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A computer code to measure the Beam Emittance and Beam Parameters of
the ATR Line

N. Tsoupas, W. Glenn,  S. Tepikian, W. Mackay,  L. Ahrens

Abstract

During beam injection from the Alternating Gradient Synchrotron (AGS)  to the
Relativistic Heavy Ion Collider (RHIC), the beam parameters (βx,y ,α x,y) of the AGS to RHIC
(ATR) transfer line [1,2,3,4] at the RHIC injection point1, should “match” those of the RHIC
synchrotron at the same point.
A good beam “matching” requires the knowledge of the optics of the ATR transfer line, which
depends partly on the beam parameters (βx,y ,α x,y) at the origin of the ATR transfer line.
These beam parameters were originally determined with theoretical calculations [5] (before the
installation of the ATR line), and presently, (after the completion of the ATR line) can be
determined experimentally.
This note addresses the following tasks:
a) Outlines the theory of a method which is currently used to obtain the beam parameters

(βx,y, α x,y) and the transverse beam emittance (εx,y) at any given point along the ATR line.
b) Provides a description of the computer code which uses an algorithm based on the theory

described in (a) above, to calculate these beam parameters.
c) Presents values of the emittance and beam parameters that have been calculated by using

measured beam profiles as input data in the computer code mentioned in (b) above, and
compares the beam parameters with theoretically calculated ones.

d) Provides suggestions on future improvements of the computer code and on data collection
methods which will enable the experimental determination of the dispersion functions

( yx,η , '
,yxη ).

Theoretical Formalism of the Method for the Measurement of Beam
Emittance and Beam parameters in a Beam Transfer Line

The method which is applied to measure the beam parameters/emittance is based upon
two main assumptions.
First the beam transport is accomplished with zeroth order (drift space, and dipole) and first
order (quadrupole) magnetic elements, and second, the particle distribution within the beam is
“normal” (Gaussian) in any of its phase-space coordinates.
The first assumption is expressed by the relation

rout = Rrin             (1)

                        
1 The RHIC injection point is defined here along the RHIC ideal closed orbit and at distance 0.197 m from
the exit of the Lambertson type injection septum magnet. MAD8_lat_blue-atr.madout
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The symbols R in eq. 1 represents the 6x6 linear matrix which transforms the phase space

coordinates rin=(x,x’,y,y’,δl/l,δp/p) of a single particle at the entrance of a magnetic element or
beam line to those coordinate rout=(x,x’,y,y’,δl/l,δp/p)  at the exit of the beam line, under a linear
transformation.
Under the second assumption the beam distribution at any point along the transport line, can be
described mathematically by a six dimensional beam ellipsoid which can be expressed by a 6x6

symmetric matrix (the σ-matrix). This beam ellipsoid transforms between two points along the
beam line by the transformation shown in the relation (2).

σout=RσinRT (2)

In equation 2 above, σin is a 6x6 matrix which represents the six dimensional beam ellipsoid [6]
at the entrance of  a linear magnetic element or a beam line which consists of linear elements,

and σout the beam ellipsoid at the exit of the magnetic element or the beam line.
It is the property of a “normal” distribution to transform into another “normal” distribution under
a linear transformation shown by the relation (2).

The symbol R is the linear transport matrix (R-matrix) and depends on the location, the

geometry, and the strength of the magnetic elements of the beam line. The symbol RT  in the

relation (2) represents the transpose matrix of R .
A complete description of the beam ellipsoid represented by the σ-matrix requires the

knowledge of 36 elements. The symmetry (σij =σji ) of the σ-matrix reduces the number of
elements to 21 and the following assumptions (1 to 3 below) reduce the number of the unknown
elements to 9.
1) The initial beam ellipsoid is uncoupled (the x,x’ coordinates are not correlated with any of

the y,y’ coordinates).
2) The beam transport line is free of linear coupling (both the dipoles and the quadrupoles

maintain midplane symmetry thus introducing no skew quadrupole component).
3) No beam acceleration is taking place along the beam line which consist of magnetic elements

only.
 These assumptions reduce the σ-matrix of the beam ellipsoid, and the R-matrix into the matrices
shown in the equations (3) an (4) below which show explicitly the non-zero matrix elements.
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The correspondence between the subscripts appearing in equations 3 and 4 and the physical
quantities they represent is given by the relation (5) below

