	99.8	Apr 8	11:15:19	0.44608	0.03805
3424.003	99.8	Apr 8	11:44:30	0.32839	0.03529
3424.004	99.8	Apr 8	12:09:18	0.26077	0.03522
3424.101	99.8	Apr 8	12:26:47	0.19366	0.02725
3424.102	99.8	Apr 8	12:36:46	0.15239	0.02861
3425.003	99.8	Apr 8	15:04:59	0.15506	0.02768
3425.101	99.8	Apr 8	14:49:46	-0.03924	0.03240
3427.001	24.3	Apr 8	16:40:05	0.36054	0.03985
3427.002	24.3	Apr 8	16:42:12	0.34450	0.01816
3427.003	99.8	Apr 8	16:53:44	0.35343	0.01757
3427.004	99.8	Apr 8	17:00:20	0.35452	0.01798
3427.005	99.8	Apr 8	18:23:53	0.35042	0.01766
3427.006	99.8	Apr 8	18:30:28	0.30182	0.03650
3427.007	99.8	Apr 8	18:53:48	0.30672	0.02516

3427.101 24.3	Apr 8	16:20:29	0.39277	0.01946	3475.002	99.8	Apr 13	23:36:41	0.03341	0.02307
3427.102 24.3	Apr 8	16:33:52	0.37078	0.01951	3475.101	24.3	Apr 13	22:38:25	-0.03872	0.02413
3427.109 99.8	Apr 8	17:54:47	0.00154	0.03157	3475.102	24.3	Apr 13	22:40:33	-0.00412	0.02435
3427.110 99.8	Apr 8	17:57:04	0.02240	0.01959	3476.001	24.3	Apr 14	02:16:35	0.36046	0.02255
3427.111 99.8	Apr 8	18:00:53	0.00084	0.01966	3476.002	99.8	Apr 14	02:31:05	0.24216	0.02284
3427.113 99.8	Apr 8	18:38:45	0.05235	0.03836	3476.101	24.3	Apr 14	02:10:23	0.36734	0.02431
3427.114 99.8	Apr 8	18:42:18	-0.05733	0.03664	3476.102	99.8	Apr 14	02:37:48	-0.00112	0.02419
3427.115 99.8	Apr 8	19:00:46	0.02520	0.02618	3480.001	24.3	Apr 14	20:26:38	0.29048	0.02930
3441.101 24.3	Apr 10	15:34:13	0.07405	0.06374	3480.002	24.3	Apr 14	22:55:09	0.29656	0.02161
3451.101 24.3	Apr 11	11:46:44	0.43814	0.04876	3480.004	99.8	Apr 15	02:15:10	0.19835	0.02633
3459.002 24.3	Apr 12	01:05:37	0.30254	0.02315	3480.101	24.3	Apr 14	20:17:52	0.34221	0.02447
3459.003 99.8	Apr 12	01:18:30	0.23082	0.02383	3480.102	24.3	Apr 14	22:39:19	0.33467	0.02384
3459.005 99.8	Apr 12	06:06:32	0.25005	0.02192	3480.103	99.8	Apr 14	23:41:00	0.00781	0.02386
3459.006 99.8	Apr 12	08:33:30	0.24827	0.02201	3480.104	99.8	Apr 15	02:44:23	-0.01760	0.02389
3459.007 99.8	Apr 12	09:29:29	0.22981	0.02193	3502.001	99.8	Apr 19	09:11:30	-0.06841	0.04777
3459.101 24.3	Apr 12	00:57:53	0.31262	0.02433	3502.002	99.8	Apr 19	09:24:58	-0.04911	0.02401
3459.102 99.8	Apr 12	01:23:28	0.12095	0.02423	3502.102	99.8	Apr 19	09:34:59	0.02563	0.02852
3459.103 99.8	Apr 12	03:56:17	0.12076	0.02272	3503.001	24.3	Apr 19	12:13:03	0.06283	0.02874
3459.104 99.8	Apr 12	06:02:42	0.03455	0.02252	3503.002	24.3	Apr 19	12:26:46	-0.02154	0.05801
3459.105 99.8	Apr 12	06:20:37	0.05866	0.02257	3503.003	99.8	Apr 19	13:56:07	0.08698	0.04713
3459,106 99.8	Apr 12	08:30:16	0.06850	0.02264	3503.004	99.8	Apr 19	14:05:16	0.05951	0.03255
3459,107 99.8	Apr 12	09:26:15	0.08347	0.02247	3504.001	24.3	Apr 19	15:01:50	0.47827	0.04215
3460.002 24.3	Apr 12	11:50:07	0.03391	0.02366	3504.002	24.3	Apr 19	15:08:16	0.41582	0.03806
3460.101 24.3	Apr 12	11:32:30	1.32242	0.02412	3505.001	24.3	Apr 19	19:20:37	0.53236	0.03628
3460.102 24.3	Apr 12	11:40:11	1.37318	0.04968	3505.002	24.3	Apr 19	19:29:53	0.50046	0.03685
3461.001 24.3	Apr 12	15:37:02	0.23906	0.03541	3505.101	24.3	Apr 19	18:04:40	0.46350	0.05242
3461 101 24 3	Apr 12	15.54.17	0.35528	0.02728	3505 102	24.3	Apr 19	19.11.17	0 41542	0.03979
3467 001 24 3	Apr 13	02:33:18	0.28341	0.02507	3506.001	99.8	Apr 19	21.59.27	0 18053	0.03670
3467.101 24.3	Apr 13	02:25:22	0.34064	0.02402	3506.101	99.8	Apr 19	21:52:21	0.25157	0.03402
3468 001 24 3	Apr 13	03:34:04	0.29804	0.02526	3508.001	24.3	Apr 20	02.07.38	0.51752	0.04227
3468 002 99 8	Apr 13	03:51:37	0 27439	0.02454	3508.002	99.8	Apr 20	02:59:57	0.41208	0.02222
3468 101 24 3	Apr 13	03:21:46	0.36223	0.02367	3508.003	99.8	Apr 20	09.25.09	0 44342	0.02233
3468.102 99.8	Apr 13	03:49:48	0.22218	0.02397	3508.101	24.3	Apr 20	01:47:56	0.40055	0.03904
3468.103 99.8	Apr 13	03:56:45	0.18232	0.02386	3508.102	99.8	Apr 20	02:53:34	0.16663	0.02366
3470.001 24.3	Apr 13	07:13:42	-0.03391	0.02526	3508.103	99.8	Apr 20	09:17:46	0.02035	0.03192
3470 101 24 3	Apr 13	07.06.43	0 33796	0.02413	3509.001	99.8	Apr 20	12:27:07	0 39208	0.03100
3471 001 24 3	Apr 13	08:55:17	0.03158	0.02445	3509 101	99.8	Apr 20	12:20:01	0.33225	0.02901
3471.003 24.3	Apr 13	09:33:39	0.26852	0.02525	3510.001	24.3	Apr 20	15:09:21	0.49712	0.02342
3471 004 99 8	Apr 13	10.09.01	0.17892	0.02466	3510.002	99.8	Apr 20	15.22.46	0 36465	0.02321
3471.005 99.8	Apr 13	12:02:25	0.16085	0.02365	3510.101	24.3	Apr 20	15:01:20	0.44550	0.02374
3471 006 99 8	Apr 13	13:46:10	0 18364	0.02385	3510 102	99.8	Apr 20	15.21.10	0 23043	0.02385
3471.101 24.3	Apr 13	09:07:51	-0.04195	0.02399	3517.102	24.3	Apr 20	23:47:07	0.34484	0.05246
3471.102 24.3	Apr 13	09:23:12	0.38057	0.02397	3518.001	99.8	Apr 21	01:13:43	0.31509	0.02298
3471.103 99.8	Apr 13	10:07:38	0.17755	0.02407	3518.101	99.8	Apr 21	01:21:29	-0.02495	0.02393
3471 104 99 8	Apr 13	12:00:55	0 1 5 9 7 4	0.02398	3521 001	99.8	Apr 21	06.12.48	0 33828	0.02385
3471.105 99.8	Apr 13	13:44:06	-0.00378	0.02417	3521.002	99.8	Apr 21	14:02:27	0.04635	0.05511
3472.002 99.8	Apr 13	15:29:08	0.34052	0.02385	3521.101	99.8	Apr 21	06:06:15	0.00213	0.04514
3472 101 24 3	Apr 13	14.21.46	0.32135	0.02416	3523 001	99.8	Apr 21	15:46:25	0 41148	0.02333
3472 102 99 8	Apr 13	15.27.01	0.01127	0.02442	3523 103	99.8	Apr 21	15:35:28	0.01473	0.02384
3472.103 99 8	Apr 13	15:46:34	0.00404	0.02422	3523.105	99.8	Apr 21	15:41:01	-0.02955	0.02384
3473.001 24 3	Apr 13	19:03:53	0.36343	0.02450	3524.001	24.3	Apr 21	20:59:11	0.37942	0.02237
3473.101 24 3	Apr 13	18:52:21	0.38423	0.02440	3524.002	99.8	Apr 21	21:31:35	0.32245	0.02265
3474.001 24.3	Apr 13	20:22:58	0.31546	0.02444	3524.003	99.8	Apr 21	22:38:59	0.35391	0.02258
3474.002 99 8	Apr 13	20:39:50	0.23422	0.02414	3524.004	99.8	Apr 22	02:01:10	0.26959	0.02294
3474.101 24 3	Apr 13	20:02:52	0.36586	0.02430	3524.005	99.8	Apr 22	03:58:25	0.22860	0.02294
3475.001 24 3	Apr 13	22:45:53	-0.16822	0.02445	3524.101	24.3	Apr 21	20:53:44	0.01222	0.02461
	-r- 10						-r- - ·			

3524.102 99.8	Apr 21	21:29:58	-0.01537	0.02383		3549.106	24.3	Apr 26	18:31:16	0.41309	0.02375
3524.103 99.8	Apr 21	22:32:41	-0.01739	0.02387		3549.107	24.3	Apr 26	18:34:25	0.29050	0.05849
3526.001 99.8	Apr 22	17:28:55	0.36815	0.04506		3549.110	24.3	Apr 26	21:51:16	0.43242	0.02360
3526.002 99.8	Apr 22	18:02:33	0.19271	0.04640		3549.111	24.3	Apr 26	22:30:08	0.41006	0.02423
3526.003 99.8	Apr 22	19:34:16	0.17768	0.05045		3549.112	24.3	Apr 26	22:57:55	0.41049	0.02452
3526.101 24.3	Apr 22	17:00:45	0.35502	0.04050		3549.113	99.8	Apr 26	23:23:23	0.26213	0.02403
3526.102 99.8	Apr 22	17:23:49	0.11931	0.03456		3550.004	24.3	Apr 27	03:51:13	0.33857	0.05350
3526.103 99.8	Apr 22	18:07:46	-0.00802	0.03261		3551.101	24.3	Apr 27	08:13:26	0.37240	0.02378
3526.104 99.8	Apr 22	19:20:19	0.00572	0.04623		3552.001	24.3	Apr 27	17:08:01	0.48688	0.02729
3526.105 99.8	Apr 22	19:26:54	-0.01723	0.03838		3552.101	24.3	Apr 27	17:00:59	0.35120	0.03218
3527.002 99.8	Apr 22	22:00:27	0.25098	0.05131		3552.102	99.8	Apr 27	17:53:28	-0.00589	0.03382
3527.102 24.3	Apr 22	21:04:21	0.39765	0.03713		3553.001	24.3	Apr 27	18:36:58	0.41833	0.02730
3527.103 99.8	Apr 22	21:28:07	0.10755	0.03343		3553.101	24.3	Apr 27	18:46:59	0.30205	0.03089
3527.104 99.8	Apr 22	21:53:08	0.02618	0.03770		3556.001	99.8	Apr 27	22:33:48	0.12613	0.04610
3539.013 24.3	Apr 24	19:30:04	0.43118	0.02741		3563.001	99.8	Apr 28	07:17:02	0.35881	0.02353
