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Abstract

We examine in detail the use of a family of quadrupoles distributed

over each lattice superperiod to e�ect a reduction of intrinsic resonance

strength and further developed the theoretical basis to understand this

process. We recon�rm previous results which showed that in order to

achieve a complete suppression of these resonances in the AGS can be

accomplished with the addition of a single family of quadrupoles[1].We

then went further to examine the use of multiple families of quadrupoles.

In particular we showed that using tuning quadrupoles already in place

in the AGS that a reduction in resonance strength is possible. Finally

we proved that a simple linear �t can be used to predict the functional

dependence of individual resonances on the integrated �eld strength of the

quadrupoles and developed a full �eld �t over several possible quadrupole

insertions .
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1 Depolarization in the AGS

In the AGS imperfection resonances have been cured using a partial solenoid

snake[2] [5], and the strong intrinsic resonances using an rf dipole[3]. However

the solenoid snake has introduced a strong linear coupling resonances which

still remains to be dealt with as well the weak intrinsic resonances still remain.

There are two current methods proposed to deal with the coupling resonances.

The simplest but most expensive way is to replace the solenoid snake with a

helical dipole snake thus eliminating the coupling solenoid �eld[4]. The second

and more cost e�ective way proposed is to use a horizontal RF dipole in the fully

coupled mode to �ip both the intrinsic and coupled resonances simultaneously[6].

This method was investigated in the August 2000 polarized proton run. Results

have not proved conclusive, but more work is currently being conducted.

As for the weak intrinsic resonances since it constitutes only 10% polarization

loss not much attention has been paid to this subject. It has been proposed that

a modi�cation in the optics of the AGS can theoretically suppress these weak

resonances [1] [7]. Dedicated beam time at low energy an thus higher analyzing

power will allow for the actual testing of this method. The purpose of this paper

to develop the theoretical background necessary to run such an experiment.

2 Intrinsic Spin Matching.

Since the strength and location of resonances is tied to the symmetry of each

superperiod and the periodic structure of the lattice one strategy to suppress

or enhance a resonance is by the careful placement and �eld strength setting of

quadrupole elements. It is well known that in certain instances using carefully

placed families of quadrupoles one can break the symmetry of lattice and thus

e�ectively raise the superperiodicity reducing the number of intrinsic resonance

2



crossings. Even if a change in the symmetry of the lattice doesn't e�ect the

underlining superperiodicity it is possible to use the quadrupoles to suppress in-

dividual resonances by the introduction of a counterveilding perturbation to the

resonance strength given by [8]:

�"k = (
1 +G
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We use �g(s) =
@Bz
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B�
as the focusing strength, G the anomalous magnetic

moment coe�cient, �N the normalized vertical emittance, �z the vertical beta-

tron function, �z the vertical tune, � the bending angle around the ring and '

the betaron phase and k is the resonance tune. This equation will give a good

approximation providing that both �g(s) and ��z(s) are small. It should be

noted that when the spin tune, G
 = k = nP � �z then an intrinsic resonance

is achieved where P is the superperiodicity of the lattice and n is any integer. It

seems that if we use just the right �eld strengths and locations we can use this

perturbation in the resonance to cancel our existing resonance. This is know as

spin matching.

Intrinsic resonance structure in the AGS

The AGS lattice consits of twelve superperiods each containing twenty combined

function magnets of long and short lengths. In Figure 1 you can see graphical

representation of the lattice. The resulting structure proves fairly complex. But

some general observations are possible. The lattice can be broken down into two

sections which are antisymmetric. Further these section can be broken down

into a total of four sections of two antisymmetric pairs. There are also two

mirror symmetric pairs. While clearly the overriding periodicity of 12 places

all our intrinsic resonances at G
 = 12n � �z, the antisymmetric structure

can explain the odd and even substructure of the resonances. This explanation
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follows in a manner similar to the evaluation of a typical FODO lattice structure.

Here the focusing and defocusing elements (which are antisymmetric pairs) can

contribute additively to the spin kick when the resonance is odd. Applying this

logic to the AGS lattice we can see that the middle two antisymmetric pairs

can viewed as having an overall sign di�erence when viewed as a whole. The

same is true for the outer two antisymmetric pairs. So depending on how we

count there will be an overall phase di�erence of (k��z)
n�
12 between at least one

antisymmetric pair. Like the evaluation of a typical FODO lattice structure the

antisymmetric elements contribute additively to the spin kick when n is odd and

subtract when n is even . Excluding the G
 = 0 + �zresonance, this explains

why we see in Table 1 that the odd resonances are larger than the even ones.