                           (1,  2,  3,  4,  5, 6) <=> (x,  x’,  y,  y’, δl/l, δp/p)    (5)

The physical meaning of the elements of the σ-matrix is given below:

(σ11)1/2 =  (x)sd        (the standard deviation of the particle distribution in x)

(σ22)1/2 = (x’)sd       (the standard deviation of the particle distribution in x’)

(σ66)1/2 = (δp/p )sd  (the standard deviation of the particle distribution in δp/p)

(σ12)    is related to the correlation coefficient (r12) of (x,x’) coordinates  (r12)=(σ12)/(σ11σ22)
1/2

and providesinformation on the orientation of the ellipse which is the projection of the
coordinates of the beam ellipsoid on the x,x’ plane.

(σ16)    is related to the correlation coefficient (r16) of (x,δp/p) coordinates (r16)=(σ16)/(σ11σ66)
1/2

 and provides information on the orientation of the ellipse which is the projection of the
 ellipsoid in the x,δp/p plane.

The relation   σ16=ηxσ66 is also valid (APPENDIX 1) where ηx is the dispersion
function.

(σ26)    is related to the correlation coefficient r26 of (x’,δp/p)  coordinates (r26)=(σ26)/(σ22σ66)
1/2

and provides information on the orientation of the ellipse which is the projection of the
ellipsoid in the x’,δp/p plane.
The relation   σ26=

'
xη σ66 is also valid (APPENDIX 1) where '

xη is the angular dispersion

function.

Similar interpretation holds for the rest of the elements of the σ-matrix.

The R-matrix elements which appear in equations (1) and (2), are the first order coefficients of
the Taylor series expansion of the output coordinates in terms of the input coordinates.
For example:

xi,out =( ∂ xi,out/ ∂ xj,in)xj,in = Ri,j xj,in (6)
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In the equation (6) above, the notation shown in (7) is assumed and the summation over repeated
indices is implied.

(x1,x2,x3, x4, x6 )ó(x, x’,y, y’, δp/p)   (7)

The assumptions made earlier, greatly simplify the expression of the beam ellipsoid in terms of
the σ-matrix as well as the transformation of the beam ellipsoid by equation (2).
For example the general form of the (σ11)out matrix element as derived from equation (2) is
given by:

(σ11)out = (R11)
2(σ11)in + 2(R11) (R12)(σ12)in + (R12)

2(σ22)in

               + 2(R11) (R16)(σ16)in + 2(R12) (R16)(σ26)in + (R16)
2(σ66)in    (8a)

(σ33)out = (R33)
2(σ33)in + 2(R33) (R34)(σ34)in + (R34)

2(σ44)in

+ 2(R33) (R36)(σ36)in + 2(R34) (R36)(σ46)in + (R36)
2(σ66)in     (8b)

At regions of the beam line where the dispersion and angular dispersion (ηx,y,
'
,yxη ) are both

equal to zero and the beam ellipsoid is matched to the beam parameters of the beam line
(achromatic beam) the expressions in equation (8a and 8b) are further simplified (see
APPENDIX 1) to:

(σ11)out = (R11)
2(σ11)in + 2(R11) (R12)(σ12)in + (R12)

2(σ22)in       (9a)

with the corresponding expression for the vertical plane (y-plane) given by:

(σ33)out = (R33)
2(σ33)in + 2(R33) (R34)(σ34)in + (R34)

2(σ44)in       (9b)

Equation 9a indicates that at least three independent measurements of the  (σ11)out should be
performed in regions of the beam line where the beam is achromatic, in order to determine the
following quantities.

(xsd)in  = [(σ11)in]
1/2 (10)

(x’sd)in = [(σ22)in]
1/2 (11)

εx  = [ (σ11)in(σ22)in - (σ12)in
2 ]1/2 (12)

(βx) in  = [(σ11)in] /[ (σ11)in(σ22)in - (σ12)in
2 ]1/2=    (σ11) in/εx (13)

(αx) in  =-[(σ12)in] /[ (σ11)in(σ22)in - (σ12)in
2 ]1/2=−(σ12) in/εx (14)

The equations (12) to (14) above are used to determine the emittance (εx) and beam parameters

(βx ,αx) at the entrance of the beam line.
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The emittance (εx) as expressed by eq. (12) is the area of the (x,x’) phase space occupied by
68% of the particles. This quantity is invariant under the assumptions made earlier (linear
transport, no linear coupling).
Similar equations, like equations (10) to (14), are also valid for the corresponding physical
quantities of the (y,y’)-plane.