3539.014 99.8	Apr 24	20:04:36	0.32135	0.02970		3563.002	99.8	Apr 28	08:35:18	0.31/00	0.02245
3539.015 99.8	Apr 24	20:28:53	0.42480	0.04203		3563.003	99.8	Apr 28	08:38:16	0.28546	0.02354
3539.016 99.8	Apr 24	21:20:30	0.33081	0.04076		3563.004	99.8	Apr 28	09:43:15	0.33203	0.02304
3539.017 99.8	Apr 24	21:52:15	0.32421	0.04220		2569 101	99.8	Apr 28	07:14:23	-0.038/8	0.02390
3539.112 24.3	Apr 24	20.10.00	0.41455	0.02411		3560.001	99.8	Apr 28	14:04:48	0.00179	0.02382
2520 114 00 8	Apr 24	20.10.09	-0.02950	0.03004		2560 101	99.0	Apr 20	14.51.20	0.30462	0.02456
3539.114 99.8	Apr 24	20.33.19	-0.00445	0.05260		3560 102	99.0	Apr 28	14.38.03	0.29199	0.02409
3540 001 00 8	Apr 24	21.20.07	0.04479	0.03203		3571.001	99.0	Apr 20	15.10.40	0.05399	0.02315
3540.002 99.8	Apr 24	22.52.47	0.27508	0.04902		3572 001	99.0	Apr 20	19.10.40	0.05559	0.02313
3540 101 99 8	Apr 24	22.37.24	-0.01392	0.02440		3572.001	24.3	Apr 20	19.20.57	0.34305	0.02994
3540 102 99 8	Apr 24	22.27.31	-0.02970	0.02552		3572 102	99.8	Apr 28	19.21.14	-0.05274	0.02688
3545 002 99 8	Apr 25	13:06:01	0.30391	0.02993		3573.002	24.3	Apr 28	20.47.41	0.40077	0.02000
3545.003 99.8	Apr 25	13:27:12	0.28022	0.03991		3573.101	24.3	Apr 28	21:01:42	0.38125	0.03603
3545.101 24.3	Apr 25	10:54:57	-0.03738	0.03977		3574.001	99.8	Apr 28	21:47:11	0.37525	0.03141
3545.102 24.3	Apr 25	12:25:55	0.42028	0.03902		3574.002	99.8	Apr 28	22:01:30	0.43555	0.02970
3545.103 24.3	Apr 25	12:35:21	0.38964	0.03430		3574.101	99.8	Apr 28	21:43:54	0.29006	0.02978
3545.104 99.8	Apr 25	12:58:54	0.25028	0.02451		3574.102	99.8	Apr 28	21:58:03	0.01391	0.02825
3545.105 99.8	Apr 25	13:21:04	-0.03062	0.02866		3575.005	99.8	Apr 29	00:20:51	0.29309	0.02532
3547.001 99.8	Apr 25	18:49:26	0.42194	0.02225		3575.101	24.3	Apr 28	23:58:49	0.37819	0.02715
3547.002 99.8	Apr 25	19:03:42	0.30956	0.02264		3575.102	99.8	Apr 29	00:16:06	0.30179	0.02406
3547.003 99.8	Apr 25	19:40:18	0.35948	0.02231		3575.103	99.8	Apr 29	00:29:39	-0.01535	0.02422
3547.004 99.8	Apr 25	21:58:52	0.31863	0.02283		3576.001	24.3	Apr 29	01:27:20	0.43514	0.02865
3547.005 99.8	Apr 26	00:56:08	0.34255	0.02260		3576.101	24.3	Apr 29	01:17:58	0.41421	0.02544
3547.006 99.8	Apr 26	04:09:09	0.34765	0.02278		3578.001	24.3	Apr 29	04:16:11	0.40193	0.02857
3547.007 99.8	Apr 26	07:08:52	0.37223	0.02253		3578.101	24.3	Apr 29	04:11:42	0.35551	0.03409
3547.008 99.8	Apr 26	09:29:31	0.34128	0.02263		3578.102	24.3	Apr 29	04:23:45	0.35366	0.02826
3547.101 99.8	Apr 25	18:47:37	0.34034	0.02383		3580.001	24.3	Apr 29	06:29:48	0.45621	0.02916
3547.103 99.8	Apr 25	19:02:08	0.28943	0.02388		3580.002	99.8	Apr 29	06:56:53	0.33387	0.02396
3547.104 99.8	Apr 25	19:39:08	0.31964	0.02379		3580.003	99.8	Apr 29	07:19:39	0.3/150	0.03046
3547.105 99.8	Apr 25	21:52:11	0.31/91	0.02388		3580.101	24.3	Apr 29	06:17:46	0.38929	0.02817
3547.100 99.8	Apr 20	00:50:59	0.24138	0.02309		2580.102	99.8	Apr 29	00:52:25	0.31444	0.02400
3547.107 99.8	Apr 26	04:00:31	0.23031	0.02387		2582.001	99.8	Apr 29	07:13:42	0.19018	0.02833
3547.100 99.8	Apr 20	07.10:10	0.27052	0.02388		3582.001	24.3 24 2	Apr 29	14.02:30	0.37083	0.02220
3547.109 99.8	Apr 20	11.48.20	0.23040	0.02379		3582.002	24.3 24 2	Apr 29	14.09.39	0.30300	0.02228
3549 002 24 3	$\Delta nr 26$	22.00.11	0.20009	0.02380		3582.003	24.J 99 8	$\Delta pr 29$	15.14.00	0.40420	0.02330
3549 013 24 3	Apr 20	22.09.41	0.13528	0.02731		3583 001	243	Apr 29	15.50.55	0 44620	0.02205
3549 014 99 8	Anr 26	23.25.55	0.30611	0.02364		3583.002	24.5 99 8	Apr 29	16.21.52	0 17268	0.02387
3549,103, 24,3	Apr 26	17:17.18	0.44757	0.04172		3583.002	99 R	Apr 29	16:40.07	0.18439	0.02504
3549.105 24 3	Apr 26	18:23:41	0.37751	0.02367		3583.101	24.3	Apr 29	15:57:50	0.39710	0.02395
20171100 21.0	- pr 20	10.22.11	5.57751	0.02007	· ·		25	· · P· 2/	10.01.00	5.57710	5.52575

3583.102 99.8	Apr 29	16:15:17	0.22008	0.02317		3591.101	99.8	Apr 30	21:41:54	0.37084	0.02240
3583.103 99.8	Apr 29	16:45:45	0.18053	0.02444		3591.102	99.8	May 1	00:02:33	0.37132	0.02419
3584.001 24.3	Apr 29	17:12:06	0.47281	0.03050		3592.001	24.3	May 1	03:01:37	-0.23279	0.02850
3584.002 99.8	Apr 29	17:45:44	0.31225	0.02911		3592.002	24.3	May 1	03:15:00	0.45969	0.03093
3584.003 99.8	Apr 29	18:04:26	0.33524	0.02875		3592.101	24.3	May 1	02:55:22	0.39776	0.03138
3584.101 24.3	Apr 29	17:17:41	0.43342	0.02871		3593.001	99.8	May 1	04:42:50	0.32861	0.02305
3584.102 99.8	Apr 29	17:41:36	0.24301	0.02996		3593.101	99.8	May 1	04:41:48	0.27799	0.02230
3584.103 99.8	Apr 29	17:59:52	0.19990	0.03268		3595.001	99.8	May 1	06:14:37	0.31129	0.02305
3585 001 24 3	Apr 29	18.38.11	0.43470	0.03117		3595.002	99.8	May 1	06.28.04	0.30703	0.02397
3585.002 99.8	Apr 29	19:00:34	0.40558	0.03316		3595.101	99.8	May 1	06:12:54	0.34619	0.02357
3585.003 99.8	Apr 29	19:18:26	0.35548	0.03315		3595.102	99.8	May 1	06:26:53	0.27689	0.02254
3585 101 24 3	Apr 29	18.44.00	0 42958	0.03350		3598 002	24.3	May 1	19.57.09	0 44594	0.03009
3585 102 99 8	Apr 29	19.04.33	0 27309	0.03193		3598 101	24.3	May 1	19.53.03	0 23779	0.02951
3585 103 99 8	Apr 29	19.22.42	0.30852	0.03253		3600.001	24.3	May 1	22.38.53	0.05227	0.02322
3586 001 24 3	Apr 29	19:49:24	0.46259	0.02559		3600.002	24.3	May 1	23.22.09	-0.02652	0.02920
3586 002 99 8	Apr 29	20.13.52	0.35579	0.02366		3600.002	24.3	May 1	22.52.46	0.29819	0.02397
3586.003.99.8	$\Delta \text{ pr } 29$	20:37:32	0.35869	0.02379		3600 102	24.3	May 1	22:52:10	0.33521	0.02396
3586 004 99 8	$\Delta \text{ pr } 20$	20:37:52	0.33360	0.02371	-	3602 001	24.3	May 2	01:02:06	0.33598	0.02370
3586 005 99 8	$\Delta \text{ pr } 29$	23:42:08	0.34500	0.02374		3602.001	00.8	May 2	02.59.38	0.35883	0.02230
3586 101 24 3	$\Delta \text{ pr } 20$	19.53.00	0.44329	0.02074	-	3602.002	24.3	May 2	01.18.46	0.31212	0.02212
3586 102 99 8	$\Delta \text{ pr } 20$	20:25:03	0.37306	0.02264	-	3602.101	00.8	May 2	01.10.40 03.04.18	0.01723	0.02367
3586 103 00 8	A pr 20	20.23.03	0.37300	0.02204	-	3603.001	24.3	May 2	04.54.17	0.01725	0.02307
3586 105 99.8	A pr 29	20.33.33	0.37437	0.02297	-	3603.001	00.8	May 2	05.53.18	0.32028	0.02230
3580.103 99.8	Apr 29	23.39.49	0.38914	0.02313	-	3603.002	24.3	May 2	05:01:56	0.32028	0.02279
3587.001 24.3	Apr 30	00.33.28	0.49352	0.03237	-	2602 102	24.5	May 2	05:48:00	0.00850	0.02302
3587.002 99.8	Apr 30	01.20.30	0.35235	0.02257	-	3604 001	24.3	May 2	03.48.00 07.47.41	0.00859	0.02362
2597.002.99.8	Apr 20	01.36.22 02.21.45	0.33643	0.02309	-	2604.001	24.5	May 2	07.47.41	0.30402	0.02203
3587.004 99.8	Apr 20	02.31.43	0.30320	0.02339	-	2604.002	99.0	May 2	10.24.18	0.30728	0.02257
3587.005 99.8	Apr 20	04.19.30	0.30189	0.02330	-	2604.005	99.0 24.2	May 2	10.34.16	0.30808	0.02350
2587.000 99.8	Apr 30	07:15:57	0.31049	0.02338	-	2604.101	24.3	May 2	07:45:07	-0.33137	0.02333
2507.007 99.0	Apr 20	12.11.51	0.37393	0.02350	-	2604.102	99.0	May 2	10.20.06	0.27319	0.02339
3587.008 99.8	Apr 30	12:11:51	0.34704	0.02550		2606.002	99.8	May 2	10:29:00	0.33325	0.02308
3587.009 99.8	Apr 30	13:10:09	0.37378	0.04504		2606.002	24.3	May 2	10:30:25	0.37930	0.02228
2597 102 00 9	Apr 30	00:23:20	0.37607	0.02002	-	2606.003	99.8	May 2	17:20:20	0.28089	0.02282
3387.102 99.8	Apr 30	01:25:11	0.27055	0.02451	-	2606 101	99.0	May 2	20:11:20	0.27709	0.02299
3587.103 99.8	Apr 30	01:55:25	0.25577	0.02409	-	2606 102	24.3	May 2	10:14:11	0.33009	0.04455
3587.104 99.8	Apr 30	01:59:52	0.32539	0.02408		2606 102	24.3	May 2	10:34:18	0.28304	0.02399
3587.105 99.8	Apr 30	02:27:35	0.33039	0.02352		2606 104	99.8	May 2	1/:14:40	0.16/00	0.02377
3587.100 99.8	Apr 30	04:21:40	0.27009	0.02412	-	2000.104	99.8	May 2	20:04:55	0.1/410	0.02309
3587.107 99.8	Apr 30	07:09:22	0.295/1	0.02290	-	3607.001	24.3	May 2	21:30:49	0.39650	0.02221
3587.108 99.8	Apr 30	10:20:01	0.28000	0.02411		2607 102	24.5	May 2	21:25:51	0.32300	0.02304
3587.109 99.8	Apr 30	10:29:01	0.29217	0.02411		2609 101	24.5	May 2	21:35:24	0.33378	0.02342
3587.110 99.8	Apr 30	12:04:55	0.21210	0.02409	-	2608.101	24.3	May 2	22:58:54	0.37083	0.02800
3587.111 99.8	Apr 30	12:52:20	0.23042	0.02409		2608.102	24.5	May 2	23:14:49	0.35105	0.03343
3587.112 99.8	Apr 30	15:08:44	0.34207	0.04752	-	2008.103	24.5	May 2	23:19:40	0.33001	0.03333
3587.113 99.8	Apr 30	14:23:11	0.23629	0.02275	-	3608.104	24.3	May 2	23:29:01	0.39030	0.02370
3588.001 24.5	Apr 30	10:10:49	0.42052	0.02250		2610.001	24.5	May 5	02:19:17	0.39447	0.02879
3588.101 24.3	Apr 30	16:32:58	0.44827	0.02268	-	3610.002	24.3	May 3	02:57:18	0.43576	0.02279
3588.102 24.3	Apr 30	17:10:50	0.44051	0.04345		2610.101	24.5	May 3	02:08:32	0.42/0/	0.03324
3388.103 24.3	Apr 30	1/:10:58	0.43088	0.05462	-	2610.102	24.5	May 3	02:10:27	0.23389	0.02370
5589.001 24.3 2580 101 24 2	Apr 30	18:48:52	0.4121/	0.02252		2610 104	24.5	May 3	02:28:21	0.4208/	0.03333
5589.101 24.3 2580 102 24 2	Apr 30	18:30:38	-0.31103	0.02250		2610 105	24.5	May 3	02:30:00	0.30109	0.02370
5589.102 24.3	Apr 30	18:47:28	-0.32968	0.02242	-	2610.105	24.5	Mary 3	02:38:19	0.31894	0.02378
5589.105 24.3	Apr 30	18:30:32	0.41008	0.02276	-	2610.100	24.5	May 3	02:49:01	0.29928	0.02352
3590.001 24.3	Apr 30	19:46:24	0.41918	0.02384	-	3010.107	24.3	May 3	02:50:44	0.36363	0.02335
3391.001 99.8	Apr 50	21:44:12	0.54099	0.02348		2611.001	24.5	May 3	03:45:54	0.39930	0.02362
5591.002 99.8	way I	00:04:33	0.30/03	0.02009	-	5011.002	24.3	way 3	03:43:51	0.3/088	0.02235

3611.101 24.3	May 3	03:36:44	0.37347	0.02387	30	620.001 2	24.3	May 4	18:44:05	0.40720	0.02369
3612.001 24.3	May 3	04:35:26	0.45784	0.02280	30	620.002 9	99.8	May 4	19:14:54	0.26224	0.02290
3612.002 99.8	May 3	04:57:29	0.34101	0.02355	30	620.003 9	99.8	May 4	19:37:18	0.31946	0.02341
3612.003 99.8	May 3	05:13:53	0.33772	0.02296	30	620.004 9	99.8	May 4	21:43:13	0.26861	0.02359
3612.004 99.8	May 3	07:19:27	0.34824	0.02271	30	620.005 9	99.8	May 4	23:09:47	0.26907	0.02351
3612.005 99.8	May 3	09:16:40	0.34831	0.02339	30	620.101 2	24.3	May 4	18:36:59	0.37304	0.02394
3612.006 99.8	May 3	11:50:18	0.27833	0.02390	30	620.102 9	99.8	May 4	19:09:52	0.22249	0.02365
3612.101 24.3	May 3	04:33:16	0.35256	0.02387	30	620.103 9	99.8	May 4	19:32:08	0.27426	0.02214
3612.102 99.8	May 3	04:52:54	0.29162	0.02367	30	620.104 9	99.8	May 4	21:38:07	0.22738	0.02384
3612.103 99.8	May 3	05:08:56	0.31221	0.02359	30	620.105 9	99.8	May 4	23:03:57	0.21992	0.02366
3612.104 99.8	May 3	07:33:56	0.26175	0.02367	30	621.001 2	24.3	May 5	00:46:19	0.39072	0.02251
3612.105 99.8	May 3	09:22:29	0.29209	0.02358	30	621.002 9	99.8	May 5	01:09:40	0.28304	0.02348
3612,106 99.8	May 3	11:55:07	0.25164	0.02376	30	621.101 2	24.3	May 5	00:30:18	-0.39857	0.02382
3613.001 24.3	May 3	14:48:49	0.44555	0.02239	30	621.102 9	99.8	May 5	01:10:43	0.22438	0.02364
3613.002 99.8	May 3	15:15:30	0.28062	0.02196	30	622.001 2	24.3	May 5	02:19:08	0.38298	0.02360
3613.003 99.8	May 3	17:27:59	0.30734	0.02239	30	622.002 9	99.8	May 5	03:03:24	0.30359	0.02398
3613.004 99.8	May 3	18:16:09	0.33375	0.02349	30	622.003 9	99.8	May 5	05:15:28	0.30881	0.02362
3613.101 24.3	May 3	14:38:38	0.33766	0.02381	30	622.004	99.8	May 5	06:33:10	0.30166	0.02380
3613 102 99 8	May 3	15.16.30	0 26257	0.02368	30	622 101 2	24.3	May 5	02:11:09	0.41853	0.02390
3613.103 99.8	May 3	17:32:43	0.23779	0.02376	30	622.102 9	99.8	May 5	03:10:24	0.24731	0.02365
3613 104 99 8	May 3	17:59:51	0.18255	0.02358	30	622.103	99.8	May 5	03:51:36	0.25539	0.02366
3613 105 99 8	May 3	18.14.11	0 22547	0.02359	30	622 104 9	99.8	May 5	05.20.41	0 29381	0.02376
3614 002 24 3	May 3	20.16.58	0.43901	0.02261	30	622.105 9	99.8	May 5	06:30:27	0.27000	0.02622
3614 003 99 8	May 3	20:36:31	0.30556	0.02198	30	624.001 2	243	May 5	08:08:55	0.35241	0.02365
3614 004 99 8	May 3	20:55:48	0.32092	0.02349	30	624.002 2	24.3	May 5	08.23.01	0.42060	0.02936
3614 005 99 8	May 3	22.52.10	0.32385	0.02353	30	624.003 9	39.8	May 5	08:40:55	0.31457	0.02294
3614 101 24 3	May 3	19.54.30	0.32303	0.02603	30	624.003 9	39.8	May 5	09.00.27	0.29890	0.02353
3614 102 99 8	May 3	20.31.27	0.25817	0.02384	30	624.005 9	39.8	May 5	09:43:40	0.31460	0.02320
3614 103 99 8	May 3	20:51:06	0.23527	0.02377	30	624 101 2	24.3	May 5	07:58:04	0.45177	0.02320
3614 104 99 8	May 3	20:51:00	0.29098	0.02376	30	624 102 9	39.8	May 5	08:42:55	0.21425	0.02377
3614 105 99 8	May 3	22:59:14	0.27519	0.02367	30	624 103 9	39.8	May 5	08:57:55	0.22608	0.02383
3615 001 24 3	May 3	23:36:16	0.39777	0.02362	30	624 104 9	39.8	May 5	09:45:25	0.14133	0.02385
3615.002.99.8	May 4	00:05:12	0.25419	0.02335	30	624 105 9	39.8	May 5	09:47:29	0.26620	0.02377
3615.003.99.8	May 4	00.31.24	0.27917	0.02318	30	624 106 9	99.8	May 5	09.49.40	0.20123	0.02384
3615 004 99 8	May 4	04.08.54	0.31497	0.02320	30	624 107 9	99.8	May 5	09:51:23	0.20399	0.02359
3615.005.99.8	May 4	04:58:23	0.27541	0.02320	30	624.107 9	39.8	May 5	09:53:11	0.26493	0.02367
3615 101 24 3	May 3	23.29.29	0.36682	0.02384	30	624.100 9	39.8	May 5	09:54:30	0.20797	0.02383
3615 102 24 3	May 3	23.31.32	0.37923	0.02388	30	624 110 9	99.8	May 5	09:56:05	0.18702	0.02358
3615 103 99 8	May 3	23.58.13	0.20773	0.02388	30	625.001 2	243	May 5	13.29.33	0.39203	0.02000
3615 104 99 8	May 4	00.23.43	0.28487	0.02372	30	625.001 2 625.002 2	24.3	May 5	13.32.57	0.30566	0.02426
3615 105 99 8	May 4	03.20.27	0.24155	0.02379	30	625.002 2 625.003 2	24.3	May 5	14.18.32	0 37914	0.02396
3615 106 99 8	May 4	04:55:47	0.17749	0.02379	30	625.005 2 625.004 2	24.3	May 5	14.38.35	0.43366	0.02229
3616 001 24 3	May 4	06:36:26	0.35021	0.02318	30	625.001 2	24.3	May 5	14.49.57	0.39710	0.02211
3616 101 24 3	May 4	06:41:25	0 39514	0.02423	30	625.005 <u>2</u>	39.8	May 5	15.01.31	0.29642	0.02252
3617 001 24 3	May 4	07:31:26	0.41415	0.02250	30	625.000 9	39.8	May 5	15.26.38	0.28963	0.02690
3617.002.99.8	May 4	08:01:36	0.32757	0.02206	30	625.007 J	20.0	May 5	17:34:56	0.20003	0.02000
3617.002 99.8	May 4	08.18.30	0.30626	0.02305	30	625.000	743	May 5	13.38.47	0.25054	0.02745
3617.004 99.8	May 4	08.28.17	0.28469	0.02290	30	625.101 2 625.102 2	24.3	May 5	14.29.42	0.31939	0.02377
3617 005 99 8	May 4	14.16.56	0 34455	0.02377	30	625.102 2	24.3	May 5	14.30.53	0 39641	0.02377
3617 101 24 3	May 4	07.22.26	0 45923	0.02374	30	625.105 2 625 104 0	29.2	May 5	15.00.21	0.22102	0.02367
3617 102 99 8	May 4	07.59.49	0 32057	0.02364	30	625 105 0	99.8	May 5	15.00.21	0.22102	0.02307
3617 103 99 8	May 4	08.17.06	0 22593	0.02364	30	625.105 5	29.0 29.8	May 5	17.29.43	0.20574	0.02725
3617 104 99 8	May 4	08.27.03	0 29876	0.02382	30	627 001 2	24.3	May 5	19.30.37	0 34115	0.02583
3617 105 99 8	May 4	14.15.21	0.27301	0.02368	30	627.001 2	29.2	May 5	19.54.25	0 22995	0.02303
3619 001 24 3	May 4	16.38.03	0 42150	0.02364	30	627 101 0	243	May 5	19.25.44	0 33830	0.02723
3619 101 24 3	May 4	16.10.30	0 37019	0.02392	30	627 102 0	99.8	May 5	19.20.44	0.21245	0.02701