Implementation of the Method to calculate beam emittance/parameters

The determination of  the beam emittance (εx,y) and the beam parameters (βx,y, αx,y)
requires a minimum of six beam profile measurements (three beam profiles for the horizontal
quantities and three for the vertical).
A beam profile, is the projection of the phase space coordinates of the particles within the beam
ellipsoid, on the x-axis (horizontal beam profile) or the y-axis (vertical beam profile) and is
obtained by devices called “flag profile monitors” or “flags”.
A “flag” measures the beam distribution on a the x-plane and/or y-plane, which are transverse to
the beam direction. The projection of such a distribution on the x or y axis provides the required
beam profiles from which the standard deviation of the particles distribution can be calculated.
A typical  horizontal and vertical beam profile which was obtained by a “flag” is shown in fig 1.
The beam profiles of the ATR line are obtained with a set of three flags (UF3, UF4, and UF5)
which are located along the U-line straight section2 which follows the 80 bend, and a second set
of three flags (WF1, WF2, WF3) which are located along the W-line straight section which
follows the 200 bend.

In both straight sections of the ATR-line, mentioned above, the dispersion functions (ηx,y,
'
xη ) are

equal to zero, and proper beam matching should yield an achromatic beam. Therefore the
relations (9a) and (9b) above are valid.

The following steps are taken to obtain the required beam profiles for the computation of the
beam emittance and beam parameters.

1. The beam transport along the ATR line must be acceptable. (Minimum beam losses and
the beam trajectory as measured with the BPM’s of the ATR line is well centered).

2. The magnet_file containing the present settings of the magnets of the ATR line has been
written (“saved”) in the directory
“/operations/app_store/Magnet/save/magnet_setting_file_name of your choise”.
The saved magnet file ”magnet_setting_file_name of your choise” and the path directory
leading to the “saved” file, will also resides in the “magnet manager” application.
This information of the  saved ”magnet_setting_file_name of your choise” and the path
directory will also be written on a file by the “ATR Flag Profile Monitor” application
(see next step) to be used for the calculation of the first order R-matrix elements
mentioned earlier.

                        
2 A phase advance of 1200 between the locations of two consecutive flags minimizes the error in the computation of
the emittance [7].
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3. In the “StartUp” menu call the application /start/AGS_Applications/ATR Flag Profile
Monitor.

4. Using this application choose a particular flag among the flags mentioned earlier (UF3,
UF4,UF5, WF1, WF2, WF3) and “connect” this flag with one of the four available
“frame grabers” (fg1,fg2,fg3,fg4)3.

5. Insert this flag in the beam line and obtain the x and y beam profiles.
Observe the fits that the “ATR Flag Profile Monitor” application performs to both x and
y beam profiles to a Gaussian distribution.
Make sure that the beam profiles do not “saturate the flag with the emitted light” and the
beam profile “tails” sit on a “reasonable” background.
To eliminate any saturation and improve the background, adjust the “attenuation_level”
and the “black level” respectively. Both adjustments can be made through the “ATR Flag
Profile Monitor” application.
Record the optimum settings of the “attenuation_level” and the “black level”.
A reasonably good fit of a Gaussian to an experimental beam profile is sown in figure 1.

6. Repeat steps 4 and 5 with a different “flag” connected to the same or a different frame-
grabber.

7. When steps 5 and 6 are completed, turn on “emit” in the “ATR Flag Profile Monitor”
application window and obtain the beam profiles with a particular flag/frame-grabber
combination. The flag application fits Gaussian curves to the beam profiles and computes
 the standard deviations of the horizontal and vertical profiles.
After the Gaussian fits are performed on the beam profiles, the following information is
written on a file:
a) name of the flag (uf1, or uf2 etc….)
b) horizontal and vertical standard deviations of the beam profiles
c) the magnet file and the path to the magnet file (obtained from the magnet manager;

see step 2).
The inclusion of the "magnet file name” with each beam profile measurement is
necessary, because the beam profiles may be taken with different magnet settings. In
this case the “magnet file name” should also be saved using the  “magnet manager”
application (see step 2) prior to each profile measurements.

The above information a) b), c) is written in a single line in a file which has a “time-
stamp” for file name; for example, “Tue_Apr-04-2000_17-20-33”.
This file resides  in the directory /operations/app_store/FPM/fpmChart/Emit/
Repeat steps 4 to 6 to obtain additional profiles with the same flag. When a good set of
profiles is obtained turn off “emit” in the flag application.

8. Retract the flag used in step 7 above and repeat step 7 with a different flag/frame-grabber
which was selected in step 4 and 5 combination.
Remember to apply the optimum settings of the “attenuation_level” and the “black level”
as determined in step 5 for this particular flag/frame-grabber combination.

9. Repeat step 8 until all required beam profiles are obtained.

                        
3 At the present time there are four frame grabbers available.



7

emit_ATR: A program to calculate Beam Emittance and Parameters in the
ATR Transfer Line. (Description and Operation of the Program)

This program is written in a C++ computer language and calculates the beam emittance
and beam parameters from beam profiles collected at various locations of the ATR transfer line.
The algorithm used by the program is based on the formalism described in a previous section.
The flow-chart diagram of the computer program is shown in figure 2 and is discussed below.

1. Upon the execution of the program “emit_ATR” the program asks the user for the file
name of the file which contains the profiles that were collected using the flag profile
application mentioned earlier.

2. The code asks the user for the location along the ATR line where the emittance and the
beam parameters should be calculated.
This location should exist under a particular name (for example “begin” for the location
at the beginning of the ATR line, “uf1” for the location of the flag UF1 etc) in the
transport code which is used to calculate the matrix elements Rij which are used in
equations (9a) and (9b) above.

3. The code calculates the first order matrix elements Rij between the location provided in
step 2 above, and the particular flag. These matrix elements are based on the magnet file
which is associated with the optics of the ATR line at the instant the profiles were taken
(see step 2 in previous section), and are calculated by the computer code “bl” [8] of the
ATR line or the MAD computer code [9] which are both set to describe the first order
optics of the ATR line.
The user selects “bl” or “MAD”, to be used in the calculations of the first order matrix
elements.

4. The code displays on the terminal and prints on a file “emit.res” the emittance (εx, εy),
and the beam parameters at the “start” location chosen in step 2 and at the location of the
flags which were used in the emittance calculations.

Some Results from the beam emittance/parameters measurement

Emittance measurements using the ATR transfer line were performed during the commissioning
of the ATR line [7].
Some recent results from the beam emittance/parameters measurements which were performed
during the RHIC 2000 run, are shown in Table 1.
The beam parameters shown in Table 1 (columns 2 to 5) correspond to those at the beginning of
the ATR-line.
The first column in TABLE 1 shows the measurement # and the flags which were used in the
measurements. In particular the results of the first row labeled “1  u&w-flags“ correspond to the
measurements performed with the flags uf3, uf4, uf5, of the U-line, and wf1, wf2, wf3 of the W-
line.
Both sets of flags (u and w) are in regions where the dispersion functions (ηx,y,

'
xη ) are assumed

to be zero.
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The results of the second and third lines in TABLE 1 correspond to flag measurements of the U-
line only, and W-line only, respectively. The data in each of the rows (2,3,4), were taken on
different dates.
The last row of the Table 1 shows the theoretically calculated beam parameters [5], at the same
location (beginning of the ATR-line).

Table 1
Meas # βx[m] αx βy[m] αy ε x[π.m.rad] εy[π.m.rad]

1    u&w-flags 36.7 -4.5 7.7 1.2 7.3 7.6
2          u-flags 28.6 -3.3 10.5 1.5 8.9 7.1
3         w-flags 28.5 -3.4 9.2 0.5 9.8 9.6
Calculations 37.5 -4.1 6.5 0.85

Table 1: The beam parameters at the beginning of the ATR line. The results from the rows 2, 3
and 4 are obtained from calculations based on beam profile measurements. The results from the
row 5 correspond to the calculations based on theory (see text).