2017.101 27.3	1.1uj T	10.10.20	0.07017	0.02072	5		0	ay 5	17.10.27	0.21270	0.02701

					_						
3627.103 99.8	May 5	19:58:25	0.16134	0.02734		3646.005	99.8	May 7	14:07:25	0.26731	0.02206
3628.001 24.3	May 5	22:50:46	0.42921	0.02737		3646.101	24.3	May 7	08:54:27	0.38774	0.02387
3628.101 24.3	May 5	22:46:14	0.32422	0.02765		3646.102	24.3	May 7	09:13:28	0.33872	0.02397
3629.001 24.3	May 6	01:44:52	0.39221	0.02583		3646.103	99.8	May 7	09:43:22	0.26160	0.02365
3629.002 99.8	May 6	02:13:58	0.26925	0.02704		3646.104	99.8	May 7	09:57:26	0.11676	0.02372
3629 101 24 3	May 6	01.38.23	0.32876	0.02743		3646 105	99.8	May 7	12:01:38	0.09721	0.02375
3629 102 99 8	May 6	02:15:52	0.24156	0.02724		3646 106	99.8	May 7	12.01.00 14.09.14	0.02962	0.02376
3630.001 24.3	May 6	03:05:21	0.45030	0.02744		3650.001	24.3	May 7	18.35.49	0.31910	0.02355
3630.002.99.8	May 6	04:06:26	0.28950	0.02587		3650.002	00.8	May 7	18:45:31	0.27895	0.02333
3630 101 24 3	May 6	03.02.34	0.20990	0.02760		3650.002	99.8	May 7	19:05:03	0.23202	0.02100
3630 102 24 3	May 6	03.18.05	0.41774	0.02760		3650.003	99.8	May 7	19.34.32	0.23202	0.02200
3630 103 99 8	May 6	04.11.11	0.23465	0.02739		3650.004	99.8	May 7	19.38.20	0.22043	0.02200
3634 001 24 3	May 6	07:40:45	0.25405	0.02752		3650.005	00.8	May 7	19:40:40	0.20233	0.02210
3634 002 00 8	May 6	07.40.45	0.41705	0.02532		3650.000	00.8	May 7	19:43:36	0.24030	0.02177
3634.002 99.8	May 6	08.19.14 08.34.32	0.29427	0.02543		3650.007	00.8	May 7	19.45.30	0.24192	0.02210
3634 101 24 3	May 6	07.33.38	0.32003	0.02505		3650.000	00.8	May 7	10.47.16	0.23551	0.02210
2624 102 00 8	May 6	07.33.38	0.40550	0.02744		3650.009	00.0	May 7	19.47.10	0.21901	0.02224
3634.102 99.8	May 0	08.21.07	0.26470	0.02720		3650.010	99.0	May 7	19.49.00	0.21020	0.02210
3034.103 99.8	May 0	11.42.12	0.23791	0.02717		3650.011	99.0	May 7	19.52.52	0.10057	0.02210
3037.001 24.3	May 6	11:45:12	0.31103	0.02827		3650.012	99.0	May 7	19:54:48	0.18/03	0.02198
3037.002 24.3	May 6	11:55:42	0.32807	0.02538		3650.015	99.0 04.2	May 7	19:30:28	0.21348	0.02223
3037.003 24.3	May 0	11:57:00	0.33309	0.02549		2650.101	24.3	May 7	18:27:33	0.24278	0.02378
3637.004 24.3	May 6	11:59:34	0.34637	0.02541		3650.102	99.8	May /	18:44:09	0.21083	0.02384
3637.005 24.3	May 6	12:04:03	0.30054	0.02566		3650.103	99.8	May /	19:03:37	0.109/4	0.02367
3637.006 24.3	May 6	12:05:29	0.35891	0.02566		3650.104	99.8	May /	19:12:14	0.18002	0.02357
3637.007 24.3	May 6	12:07:39	0.31248	0.02549		3650.105	99.8	May /	19:14:19	0.185/3	0.02365
3637.008 24.3	May 6	12:22:14	0.30411	0.02541		3650.106	99.8	May /	19:15:49	0.18892	0.02382
3637.009 24.3	May 6	12:41:04	0.33131	0.02540		3654.001	99.8	May 8	00:58:40	0.26572	0.02215
3637.010 99.8	May 6	12:50:12	0.26292	0.02553		3654.002	99.8	May 8	02:44:58	0.29551	0.02216
3637.011 99.8	May 6	13:05:19	0.29248	0.02707		3654.101	24.3	May 8	00:01:18	0.00299	0.02380
3637.101 24.3	May 6	11:36:04	0.41539	0.02760		3654.102	24.3	May 8	00:02:54	0.01305	0.02396
3637.102 24.3	May 6	12:32:10	0.37487	0.02764		3654.103	24.3	May 8	00:22:04	0.34646	0.02388
3637.103 99.8	May 6	12:51:20	0.16234	0.02738		3654.104	99.8	May 8	00:52:03	0.21795	0.02381
3637.104 99.8	May 6	13:04:24	0.21196	0.02703		3654.105	99.8	May 8	02:50:30	0.25541	0.02357
3638.001 24.3	May 6	17:09:12	0.36065	0.02566		3658.001	24.3	May 8	16:10:14	0.33644	0.02362
3638.101 24.3	May 6	16:43:47	0.32882	0.02761		3658.101	24.3	May 8	15:43:05	0.31850	0.02372
3638.102 24.3	May 6	16:48:36	0.34673	0.02759		3659.001	24.3	May 8	17:35:44	0.32837	0.02218
3638.103 24.3	May 6	16:59:51	0.34393	0.02767		3659.002	99.8	May 8	17:44:08	0.28655	0.02215
3639.001 24.3	May 6	17:54:41	0.28349	0.03845		3659.003	99.8	May 8	18:02:40	0.26149	0.02215
3639.002 24.3	May 6	17:58:47	0.30821	0.02966		3659.101	24.3	May 8	17:28:21	0.30164	0.02389
3639.003 24.3	May 6	18:15:42	0.35507	0.02210		3659.102	24.3	May 8	17:31:02	0.27214	0.02394
3639.101 24.3	May 6	17:47:44	0.39822	0.02393		3659.103	99.8	May 8	17:45:16	0.20398	0.02354
3640.001 24.3	May 6	19:15:18	0.40170	0.02211		3659.104	99.8	May 8	18:00:55	0.19975	0.02370
3640.002 99.8	May 6	19:25:21	0.28229	0.02207		3669.001	24.3	May 9	16:15:29	0.36744	0.02229
3640.003 99.8	May 6	19:42:50	0.29220	0.02198		3671.001	24.3	May 9	18:42:46	0.39124	0.02364
3640.101 24.3	May 6	19:08:01	0.37950	0.02394		3671.002	99.8	May 9	18:56:04	0.34664	0.02335
3640.102 99.8	May 6	19:23:40	0.20704	0.02364		3671.003	99.8	May 9	19:19:43	0.31510	0.02361
3640.103 99.8	May 6	19:40:57	0.23505	0.02381		3671.004	99.8	May 9	21:19:20	0.34996	0.02269
3644.001 24.3	May 7	06:14:15	0.38962	0.02212		3671.101	24.3	May 9	16:37:08	0.37158	0.03724
3644.002 99.8	May 7	06:41:23	0.34710	0.02216		3671.105	24.3	May 9	18:22:27	0.46342	0.02864
3644.101 24.3	May 7	06:09:05	0.42816	0.02382		3671.106	24.3	May 9	18:34:12	0.37244	0.02380
3644.103 99.8	May 7	06:48:41	0.03534	0.02382		3671.107	99.8	May 9	18:53:05	0.23824	0.02364
3644.104 99.8	May 7	06:55:04	0.08389	0.02373		3671.108	99.8	May 9	19:16:50	0.28165	0.02365
3646.001 24.3	May 7	09:20:02	0.39075	0.02213		3671.109	99.8	May 9	21:21:03	0.34426	0.02375
3646.002 99.8	May 7	09:37:12	0.30674	0.02226		3672.001	24.3	May 9	21:58:09	0.41423	0.02345
3646.003 99.8	May 7	09:59:59	0.28081	0.02252		3672.002	99.8	May 9	22:28:15	0.31411	0.02307
3646.004 99.8	May 7	12:03:01	0.27203	0.02295		3672.003	99.8	May 10	00:50:04	0.29427	0.02225
	5				I	-		5			

			-				
3672.004 99.8	May 10 00:51:32	0.34144 0.02368	3678.103 99.8 N	May 11	00:30:18	0.30130	0.02366
3672.101 24.3	May 9 21:51:35	0.44723 0.02789	3678.104 99.8 N	May 11	02:36:56	0.21434	0.02368
3672.102 99.8	May 9 22:29:48	0.34114 0.02366	3679.001 24.3 N	May 11	03:57:11	0.34166	0.02549
3672.103 99.8	May 10 00:56:24	0.34114 0.02366	3679.002 99.8 N	May 11	04:14:14	0.28371	0.02317
3673.001 24.3	May 10 01:40:18	0.40169 0.03135	3679.003 99.8 N	May 11	06:52:15	0.28049	0.02312
3673.101 24.3	May 10 01:32:43	0.33819 0.03373	3679.004 99.8 N	May 11	08:09:16	0.30707	0.02284
3674.001 24.3	May 10 02:24:41	0.40461 0.03113	3679.101 24.3 N	May 11	03:46:35	0.37806	0.02539
3674.002 99.8	May 10 02:50:28	0.32573 0.03314	3679.102 99.8 N	May 11	04:15:26	0.23810	0.02366
3674.101 24.3	May 10 02:16:43	0.41342 0.03371	3679.103 99.8 N	May 11	04:21:43	0.29259	0.02366
3674.102 99.8	May 10 02:51:41	0.36443 0.03333	3679.104 99.8 N	May 11	06:34:37	0.22983	0.02376
3675.001 24.3	May 10 08:36:01	0.35942 0.03028	3679.105 99.8 N	May 11	08:05:49	0.17151	0.02377
3675.002 99.8	May 10 09:07:04	0.28509 0.03286	3680.001 24.3 N	May 11	09:37:12	0.37657	0.03137
3675.003 99.8	May 10 09:32:28	0.19837 0.03292	3680.002 99.8 N	May 11	09:48:17	0.28150	0.02358
3675.004 99.8	May 10 09:35:46	0.29411 0.03283	3680.003 99.8 N	May 11	10:02:05	0.23752	0.02358
3675.005 99.8	May 10 11:41:39	0.26317 0.02345	3680.004 99.8 N	May 11	10:41:50	0.27125	0.02197
3675.101 24.3	May 10 08:26:19	-0.10426 0.03359	3680.005 99.8 N	May 11	10:48:46	0.26437	0.02357
3675.102 24.3	May 10 08:43:33	0.34970 0.03380	3680.006 99.8 N	May 11	12:51:32	0.29096	0.02201
3675.103 99.8	May 10 09:04:36	0.31577 0.03340	3680.101 24.3 N	May 11	09:17:43	-0.00474	0.03358
3675.104 99.8	May 10 09:30:38	0.32223 0.03333	3680.102 24.3 N	May 11	09:28:38	0.37727	0.03369
3675.105 99.8	May 10 11:32:52	0.21087 0.02367	3680.103 99.8 N	May 11	09:46:04	0.22560	0.02358
3675.106 99.8	May 10 11:58:52	0.23616 0.02368	3680.104 99.8 N	May 11	09:59:33	0.28930	0.02358
3675.107 99.8	May 10 12:51:52	0.08806 0.02376	3680.105 99.8 N	May 11	12:43:29	0.16680	0.02383
3675.108 99.8	May 10 12:55:05	0.05764 0.04281	3680.106 99.8 N	May 11	12:52:58	0.13803	0.02382
3676.001 24.3	May 10 13:50:24	0.39052 0.03088	3681.002 99.8 N	May 11	14:45:08	0.22693	0.03212
3676.002 99.8	May 10 14:01:16	0.27962 0.03269	3681.003 99.8 N	May 11	15:13:04	0.25142	0.02219
3676.003 99.8	May 10 14:45:08	0.30543 0.02358	3681.004 99.8	May 11	15:18:42	0.24904	0.02227
3676 004 99 8	May 10 16.26.10	0.27531 0.02294	3681.005.99.8	May 11	15.21.18	0.28680	0.02203
3676.005 99.8	May 10 16:32:42	0.27265 0.02360	3681.006 99.8	May 11	15:34:22	0.27196	0.02212
3676.101 24.3	May 10 13:38:40	0.40128 0.03375	3681.007 99.8	May 11	17:24:50	0.26837	0.02237
3676.102 99.8	May 10 13:59:05	0.34356 0.03335	3681.101 24.3	May 11	14:09:00	0.36231	0.03368
3676 103 99 8	May 10 14:40:56	0.27335 0.03352	3681 102 24 3	May 11	14.23.54	0 34204	0.03376
3676 104 99 8	May 10 14:42:23	0.25282 0.02367	3681 103 99 8	May 11	14.43.23	0 29495	0.03360
3676.105 99.8	May 10 16:12:07	0.14446 0.02377	3681.104 99.8	May 11	14:56:29	0.31556	0.02366
3676.106 99.8	May 10 16:35:46	0.13297 0.02376	3681.105 99.8 N	May 11	15:35:51	0.20682	0.02359
3676.107 99.8	May 10 16:38:37	0.16682 0.02376	3681.106 99.8 N	May 11	15:47:37	0.27011	0.02366
3677.001 24.3	May 10 17:56:54	0.34924 0.03147	3681.107 99.8 N	May 11	17:21:23	0.13658	0.02359
3677.002 24.3	May 10 18:21:09	0.31878 0.03317	3681.108 99.8 N	May 11	17:26:59	0.18871	0.02367
3677.003 99.8	May 10 18:33:20	0.27377 0.03068	3682.001 24.3 N	May 11	18:59:07	0.33894	0.02365
3677.004 99.8	May 10 18:57:16	0.27811 0.02220	3682.002 99.8 N	May 11	19:38:57	0.26955	0.02255
3677.005 99.8	May 10 21:30:00	0.28139 0.02226	3682.101 24.3 N	May 11	18:51:21	0.36768	0.03056
3677.101 24.3	May 10 17:43:35	-0.04215 0.03377	3682.102 99.8 N	May 11	19:27:40	0.18573	0.02366
3677.102 24.3	May 10 18:12:03	0.37123 0.03369	3682.103 99.8 N	May 11	19:34:58	0.15797	0.02375
3677.103 99.8	May 10 18:32:06	0.29251 0.03359	3682.104 99.8 N	May 11	19:45:55	0.19398	0.02375
3677.104 99.8	May 10 18:53:35	0.22803 0.03354	3683.001 24.3 N	May 11	21:52:15	0.41860	0.02381
3677.105 99.8	May 10 19:03:14	0.27061 0.02367	3683.101 24.3 N	May 11	21:45:51	0.38826	0.03376
3677.106 99.8	May 10 21:22:15	0.19250 0.02377	3684.001 24.3 N	May 11	23:14:34	0.33067	0.02478
3677.107 99.8	May 10 21:36:45	0.23818 0.02376	3684.002 99.8 N	May 11	23:35:41	0.26035	0.03152
3677.108 99.8	May 10 22:02:15	0.20872 0.02368	3684.003 99.8 N	May 11	23:45:44	0.32843	0.02233
3678.001 24.3	May 11 00:05:08	0.30187 0.03120	3684.101 24.3 N	May 11	23:09:03	0.41428	0.03373
3678.002 99.8	May 11 00:27:15	0.23623 0.03465	3684.102 99.8 N	May 11	23:32:35	0.09482	0.03354
3678.003 99.8	May 11 00:37:25	0.33053 0.03149	3684.103 99.8 N	May 11	23:52:29	0.08430	0.02369
3678.004 99.8	May 11 00:38:27	0.24524 0.02222	3687.001 24.3 N	May 12	05:27:38	0.33892	0.02365
3678.005 99.8	May 11 00:39:36	0.28142 0.02230	3687.002 99.8 N	May 12	05:40:59	0.28296	0.02230
3678.006 99.8	May 11 02:35:27	0.28816 0.02239	3687.003 99.8 N	May 12	05:55:15	0.27540	0.02216
3678.101 24.3	May 10 23:57:18	0.00000 0.00015	3687.101 24.3 N	May 12	05:21:50	0.34637	0.02401
3678.102 24.3	May 10 23:58:00	0.37469 0.02385	3687.102 99.8 N	May 12	05:36:59	0.30765	0.02367
				· · · · ·			

3687.103 99.8	May 12 05:51:50	0.10687	0.02366	3698.004 99.8 May 13 12:49:03 0.29020	0.02358
3688.001 24.3	May 12 06:54:27	0.39336	0.03172	3698.005 99.8 May 13 14:33:40 0.27907	0.02345
3688.002 99.8	May 12 07:07:21	0.28954	0.02268	3698.101 24.3 May 13 10:29:47 0.25880	0.03364
3688.003 99.8	May 12 07:23:13	0.30800	0.02280	3698.102 24.3 May 13 10:32:55 0.31423	0.02391
3688.101 24.3	May 12 06:47:28	0.37272	0.03378	3698.103 24.3 May 13 10:43:53 0.24130	0.03371
3688.102 99.8	May 12 07:04:07	0.28631	0.02375	3698.104 24.3 May 13 11:35:59 0.37985	0.03379
3688.103 99.8	May 12 07:20:08	0.06948	0.02240	3698.105 99.8 May 13 13:11:53 0.29308	0.02376
3688 104 99 8	May 12 07:25:19	0.04513	0.02374	3698 106 99 8 May 13 14:35:45 0 17059	0.02379
3689 001 24 3	May 12 08:19:04	0 29820	0.03130	3698 107 99 8 May 13 14:56:41 0 17169	0.02378
3689.002.24.3	May 12 08:20:25	0.30096	0.03096	3699 001 24 3 May 13 16:22:35 0 33554	0.02209
3689.003 24.3	May 12 08:26:49	0.26294	0.03131	3699.002 99.8 May 13 16:31:54 0.28613	0.02199
3689.004 24.3	May 12 08:28:38	0.33238	0.02244	3699.003 99.8 May 13 16:51:53 0.28315	0.02223
3689.005.24.3	May 12 08:31:18	0 29588	0.02252	3699 004 99 8 May 13 18:36:43 0 31132	0.02226
3689 101 24 3	May 12 08:09:29	0.41534	0.03377	3699 101 24 3 May 13 16:09:21 0 40043	0.02388
3689 102 24 3	May 12 00:09:29	0 26148	0.03362	3699 102 99 8 May 13 16:33:33 0 27843	0.02367
3691.001 24.3	May 12 11:08:21	0.38315	0.03130	3699.103 99.8 May 13 16:48:54 0.24983	0.02365
3691 002 24 3	May 12 11.12.59	0 39794	0.03154	3699 104 99 8 May 13 18:40:55 0 14297	0.02379
3691 003 24 3	May 12 11:22:35 May 12 11:29:31	0 31941	0.03345	3700 001 24 3 May 13 20:51:46 0 32683	0.02244
3691 004 24 3	May 12 11:29:31 May 12 11:38:49	0.36626	0.03152	3700.002 99.8 May 13 21:02:04 0.30065	0.02231
3691.005.99.8	May 12 11:50:17	0.27250	0.02219	3700 101 24 3 May 13 20:06:25 0 37821	0.022373
3691.006.99.8	May 12 11:35:12 May 12 12:15:11	0.30303	0.02219	3700 102 24.3 May 13 20:45:17 0 40305	0.02384
3691.007.99.8	May 12 12:10:11 May 12 13:10:37	0.20141	0.02220	3700 103 99 8 May 13 21:03:17 0 27654	0.02374
3691.007 99.8	May 12 13:10:57 May 12 14:21:53	0.28863	0.02204	3701.001.24.3 May 13.22:03:17 0.27034	0.02374
3691 101 24 3	May 12 14:21:33	0.41786	0.02302	3701.001 24.3 May 13 22:05:17 0.55544 3701.101 24.3 May 13 21:54:24 0.41872	0.02220
3691 102 24 3	May 12 10:53:33	0.38294	0.03375	3702 001 24 3 May 13 23:22:34 0.41072	0.02361
3691 103 24 3	May 12 10:55:55 May 12 11:04:02	0.40666	0.03418	3702.001 24.5 May 13 23.22.57 0.50512 3702.002 99.8 May 13 23.32.31 0.30073	0.02281
3691 104 24 3	May 12 11:04:02 May 12 11:23:04	0.40000	0.03385	3702.002 99.8 May 13 23:52:51 0.30073	0.02257
3691 105 99 8	May 12 11:25:04 May 12 11:56:20	0.41070	0.02375	3702 101 24 3 May 13 23:10:23 0 42603	0.02237
3691 106 99 8	May 12 11:50:20 May 12 12:12:24	0.25998	0.02375	3702 102 99 8 May 13 23:10:25 0.42003	0.02365
3691 107 99 8	May 12 12:12:24 May 12 13:15:02	0.23770	0.02369	3702.103.99.8 May 13. 23:48:06 0.18278	0.02374
3691 108 99 8	May 12 13:13:02 May 12 14:17:18	0.20027	0.02360	3703.001 24.3 May 14 02:04:33 0.39833	0.03237
3693 001 24 3	May 12 16:35:09	0.38320	0.03330	3703 002 99 8 May 14 02:21:07 0 29227	0.02248
3693 002 99 8	May 12 16:44:32	0.29870	0.03118	3703.003.99.8 May 14 02:42:44 0.32217	0.02283
3693.003 99.8	May 12 17:08:37	0.29672	0.02217	3703.101 24.3 May 14 01:59:01 0.37637	0.02389
3693.004 99.8	May 12 18:19:30	0.29103	0.02219	3703.102 99.8 May 14 02:34:26 0.15887	0.02357
3693.005 99.8	May 12 19:24:56	0.29521	0.02210	3703.103 99.8 May 14 02:54:25 0.06265	0.02358
3693.006 99.8	May 12 20:19:50	0.29082	0.02218	3704.001 24.3 May 14 04:53:34 0.36837	0.03092
3693.007 99.8	May 12 21:21:08	0.29666	0.02248	3704.101 24.3 May 14 04:44:54 0.40340	0.02383
3693.008 99.8	May 12 21:49:33	0.30181	0.02229	3705.001 24.3 May 14 05:42:48 0.37142	0.03135