The beam parameters at the RHIC Injection Point (corresponding to the measurements of Table
1) are shown in Table 2. These results in Table 2 were obtained from the corresponding results of
Table 1, when the beam parameters are transported, from the beginning of the ATR line to the
RHIC Injection Point, by means of the ATR Transport Matrix.

                                                                 Table 2
Meas # βx[m] αx βy[m] αy

1    u&w-flags 26.3 -1.5 15.5 0.66
2          u-flags 27.3 -1.2 11.3 0.39
3         w-flags 24.8 -1.2 14.2 1.4
Calculations 37.7 -1.75 16.5 0.95

Table 2: The beam parameters at the beginning of the ATR line. The results from the rows 2, 3
and 4 are obtained from calculations based on measurements. The results from row 5 correspond
to the calculations based on theory (see text).

The error corresponding to the value of βx,y is ~20%.
In order to calculate the error, many profile measurements for each of the flags were obtained.
From these measurements an average beam profile xave and a standard deviation xsd was
calculated for each flag, and the error in calculating a particular quantity, δβ in this case, was
calculated using the relation (15) below.

(15)     )(,
, sdi

i

yx
yx x

x
δ

β
δβ ∑ ∂

∂
=

Each of the terms (∂βx,y/∂xi)δ(xi)sd in equation (15) above corresponds to the location of a flag
and was calculated using the maximum absolute value of the difference {β(xave)- β( xave-xsd)}.
This error includes the error due to the fluctuations of the power supplies current which powers
the magnets of the ATR line.
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The errors on the quantities  δαx,y and δεx,y can be calculated in the same way.
We also assumed that the ATR magnets were positioned without any errors along the ATR line.
Any errors due to magnet location must be treated as systematic errors.
An improved method to calculate the errors in beam parameters/emittance has to be implemented
(see following section).

Future work and Improvements

• To incorporate in the emitt_ATR program a routine which computes the error in
calculating the beam parameters and emittance from the error in measuring beam
profiles

The calculation of the horizontal (εx, βx, αx), or vertical (εy, βy, αy), emittance and beam
parameters requires a minimum of three beam profiles which must be obtained at
different locations along the ATR line or at the same location but with different beam
optics (different quad settings) between the “start” location and the “flag”. An error in the
beam parameters/emittance based on only three beam profiles is not reliable.
One way to assign an error in the measured quantities, is to measure a set of more than
three beam profiles. The “emit-ATR” program can currently use a large number (~70) of
beam profiles to compute the required beam emittance and parameters by the method of
least squares. The “chi square” obtained from the solution of n-equations with 3
unknowns can be used in the calculation of the errors of the various physical quantities to
be determined.

• The program “emit_ATR” to be incorporated in the “ATR_Flag Profile Monitor”
application

The program “emit_ATR” is currently running independently of the “ATR_Flag Profile
Monitor” application which provides the required beam profiles. It is however desired to
be integrated into the “ATR_Flag Profile Monitor” application.

• Implement a faster method to measure the beam parameters/beam profiles
The simultaneous insertion of three or four flags (currently there are four frame-grabbers)
can provide all the required beam profiles by using a single bunch in the ATR-line.
In a “single-bunch multiple-flag measurement” the multipole scattering of the beam in
the upstream flags will affect the beam profile at the downstream flags.  The effect of the
multiple scattering can be taken into account although at “high beam energies” (RHIC
injection energies),  this effect is well within the error in calculating the beam emittance .

• Modify the “emit_ATR” program to enable the determination of the dispersion
functions (ηηx)in, (ηη’x))in

The calculations for the beam emittance are based on the equations (9a) and (9b) which
assume that the beam is achromatic at the location of the flags.
In the more general case however, the eq. (8a) and (8b) may be used. In these equation
the assumption that the beam is achromatic at the location of the flags is not valid, and
the beam may be either chromatic or achromatic.