3693.101 24.3	May 12 16:27:21	0.42009	0.03374	3705.002 99.8 May 14 05:51:53 0.28686	0.02214
3693.102 99.8	May 12 16:45:48	0.30455	0.03360	3705.003 99.8 May 14 06:21:13 0.29967	0.02351
3693.103 99.8	May 12 17:10:06	0.33411	0.02367	3705.004 99.8 May 14 08:29:41 0.32159	0.02351
3693.104 99.8	May 12 18:22:02	0.24567	0.02376	3705.005 99.8 May 14 09:43:11 0.29244	0.02226
3693.105 99.8	May 12 19:19:50	0.26531	0.02377	3705.101 24.3 May 14 05:35:51 0.36202	0.03356
3693.106 99.8	May 12 20:22:17	0.24595	0.02377	3705.102 24.3 May 14 05:38:07 0.40219	0.03382
3693.107 99.8	May 12 21:16:59	0.24224	0.02377	3705.103 99.8 May 14 05:53:04 0.28244	0.02373
3693.108 99.8	May 12 21:52:20	0.21982	0.02378	3705.104 99.8 May 14 06:12:37 0.25420	0.02374
3696.001 24.3	May 13 00:36:07	0.34944	0.02218	3705.105 99.8 May 14 08:41:38 0.16560	0.02375
3696.002 99.8	May 13 00:54:27	0.27261	0.02346	3705.106 99.8 May 14 09:38:33 0.18299	0.02376
3696.003 99.8	May 13 01:19:33	0.28065	0.02226	3706.001 24.3 May 14 10:29:34 0.35841	0.02368
3696.101 24.3	May 13 00:25:42	0.41389	0.02388	3706.002 24.3 May 14 10:31:24 0.35554	0.02216
3696.102 99.8	May 13 00:51:06	0.28868	0.02375	3706.003 24.3 May 14 10:57:08 0.40805	0.03084
3696.103 99.8	May 13 01:15:44	0.29796	0.02376	3706.101 24.3 May 14 10:50:38 0.37151	0.02395
3698.001 24.3	May 13 11:59:13	0.30783	0.03299	3707.001 24.3 May 14 11:50:53 0.34175	0.03347
3698.002 24.3	May 13 12:01:29	0.30142	0.02362	3707.101 24.3 May 14 11:42:53 0.41790	0.03369
3698.003 24.3	May 13 12:16:28	0.40947	0.03297	3708.001 24.3 May 14 12:42:28 0.33429	0.03313
					-

3708.002 99.8	May 14 12:50:55	0.27650	0.02350	3720.002 99.8 May 15 19:41:27 0.28666	0.03296
3708.003 99.8	May 14 13:18:48	0.28416	0.02267	3720.003 99.8 May 15 20:33:24 0.27603	0.03327
3708.004 99.8	May 14 14:28:41	0.29951	0.02352	3720.004 99.8 May 15 22:02:47 0.27837	0.02214
3708.005 99.8	May 14 15:38:14	0.30477	0.02370	3720.005 99.8 May 15 23:15:04 0.29194	0.02190
3708.006 99.8	May 14 16:40:02	0.31064	0.02354	3720.006 99.8 May 16 00:04:27 0.31104	0.02282
3708.007 99.8	May 14 17:11:38	0.30831	0.02286	3720.103 24.3 May 15 19:25:05 0.36264	0.03760
3708.101 24.3	May 14 12:36:01	0.47589	0.03364	3720.104 99.8 May 15 19:38:20 0.22356	0.03720
3708 102 99 8	May 14 12:57:04	0 26087	0.02375	3720 105 99 8 May 15 19:57:30 0 13434	0.05510
3708 103 99 8	May 14 13:10:55	0.31302	0.02375	3720 106 99 8 May 15 20:21:14 0 16442	0.05920
3708 104 99 8	May 14 14:34:36	0.25576	0.02376	3720 107 99 8 May 15 20:31:14 0.22523	0.03709
3708.105 99.8	May 14 15:40:37	0.23866	0.02376	3720.108 99.8 May 15 22:04:20 0.26200	0.02644
3708 106 99 8	May 14 16:35:56	0 20467	0.02376	3720 109 99 8 May 15 23:11:14 0 19973	0.02636
3708 107 99 8	May 14 17:23:12	0.07469	0.02259	3720 110 99 8 May 16 00:08:06 0 26124	0.02627
3709.001 24.3	May 14 18:10:32	0.33778	0.02250	3721 001 24 3 May 16 01:32:26 0 20414	0.02027
3709.002.99.8	May 14 18:27:40	0.30580	0.02339	3721.007 24.5 May 16 01.52.20 0.20111 3721.002 99.8 May 16 01.56.15 0.27128	0.02265
3709.003.99.8	May 14 18:44:51	0.32644	0.02345	3721.002 99.0 May 10 01.50.15 0.27120	0.02203
3709.003 99.8	May 14 $10.44.51$ May 14 $10.27.17$	0.32847	0.02348	3721.005 99.8 May 16 02:20:40 0.31255	0.02332
3700 101 24 3	May $14 + 17.27.17$ May $14 + 17.55.10$	0.34513	0.02385	3721.005 99.6 May 10 $02.45.00$ $0.551403721.006$ 00.8 May 16 $03.45.13$ 0.26348	0.02237
3709 102 99 8	May 14 17.55.10 May 14 18.42.27	0.20817	0.02375	3721.000 99.8 May 16 05.45.15 0.20540 3721.007 99.8 May 16 04.57.31 0.33314	0.02213
3709.102 99.8	May 14 $10.42.27$	0.11414	0.02373	3721.007 99.8 May 16 04.57.51 0.55514 3721 008 00 8 May 16 06.27.30 0.25657	0.02330
3710 001 24 3	May $14 - 19.20.40$ May $14 - 20.00.23$	0.03005	0.02377	3721.000 99.0 May 10 00.27.39 0.25057 3721.101 24.3 May 16 01.20.10 0.35702	0.02542
3710.001 24.3	May 14 $20.09.23$	-0.05005	0.02325	3721.101 24.5 May 16 01.20.10 0.33792 3721 102 00.8 May 16 01.58.18 0.22168	0.02018
3710.002 99.8	May 14 $20.19.34$ May 14 $20.22.01$	0.00000	0.02340	3721.102 99.8 May 16 01.38.18 0.22108 3721 103 00.8 May 16 02:10:43 0.25257	0.02044
3710.003 99.8	May 14 20.22.01 May 14 10:57:20	-0.03201	0.02204	3721.105 99.6 May 10 02.10.45 0.23237 2721 104 00.8 May 16 02:40:15 0.21114	0.02031
3710.101 24.3	May 14 $19.37.30$ May 14 $20.22.14$	0.39293	0.02360	3721.104 99.6 May 10 02.40.15 0.51114 2721 105 00 8 May 16 02.47.25 0.22070	0.02041
3710.102 99.8	May 14 20.25.14 May 14 22:07:52	0.23380	0.02303	3721.105 99.6 May 10 05.47.55 0.25070 2721 106 00 8 May 16 04.54.20 0.28412	0.02045
3713.001 24.3	May 14 22.07.35	0.36962	0.02208	3721.100 99.6 May 10 04.34.20 0.26415 2721 107 00 8 May 16 06.19.10 0.26672	0.02055
3/13.002 99.8	May 14 22:25:04 May 14 22:40:52	0.30484	0.02188	3721.107 99.8 May 10 00.18.19 0.20075 2724 001 24.2 May 16 19.49.20 0.27054	0.02032
3/13.003 99.8	May 14 22:40:32 May 15 00:10:22	0.32439	0.02200	3724.001 24.5 May 10 18.48.59 0.27034	0.03549
3/13.004 99.8	May 15 00:19:25	0.32923	0.02190	3724.105 24.5 May 10 18:10:18 0.38555	0.02614
3/13.005 99.8	May 15 01:30:20	0.28003	0.02185	3724.104 24.3 May 10 18:39:03 0.38880	0.03081
3/13.000 99.8	May 15 02:20:27	0.31339	0.02331	3725.001 24.3 May 10 19:41:01 0.37800	0.03122
3/13.00/ 99.8	May 15 05:24:10	0.29255	0.02201	3725.002 99.8 May 16 19:54:02 0.57800	0.03122
3/13.008 99.8	May 13 03:50:57	0.33049	0.02344	3725.101 24.5 May 10 19:50:50 0.25571	0.03080
3/13.101 24.3	May 14 22:02:48	0.38/88	0.02404	3725.102 24.5 May 10 19:54:59 0.27250	0.03093
3/13.102 99.8	May 14 22:24:19	0.24550	0.02556	3723.105 99.8 May 10 19:49:34 0.20477	0.02027
3/13.103 99.8	May 14 22:37:04	0.32807	0.02350	3751.001 24.5 May 17 04:47:24 0.39004	0.03090
3/13.104 99.8	May 15 00:09:46	0.30294	0.02367	3731.003 99.8 May 17 05:08:59 0.34059	0.02224
3/13.105 99.8	May 15 01:17:04	0.29351	0.02383	3731.004 99.8 May 17 05:13:29 0.32523	0.02206
3/13.106 99.8	May 15 02:22:30	0.32121	0.02376	3/31.005 99.8 May 17 05:27:17 0.29437	0.02195
3/13.10/ 99.8	May 15 03:20:32	0.30870	0.02367	3/31.101 24.3 May 17 04:38:06 0.43768	0.03/00
3/13.108 99.8	May 15 05:55:47	0.22842	0.02376	3731.102 99.8 May 17 04:55:04 0.30230	0.02597
3/14.001 24.3	May 15 00:39:12	0.41099	0.03089	3751.105 99.8 May 17 05:29:21 0.28510	0.02039
3/14.002 99.8	May 15 00:51:45	0.28341	0.02347	3751.104 99.8 May 17 05:42:51 0.28815	0.02623
3/14.003 99.8	May 15 07:14:20	0.33286	0.02208	3/31.105 99.8 May 17 05:45:31 0.2/300	0.02608
3/14.004 99.8	May 15 08:22:15	0.2/01/	0.02356	3/32.001 24.3 May 17 09:08:45 0.39927	0.02234
3/14.005 99.8	May 15 09:27:30	0.28516	0.02190	3732.002 99.8 May 17 09:20:10 0.33906	0.02366
3/14.006 99.8	May 15 10:36:50	0.34440	0.02342	3732.003 99.8 May 17 09:45:19 0.25868	0.02354
3/14.007/99.8	May 15 11:47:18	0.32201	0.02211	3/32.004 99.8 May 17 11:20:18 0.16907	0.02274
3/14.101 24.3	May 15 06:30:51	0.42654	0.02292	3/32.005 99.8 May 17 11:27:16 0.24168	0.02273
5/14.102 99.8	May 15 06:47:32	0.20877	0.02365	3/32.006 99.8 May 17 12:37:40 0.22801	0.02233
3/14.103 99.8	May 15 07:10:28	0.23986	0.02373	3/32.00/ 99.8 May 17 14:27:00 0.20400	0.02336
3/14.104 99.8	May 15 08:13:23	0.25298	0.02367	3/32.101 24.3 May 17 09:00:27 0.36958	0.02623
5/14.105 99.8	May 15 09:18:40	0.29913	0.02376	3/32.102 99.8 May 17 09:16:46 0.16665	0.02594