The solution of these more general equations may provide values for the quantities (σ16)in

(σ26)in , and (σ66)in, which in turn can be used to calculate the values and the beam
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momentum spread δp/p {(σ66)in =(δp/p)2} and the dispersion functions (ηx)in and, (η’x)in ,

at the entrance of the beam line { (σ16)in =(ηx)in(σ66)in  and σ26=(η’x)in (σ66)in}.
The profile data from the flags uf3, uf4, uf5, wf1, wf2, wf3 corresponding to the second
row of TABLE 1 indeed provide six equations to calculate the additional three unknowns.
The solution of these equations however could not provide results with physical meaning.
Part of the reason may be the fact that the dispersion function at the locations of the flags
is almost zero, therefore the contribution of the dispersion to the beam profiles is smaller
then the beam-profile measurement error.
A way to alter the situation, is to introduce significant dispersion at the location of the
flags.
The above statements are also true for the vertical plane which, in the ATR line, lacks of
large vertical bends, therefore the beam in this plane is rather achromatic.

• Employ additional flags of the ATR line for beam profile measurements
In addition to the “flags” (UF3, UF4, UF5) of the U-line and the “flags (WF1, WF2, WF3) of
the W-line, there are two more “flags” (UF1, and UF2) located in the upstream section of the
U-line, and four more flags (XF1,XF2, YF1, and YF2) located in the X-line and Y-line
respectively, which are also available and can be used for measurements of the beam profiles.
In this case where the measurements of the beam profiles are performed in regions where the
beam is achromatic (flags UF1, UF2, XF1,XF2) the equations (8a) and (8b) are to be used for
the calculation of the beam parameters.

• Visual presentation of the measured and calculated beam ellipses at the “start”
location, and of the location of the flags

Alternative way of obtaining beam emittance

An alternative method of calculating beam emittance has also been used in the ATR-line.
The method is based (see fig. 3) in varying the quadrupole strength (in this particular case the
UQ13 of the U-line) and measuring the beam profile (horizontal in this case) as a function of the
Quadrupole strength.
The relation between the emittance and the beam profiles at the location of the flags uf4 and uf5
(when a beam waist is formed at uf5) is given by:

εx={[σ11(at uf4)- σ11(at uf5,waist)]@σ11(at uf5,waist)}1/2/s               (16)

In equation 16 the symbol σ11 is the square of the standard deviation of the Gaussian
beam profile and s is the distance between the two flags. It is assumed that the distance between
the location of the flag uf4 and the center of the quadrupole UQ13 is small compared to the
distance s.

The beam profile at the flag uf5 as function of the quadrupole UQ13 strength is shown in
figure 4. The minimum value of the parabolic curve which fits the experimental profiles, is the
beam waist, used in eq. 16.



11

ACKNOWLEDGMENTS
We thank Dr. Steven Peggs for suggesting  the write-up and implementation of the

“emit-ATR” program. We also like to thank him for taking time to check our results, in
calculating the beam parameters and beam emittance, using his own computer code.

REFERENCES

[1]  Focusing and Matching Properties of the AtR Transfer Line
N. Tsoupas et. al. BNL,
PAC97 Vancouver, BC, May 12-16 (1997)

[2] AGS to RHIC Transfer Line: Design and Commissioning
W.W. MacKay et.al. BNL,
European Particle Accelerator Conference 1996 Barcelona Spain (RHIC/AP/103)

[3] Physics of the AGS to RHIC Transfer Line Commissioning
            L. Ahrens et. al. BNL,
        European Particle Accelerator Conference 1996 Barcelona Spain

[4] J. Claus and H. Foelsche “Beam Transfer from AGS to RHIC” RHIC-47, 1988

[5] Closed Orbit Calculations at AGS and Extraction Beam Parameters at H13
       N. Tsoupas, H.W. Foelsche, J. Claus and R. Thern, BNL, Oct. 1994, (AD/RHIC/RD-75)

[6] A First and Second Order Matrix Theory for the Design of Beam Transport Systems and
      Charged Particle Spectometers.
      Karl L. Brown  SLAC REPORT  No. 75

[7] The phase advance between AtR Flags.
     S. Peggs, N. Tsoupas “ (RHIC/AP/79 DEC 1995

[8] An Interactive Beam-Line Simulator Module for RHIC
W. W. MacKay Particle Accelerator Conference  12-16 May 1997 p. 2541

[9] Third-Order Transport. A Computer Program for Designing Charged Particle Beam
Transport Systems.
D. C. Carey et. al.  SLAC-R-95-462 May 1995



12

APPENDIX 1

In this APPENDIX we will prove, for a beam line which is not “linearly coupled”4 the
following two items:
(a) The relations (A1) and (A2) below are valid at any section of the beam line.