3/14.106 99.8	May 15 10:44:27	0.29705	0.02376	3732.103 99.8 May 17 09:23:03 0.28333	0.02611
3/14.10/ 99.8	May 15 12:05:35	0.25339	0.02375	3/32.104 99.8 May 17 09:43:03 0.28319	0.02581
3720.001 24.3	May 15 19:27:56	0.42079	0.03124	3/32.105 99.8 May 17 11:17:59 0.23840	0.02600

3732.106 99.8	May 17 12:42:27	0.22480	0.02599		3749.001	24.3	May 20	02:44:48	0.32981	0.03691
3732.107 99.8	May 17 14:24:35	0.26236	0.02602		3749.002	99.8	May 20	02:49:29	0.34581	0.03713
3733.001 24.3	May 17 15:58:55	0.42447	0.02191		3749.101	24.3	May 20	02:27:58	0.42656	0.03644
3733.002 99.8	May 17 16:15:55	0.29596	0.02231		3749.102	99.8	May 20	02:51:31	0.32488	0.03646
3733.004 99.8	May 17 16:57:51	0.32939	0.02203		3750.001	99.8	May 20	04:51:58	0.31988	0.03687
3733.005 99.8	May 17 19:57:00	0.32618	0.02200		3750.101	24.3	May 20	04:36:59	0.44352	0.03674
3733.006 99.8	May 17 21:10:40	0.27260	0.02193		3750.102	99.8	May 20	04:53:18	0.36990	0.03620
3733.101 24.3	May 17 15:48:06	0.39628	0.02620		3751.001	24.3	May 20	14:40:19	0.39605	0.03699
3733.102 99.8	May 17 16:13:44	0.19626	0.02623		3751.002	99.8	May 20	14:49:20	0.37497	0.02682
3733.103 99.8	May 17 16:20:23	0.22751	0.02608		3751.002	99.8	May 20	14:49:20	0.37497	0.02682
3733.104 99.8	May 17 16:48:52	0.26397	0.02603		3751.101	24.3	May 20	14:29:47	0.36047	0.03670
3733.105 99.8	May 17 19:58:52	0.23118	0.02637		3751.102	99.8	May 20	14:47:29	0.29108	0.03634
3733 106 99 8	May 17 21:06:57	0 19146	0.02638		3752.001	99.8	May 20	19.56.29	0 36549	0.02654
3734 001 24 3	May 17 23:15:51	0.40421	0.03298		3755.001	24.3	May 21	06.13.11	0.38612	0.02631
3734 002 99 8	May 17 23:24:09	0.30299	0.02189		3756 001	99.8	May 21	07:36:12	0.37228	0.02011
3734 003 99 8	May 17 23:51:12	0.32104	0.02195		3756.002	99.8	May 21	20:04:22	0.34034	0.03738
3734 101 24 3	May 17 23:05:24	0.32648	0.02599		3756.003	99.8	May 21	20:32:13	0.36698	0.02657
3734 102 99 8	May 17 23:30:47	0.23682	0.02604		3756 101	99.8	May 21	07:30:36	0.36498	0.02037
3734 103 99 8	May 17 23:30.47 May 17 23:44:50	0.21704	0.02604		3756 102	99.8	May 21	20:07:42	0.30996	0.02222
3735 001 24 3	May 18 01.21.07	0.41174	0.02011		3756 103	00.8	May 21	20.07.42 20.22.32	0.30933	0.03333
3735 002 24 3	May 18 02:21:15	0.38299	0.03333		3757.001	24.3	May 22 May 22	00.15.33	0.36717	0.02625
3735.002 24.5	May 18 02:27:37	0.31697	0.02216		3757.002	00.8	May 22	00:24:52	0.30298	0.02617
3735.003 77.8	May 18 03:07:12	0.31027	0.02210		3757.002	00.8	May 22	01.04.23	0.29509	0.02017
3735 101 24 3	May 18 $02.12.46$	0.30289	0.02190		3757.003	00.8	May 22	02.20.36	0.29309	0.02027
3735 102 24.3	$M_{\rm av} 18 02.12.40$	0.35556	0.03707		3757.004	00.8	May 22	02:20:30	0.32220	0.02033
3735 102 24.3	$M_{\rm av} 18 02.13.33$	0.17022	0.02580		3757.005	00.8	May 22	04.37.48	0.29723	0.02037
3735.103 99.8	May 18 02:29:52	0.17922	0.02507		3757.000	00.8	May 22	04.37.48	0.20408	0.02055
3735.104 99.8	May 18 $02.39.09$ May 18 $04.10.23$	0.23601	0.02597		3757.101	99.0 00.9	May 22	00.47.10	0.34147	0.02303
3733.103 99.8	May 18 05:07:54	0.22307	0.02387		3757 102	99.0	May 22	01.01.10	0.32739	0.02342
3737.001 24.3	May 18 $10.14.20$	-0.06761	0.03291		3757.103	99.0	May 22	02.22.38	0.30104	0.02300
3737.002 24.3	May 18 10.14.20	0.00040	0.03100		3757.104	99.0 00.0	May 22	03.40.42	0.31312	0.02380
3737.101 24.3	May 18 05:02:50	-0.00209	0.03075		2750.001	99.0 04.2	May 22	04:40:30	0.29381	0.02588
3737.102 24.3	May 18 05:05:25	0.00133	0.03719		3739.001	24.5	May 22	00:23:20	0.34339	0.02027
3737.103 24.3	May 18 10:15:33	-0.04302	0.03740		3759.002	24.5	May 22	07.31.03	0.31392	0.02027
3737.104 24.3	May 18 14:00:49	-0.04333	0.03727		3759.003	99.0	May 22	07.48.20	0.29102	0.02017
3739.001 24.3	May 10 14.09.40	0.49072	0.03098		3739.004	99.0	May 22	12.24.00	0.29372	0.02044
3739.002 24.3	May 18 14:11:17	0.44631	0.02191		3739.003	99.0	May 22	12:34:09	0.32897	0.02028
3739.101 24.3	May 18 12:45:36	0.46932	0.03077		3739.000	99.0	May 22	14:10:00	0.33207	0.02071
3739.102 24.3	May 18 15:57:29	0.41182	0.03097		3739.007	99.0	May 22	14:55:12	0.30728	0.02072
3740.001 24.3	May 18 14:58:17	0.45227	0.02350		3759.101	24.3	May 22	00:15:55	0.37415	0.02247
3740.002 99.8	May 18 15:08:15 May 18 14:47:51	0.33927	0.02407		3739.102	99.0	May 22	07:43:30	0.32008	0.02370
3740.101 24.3	May 18 14:47:51 May 18 15:06:21	0.38932	0.03703		3759.103	99.8	May 22	12.25.24	0.34903	0.02388
3740.102 99.8	May 18 15:00:51 May 18 17:21:10	0.24091	0.03088		3739.104	99.0	May 22	12:23:34	0.39949	0.02579
3742.001 99.8	May 18 17:21:19 May 18 16:27:51	0.39097	0.03130		3739.103	99.0	May 22	14:17:43	0.38792	0.02802
3742.101 24.3	May 18 10:57:51	0.42012	0.03070		3762.001	24.5	May 22	20:44:27	0.34091	0.03/03
3/42.102 24.3	May 18 10:50:49	0.39437	0.03091		3703.001	24.5	May 22	22:40:42	0.30998	0.03085
3/42.103 99.8	May 18 17:20:08	0.19480	0.03/10		3764.001	24.3	May 23	01:00:58	0.35329	0.03/18
3/42.104 99.8	May 18 17:42:37	0.28605	0.03697		3/64.002	99.8	May 23	01:31:38	0.35729	0.03/42
3/40.001 99.8	May 19 20:14:14	0.41596	0.03/69		3/04.003	99.8	May 23	01:36:12	0.2/144	0.02632
5/4/.001 24.3	Way 19 22:55:19	0.3/011	0.03079		3/04.004	99.8	May 23	03:04:25	0.34072	0.02633
5/4/.002 99.8	May 19 23:08:40	0.28526	0.03038		3/04.005	99.8	May 23	04:12:52	0.28///	0.02642
5/4/.101 24.3	May 19 22:21:13	0.42867	0.03096		3/04.006	99.8	May 23	05:44:15	0.28003	0.02635
5/4/.102 24.3	May 19 22:46:29	0.40001	0.03040		3/04.101	99.8	May 23	01:44:25	0.30333	0.02439
3/4/.103 99.8	May 19 23:06:05	0.29252	0.03068		3/04.102	99.8	May 23	03:12:58	0.32076	0.0244/
5/48.001 99.8	May 20 00:59:41	0.35331	0.03638		3/64.103	99.8	May 23	04:22:03	0.33652	0.02558
5/48.101 24.3	May 20 00:32:40	0.43307	0.03641		3/64.104	99.8	May 23	05:51:39	0.3/200	0.02667
5/48.102 99.8	May 20 01:01:17	0.26406	0.03634		3/65.001	24.3	May 23	07:29:18	0.38523	0.02625
				-						

					_						
3765.002 99.8	May 23	08:33:43	0.33304	0.02632		3780.014	99.8	May 26	03:22:08	0.25167	0.02628
3765.003 99.8	May 23	10:09:03	0.27023	0.02643		3780.015	99.8	May 26	03:27:19	0.28158	0.02629
3765.101 99.8	May 23	08:57:04	0.33622	0.02446		3780.101	24.3	May 25	19:22:21	0.29627	0.02462
3765.102 99.8	May 23	09:59:46	0.31296	0.02429		3780.102	99.8	May 25	19:59:17	0.21633	0.02432
3765 103 99 8	May 23	11.08.47	0.17923	0.02439		3780 103	99.8	May 25	20:08:54	0.25876	0.02415
3767 001 24 3	May 23	14.04.38	0.38075	0.02634		3780 104	99.8	May 25	21:03:43	0.25651	0.02439
3767 002 99 8	May 23	14.04.50 14.14.53	0.24809	0.02615		3780 105	99.8	May 25	21:03:43	0.23031	0.02439
3767.002 99.0	May 23	15.04.10	0.24007	0.02613		3780 106	00.8	May 25	22:00:57	0.22063	0.02440
3767 101 99 8	May 23	14.12.20	0.22497	0.02034		3780.100	00.8	May 25	22:00:37	0.22705	0.02475
3767 102 99 8	May 23	14.12.27 14.40.17	0.22003	0.02370		3780 108	99.0	May 25	22.10.23	0.24154	0.02403
3769 001 24 3	May 23	$01 \cdot 12 \cdot 25$	0.20007	0.02437		3780.100	00.8	May 25	22.12.11	0.19056	0.02400
3769 002 99 8	May 24	01.12.23 01.30.42	0.28642	0.02037		3780 110	00.8	May 25	23.16.01	0.12030	0.02402
3760.002 99.8	May 24	01.30.42 01.47.06	0.26501	0.02649		3780.111	00.8	May 25	00.12.20	0.22784	0.02402
3769.003 99.8	May 24	03.25.22	0.20301	0.02049		3780.111	00.8	May 26	00:12:29	0.22784	0.02469
3760 005 008	May 24	05:40:35	0.24737	0.02034		3780.112	00.8	May 26	01:40:08	0.20311	0.02404
3760 006 00 8	May 24	08.10.35	0.25080	0.02012		3780.113	00.8	May 26	01.40.08	0.22225	0.02490
3760 101 00 8	May 24	01.32.07	0.27505	0.02055		3780.114	00.8	May 26	01.34.49	0.23326	0.02490
3709.101 99.8	May 24	01.32.07	0.33702	0.02334		3780.115	99.0	May 20	03.23.36	0.25520	0.02473 0.02474
3769.102 99.8	May 24	01:44:20	0.34037	0.02439		3780.110	99.0 04.2	May 26	05:30:11	0.13813	0.02474
3709.103 99.8	May 24	05:20:39	0.33277	0.02441		3781.001	24.5	May 26	00:27:13	0.39722	0.03/10
3709.104 99.8	May 24	03:43:31	0.39188	0.02424		3784.001	24.3	May 26	10:06:16	0.20120	0.03777
3709.103 99.8	May 24	08:15:19	0.32872	0.02420		3784.002	99.0	May 20	10:00:10	0.29373	0.05/52
3770.001 24.3	May 24	09:35:00	0.31487	0.02031		3784.003	99.8	May 20	10:15:50	0.30844	0.030/4
3770.002 24.3	May 24	10:25:41	0.34973	0.03723		3784.004	99.8	May 26	10:33:26	0.20964	0.03/11
3770.003 99.8	May 24	10:41:45	0.26174	0.02622		3784.101	99.8	May 26	10:04:30	0.25/38	0.02428
3770.102 99.8	May 24	12:09:57	0.30442	0.02446		3784.102	99.8	May 26	10:09:07	0.20359	0.02427
3774.001 24.3	May 25	02:44:57	0.32527	0.02626		3/84.103	99.8	May 26	10:31:59	-0.06244	0.02430
3774.002 99.8	May 25	03:15:21	0.24924	0.02633		3787.001	24.3	May 26	16:06:13	0.36262	0.03734
3774.003 99.8	May 25	03:24:52	0.22566	0.02625		3787.002	99.8	May 26	16:40:27	0.25171	0.03/18
3/74.101 99.8	May 25	03:19:42	0.36931	0.02420		3/8/.101	24.3	May 26	15:24:04	0.33500	0.02458
3776.001 24.3	May 25	09:34:35	0.32442	0.03743		3787.102	24.3	May 26	16:03:39	0.35602	0.02455
3778.001 99.8	May 25	13:51:06	0.08417	0.03658		3793.001	24.3	May 27	00:07:34	0.34507	0.03669
3778.002 99.8	May 25	14:14:04	0.07757	0.02611		3793.002	99.8	May 27	00:39:50	0.29602	0.03685
3778.101 99.8	May 25	14:00:10	0.27708	0.02472		3793.003	99.8	May 27	00:43:56	0.23034	0.03/19
3778.102 99.8	May 25	14:16:52	0.25065	0.02474		3793.004	99.8	May 27	01:03:37	0.31687	0.03678
3779.001 24.3	May 25	16:40:05	0.32666	0.02622		3793.005	99.8	May 27	03:09:04	0.25005	0.02613
3779.002 99.8	May 25	16:51:43	0.05934	0.02634		3793.006	99.8	May 27	03:15:11	0.31590	0.02630
3779.003 99.8	May 25	16:55:25	0.04982	0.02604		3793.007	99.8	May 27	05:23:31	0.29782	0.02616
3779.004 99.8	May 25	17:09:16	0.04854	0.02616		3793.008	99.8	May 27	05:32:29	0.24685	0.02641
3779.005 99.8	May 25	17:38:11	0.05608	0.02648		3793.009	99.8	May 27	07:32:08	0.29172	0.02617
3779.006 99.8	May 25	18:00:19	0.05107	0.03359		3793.010	99.8	May 27	07:39:39	0.25888	0.02633
3779.101 99.8	May 25	16:50:19	0.29361	0.02506		3793.101	24.3	May 26	23:57:13	0.33018	0.03424
3779.102 99.8	May 25	17:07:41	0.23115	0.02416		3793.102	99.8	May 27	00:48:45	0.30489	0.03550
3779.103 99.8	May 25	18:03:39	0.20987	0.02247		3793.103	99.8	May 27	00:51:14	0.30142	0.03541
3780.001 24.3	May 25	19:31:06	0.41072	0.02708		3793.104	99.8	May 27	03:11:35	0.27017	0.02522
3780.002 99.8	May 25	19:57:44	0.30448	0.02612		3793.105	99.8	May 27	03:23:16	0.22861	0.02514
3780.003 99.8	May 25	20:01:32	0.28904	0.02617		3793.106	99.8	May 27	05:26:52	0.22071	0.02522
3780.004 99.8	May 25	21:02:10	0.31155	0.02633		3793.107	99.8	May 27	05:40:42	0.20381	0.02531
3780.005 99.8	May 25	21:05:13	0.23729	0.02616		3793.108	99.8	May 27	07:36:13	0.25691	0.02524
3780.006 99.8	May 25	21:59:15	0.28732	0.02632		3793.109	99.8	May 27	07:50:49	0.25691	0.02524
3780.007 99.8	May 25	22:02:22	0.26756	0.02641		3796.001	24.3	May 27	15:41:17	0.30001	0.02613
3780.008 99.8	May 25	23:05:24	0.25893	0.02642		3796.002	99.8	May 27	16:29:27	0.25584	0.02600
3780.009 99.8	May 25	23:08:43	0.22689	0.02635		3796.003	99.8	May 27	18:51:29	0.25061	0.02646
3780.010 99.8	May 26	00:29:20	0.25444	0.02629		3796.101	24.3	May 27	14:21:09	0.40073	0.05458
3780.011 99.8	May 26	00:32:53	0.25226	0.02627		3796.102	24.3	May 27	15:32:40	0.29091	0.02451
3780.012 99.8	May 26	01:35:43	0.24627	0.02618		3796.103	99.8	May 27	16:15:45	0.24579	0.02516
3780.013 99.8	May 26	01:46:07	0.23762	0.02643		3796.104	99.8	May 27	19:19:45	0.17259	0.02517
					I						

3797.001	24.3	May 27	20:58:15	0.38870	0.02629
3797.002	24.3	May 27	21:38:42	0.35194	0.02636
3797.003	99.8	May 27	22:20:48	0.24180	0.02637
3797.101	24.3	May 27	20:52:34	0.37761	0.02142
3797.102	24.3	May 27	21:16:33	0.34148	0.02214
3797.103	99.8	May 27	22:30:03	0.20974	0.02538
3797.104	99.8	May 27	22:38:34	0.21012	0.02537
3798.001	24.3	May 27	23:37:10	0.39435	0.02696
3798.101	24.3	May 27	23:14:30	0.35898	0.02459
3799.001	24.3	May 28	00:47:26	0.41027	0.03703
3799.002	99.8	May 28	01:21:15	0.25486	0.02622
3799.003	99.8	May 28	03:19:05	0.20971	0.02648
3799.004	99.8	May 28	05:31:52	0.28786	0.02658
3799.005	99.8	May 28	07:27:56	0.24704	0.02625
3799.009	99.8	May 28	09:57:39	0.01978	0.02659
3799.101	24.3	May 28	00:34:05	0.37344	0.03489
3799.102	99.8	May 28	01:12:37	0.27987	0.02521
3799.103	99.8	May 28	03:27:06	0.27554	0.02522
3799.104	99.8	May 28	05:20:55	0.25642	0.02530
3799.107	99.8	May 28	10:00:28	0.03165	0.02549
3801.001	24.3	May 28	13:05:43	0.39621	0.02640
3801.002	24.3	May 28	13:34:49	0.34855	0.02643
3801.003	99.8	May 28	14:14:17	0.27028	0.02638
3801.004	99.8	May 28	16:08:55	0.29479	0.02641
3801.101	24.3	May 28	12:58:31	0.37862	0.02866
3801.102	24.3	May 28	13:30:10	0.34989	0.02298
3801.103	99.8	May 28	14:11:47	0.28212	0.02539
3801.104	99.8	May 28	16:16:51	0.25143	0.02558
3803.001	24.3	May 28	22:31:04	0.27198	0.02551
3803.002	24.3	May 28	22:57:35	0.32013	0.02604
3803.003	99.8	May 28	23:17:34	0.17682	0.02562
3803.004	99.8	May 28	23:34:00	0.20470	0.02581
3803.005	99.8	May 28	23:48:52	0.21024	0.02596
3803.006	99.8	May 29	01:37:48	0.26030	0.02607
3803.007	99.8	May 29	03:38:23	0.21274	0.02635
3803.008	99.8	May 29	05:53:28	0.19314	0.02628
3803.009	99.8	May 29	07:35:48	0.19775	0.02645
3803.010	99.8	May 29	09:46:51	0.17026	0.02648
3803.101	24.3	May 28	22:27:55	0.32016	0.02471
3803.102	24.3	May 28	22:50:20	0.33720	0.02273
3803.103	99.8	May 28	23:25:41	0.27332	0.02636
3803.104	99.8	May 29	01:53:55	0.23474	0.02649
3803.105	99.8	May 29	03:48:24	0.23105	0.02659
3803.106	99.8	May 29	05:38:41	0.20028	0.02650
3803.107	99.8	May 29	07:45:28	0.25142	0.02668
3803.112	99.8	May 29	10:58:45	0.24287	0.04664
3809.001	24.3	May 29	20:38:35	0.28532	0.02647
3809.002	24.3	May 29	21:11:07	0.29378	0.02590
3809.003	99.8	May 29	21:28:58	0.20815	0.02623
3809.101	24.3	May 29	20:07:11	0.24136	0.02558
3809.102	24.3	May 29	20:33:20	0.27323	0.01840
3809.103	24.3	May 29	21:04:28	0.27664	0.02583
3809.104	99.8	May 29	21:27:19	0.15123	0.02613
3810.001	24.3	May 30	00:34:34	0.25829	0.02580
3810.002	99.8	May 30	01:39:16	0.17282	0.02611
3810.003	99.8	May 30	06:23:57	0.17846	0.02640

3810.004 99.8	May 30	07:49:01	0.20640	0.02633
3810.101 24.3	May 30	00:29:13	0.22010	0.02032
3810.102 99.8	May 30	01:44:50	0.11567	0.02593
3810.103 99.8	May 30	06:21:49	0.13479	0.02628
3810.104 99.8	May 30	07:47:16	0.09474	0.02647
3811.002 99.8	May 30	13:15:02	0.00321	0.03041

REFERENCES

- 1. C. E. Allgower et al., *Phys. Rev. D*, **65**, 092008 (2002).
- 2. J. Tojo et al., Phys. Rev. Lett., 89, 052302 (2002).
- 3. T. L. Trueman, *hep-ph/0305085* (2003).
- 4. W.R. Lozowski and J.D. Hudson, *NIM in Physics Research*, A334, 173 (1993).
- 5. I.G. Alekseev et al., *AIP Conf. Proc.*, **675**, 812 (2003).
- 6. H. Paul (2003), original data of the stopping power for the light ions was taken from the web site: www.exphys.uni-linz.ac.at/stopping.
- 7. D. Kawall, Muon g-2 note No322 (1998).