σ16=ηxσ66     (A1)

σ26=
'
xη σ66     (A2)

(b) Equations 8a, and 8b are reduced to equations 9a, and 9b at any section of a beam line
where the beam is achromatic ( yx,η =0, '

, yxη =0 and the beam matches the functions of the

beam line).

A σ-matrix at the entrance of a beam line is transformed to a σ-matrix at the exit by means of the
transformation given by eq. (A3)

σout=RσinRT   (A3)

The assumption of non-linear coupling reduces the (A3) equation above to two independent
equations, one describing the transformation on the x-plane, and the other on the y-plane.
The equation which describes the transformation of the beam ellipsoid on the x-plane, is written
explicitly by the matrix-equation (A4) below.

outoutout

outoutout

outoutout

)()()(

)()()(

)()()(

662616

262212

161211

σσσ
σσσ
σσσ

 = 

100
262221

161211

RRR

RRR

•

ininin

ininin

ininin

)()()(

)()()(

)()()(

662616

262212

161211

σσσ
σσσ
σσσ

•
1

0

0

2616

2212

2111

RR

RR

RR

   (A4)

The multiplication of the three matrices at the right hand side of equation (A4) yields the
following expressions for the four matrix elements which are needed to prove items (a) and (b)
above.

(σ11)out=
2

11R (σ11)in+ 12112 RR (σ12)in+
2

12R (σ22)in+ 16112 RR (σ16)in+ 16122 RR (σ26)in+
2

16R (σ66)in     (A5)

(σ16)out= 11R (σ16)in+ 12R (σ26)in+ 16R (σ66)in             (A6)

(σ26)out= 21R (σ16)in+ 22R (σ26)in+ 26R (σ66)in (A7)

(σ22)out=
2
21R (σ11)in+ 22212 RR (σ12)in+

2
22R (σ22)in+ 26212 RR (σ16)in+ 26222 RR (σ26)in+

2
26R (σ66)in   (A8)

The equations (A5) to (A8) express four of the σ-matrix elements at the exit, in terms of the σ-
 σ-matrix elements at the entrance.

                        
4 There is midplane symmetry in all the dipoles and quadrupoles of the beam line.
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In order to prove part (a) of the APPENDIX 1 {relations (A1) and (A2) }, we make the following
assumptions:
a) The incoming beam is achromatic, {(σ16)in=0, (σ26)in=0 } and the beam matches the

dispersion of the transfer-line (ηx=0, '
xη =0).

b) The R-matrix is a “pure” dipole of zero length, which provides the required dispersion
and angular dispersion to the beam.
The R-matrix which describes such a dipole is given by the equation (A9) below.

100

10

01

26

16

R

R

       (A9)

The above two assumptions help separate the dispersive and non-dispersive part of the beam and
is not loss of generality.
The use of the two assumptions above, reduce the equations (A5), (A6), (A7) and (A8) to the
expressions below, which separate the dispersive part of the matrix element from the non-
dispersive.

(σ11)out= (σ11)in+
2

16R (σ66)in     (A10)

(σ16)out= 16R (σ66)in (A11)

(σ26)out= 26R (σ66)in (A12)

(σ22)out= (σ22)in+
2
26R (σ66)in     (A13)

(σ12)out= (σ12)in+ 2616RR (σ66)in     (A14)

Equations (A10) to (A14) show the contribution of the dispersion and angular dispersion
to the σ-matrix. In fact the dispersion (R16, R26), introduced by the dipole of zero length is now
the dispersion (ηx,

'
xη ) of the transfer-line. This is because the beam was matched to the beam

line in front of the dipole5.

Thus the  equations (A10) to (A13) can be written as:

(σ11)out= (σ11)in+( 2
xη )in(σ66)in     (A15)

(σ16)out=( xη )in(σ66)in (A16)

(σ26)out=( '
xη )in(σ66)in (A17)

(σ22)out= (σ22)in+( 2'
xη )in(σ66)in     (A18)

(σ12)out= (σ12)in+ ( xη )in (
'
xη )in (σ66)in     (A19)

                        
5 The beam was achromatic and the dispersion of the line was zero in front of the dipole.
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The first terms of the RHS in equations (A15), (A18) and (A19) above correspond to the
contribution of the non-dispersive part, {namely (σ11)in , (σ22)in , and (σ12)in }, to the matrix
elements (σ11)out , (σ22)out , and (σ12)out and the second terms {( 2

xη )in(σ66)in , (
2'

xη )in(σ66)in  and

( xη )in (
'
xη )in (σ66)in } corresponds to the contribution of the dispersion.

Note that the σ-matrix elements, expressed by the LHS of the equations (A15) to (A19) describe
the same beam ellipsoid expressed by the σ-matrix elements on the LHS, because the dipole
which introduced the dispersion had zero length. It is simply an alternative way of expressing the
matrix elements.

In order to prove part (b) of the APPENDIX 1 we make use of equations (A15) to (A19)
which separate the dispersive part of the σ-matrix from the non-dispersive part.
Thus we make the following substitutions in the RHS of equation (A5).

(σ11)in=> (σ11)in+( 2
xη )in(σ66)in (A20)

(σ22)in=> (σ22)in+( 2'
xη )in(σ66)in (A22)

(σ16)in=> ( xη )in(σ66)in (A23)

(σ26)in= ( '
xη )in(σ66)in (A24)

(σ12)in=> (σ12)in+ ( xη )in (
'
xη )in (σ66)in (A25)

Thus equation (A5) above can be written as:

(σ11)out=
2

11R (σ11)in+ 12112 RR (σ12)in+
2

12R (σ22)in {Non-Dispersive  Contribution}

+ 2
11R ( 2

xη )in(σ66)in+ 12112 RR  ( xη )in (
'
xη )in (σ66)in +

2
12R  ( 2'

xη )in(σ66)in

             + 16112 RR ( xη )in(σ66)in+ 16122 RR ( '
xη )in(σ66)in+2 2

16R (σ66)in-
2

16R (σ66)in

= 2
11R (σ11)in+ 12112 RR (σ12)in+

2
12R (σ22)in {Non-Dispersive  Contribution}

+{ 11R ( xη )in+ 12R ( '
xη )in+ 16R }{ 11R ( xη )in+ 12R ( '

xη )in- 16R +2 16R (σ66)in} (σ66)in (A26)

Substituting the expressions (A23) and (A24) into equation (A6)

(σ16)out= 11R ( xη )in(σ66)in+ 12R ( '
xη )in(σ66)in+ 16R (σ66)in

={ 11R ( xη )in+ 12R ( '
xη )in + 16R }(σ66)in (A27)

The condition of achromaticity at any section of the beam line requires:
(σ16)out=0 and (σ26)out=0
The above condition requires that the terms of the RHS in Equation (A27) sum up to zero.

{ 11R ( xη )in+ 12R ( '
xη )in + 16R }=0    (A28)

The condition (A28) applied to (A26) yields:

(σ11)out =
2

11R (σ11)in+ 12112 RR (σ12)in+
2

12R (σ22)in {Non-Dispersive  Contribution} (A29)
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Figure 1 2D beam profiles and its projections (x,y beam profiles) obtain with the uf5 flag
which is located at the end of the U-line. This window is displayed by the “ATR Flag Profile
Monitor” application. In the “Description” section of the window the standard deviations
“Sigma” of the x,y beam profiles are shown.
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Figure 2. Flow-chart diagram of the program “emit-ATR” which calculates beam emittance
and parameters from beam profiles measured with the “ATR Flaf Profile Monitor” application.

Figure 3. Schematic diagram showing the geometry of the flags and the quadrupole
required to perform emittance measurement. The quadrupole is the rectangular box UQ13, and
the narrow rectangular boxes are the flags uf4 and uf5. The direction of the beam is shown by the
arrow. The distance between the two flags is symbolized by s.

uf4 uf5UQ13

s

Emit_ATR

Calculation of Rij matrix elements between starting Location and each “flag

user selects “MAD” or “bl”

Enter

“Start” Location to calculate

Beam emittance

Emittance and Beam Parameters are Calculated and stored in file emit.res

Enter

Filename with beam profiles
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Figure 4 The standard deviation of the beam profile at the flag uf5 as a function of the
quadrupole UQ13 strength.
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