   1        2          3       4     5               6           7         8          9     10            11    12          13      14        15            16          17       18            19      20

Figure 1:AGS superperiod. Here the up and down vectors show the direction

and magnitude of the focusing gradient �eld.
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 G
 Re("k)10
�3 Im("k)10

�3 j "k j10�3

4.871 0+� 6.128 -0.271 6.134

8.515 24-� 0.240 0.011 0.240

11.565 12+� 0.094 2.118 2.120

15.208 36-� -0.248 5.589 5.595

18.258 24+� 0.507 -0.022 0.508

21.902 48-� 0.652 0.029 0.652

24.951 36+� 0.479 10.820 10.831

Table 1: Resonance strengths "k as calculated with DEPOL [9] for the bare

AGS machine using a 10� mm-mrad normalized emittance. We assume

95% of the particles are within a gaussian distribution.

The complexity of the lattice seems to prohibit a real increase in the super-

periodicty of the lattice with out signi�cant and costly modi�cations. While

there exists many points of overall mirror symmetry, it is clear that either a sin-

gle or several quadrupoles cannot e�ect the overall periodicity. If we approach

the problem from a purely spin matching aspect then it seems that individual

resonances can be suppressed with a well placed family of quadrupoles. Since

our resonance structures shows that the G
 = 12n� �z n=even resonances are

primarily real and the n=odd are primarily imaginary a quadrupole of the right

strength and phase location could suppress individual resonances.

Preliminary Calculations for One Family of Quadrupoles

It might prove insightful if we try to develop an analytical approximation to

equation 3.1. If we �rst consider the e�ect of only one additional quadrupoles

per superperiod, equation 3.1 can be integrated as sum over the number of

superperiods in the lattice. This series can be summed using the properties of
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a geometric series.

�"k = (
1 +G
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Here �1 and '1are the angle and phase at the quadrupole's position. �P (x)

is the enhancement function which for x=N (N = 0;�1;�2; ::::)goes to (�1)NP
for even P and P for odd P . We also assume that we are inserting one

quadrupole per superperiod (P). If we pick the location of the quadrupole cor-

rectly then we can control either the imaginary or real part of the resonance.

So for example in the AGS where � = ' if we choose the 15th position which

corresponds to 22.5Æ then we can control the real part for all G
 = 12n � �z

n = even and the imaginary part for n = odd. In principle provided that there

are no other limitations we can suppress these components of the resonance

strength to an arbitrary degree. This is exactly what A.Lehrach showed in his

paper[1] on suppressing intrinsic spin harmonics. We re-con�rmed his results in

Figure 2 where the G
 = 24��z and 48��z have been successfully suppressed.

As well we plotted equation 3.2 on top of the DEPOL generated data. With

the inclusion of a 180Æ (DEPOL does this by changing the sign on the focusing

�eld strength) initial phase advance our perturbation approximation generates

the appropriate structure , though for the G
 = 24 � �z the slope of our line

appears signi�cantly o�. A detailed comparison between our calculations and

DEPOL's algorithm[9] reveal that the discrepancy is due primary to the impact

of betatron perturbation on the original lattice structure. The calculated per-

turbation at each quadrupole proved fairly accurate using equation 3.2. However

the remaining elements experience a signi�cant deviation from the bare machine
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values due to perturbations in the betatron function. This question will handled

in more detail in the �nal subsection . Su�ce it to say that this model provides

an adequate description of the method by which a particular resonance can be

suppressed.
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Figure 2: Resonance strength with quadrupole operating in the 15th position.

Lines indicate analytical approximation and markers DEPOL generated

data.

Attempts to use only quadrupoles located in the 3rd position failed to completely

suppress the same resonances. This is because at 3rd position ' = 4:5Æ thus 12,

24 and 48 yield both imaginary and real resonance contributions. However, if

we combine two quadrupoles, the 3rd and 17th locations together then we can

construct a situation where either the imaginary or real part of our perturbation

will cancel exactly leaving only a real or imaginary part.

Preliminary Calculations for Two Families of Quadrupoles

Developing equation 3.2 further to handle two families of Quadrupoles and writ-

ing in terms of ' our equation for the shift in resonance strengths becomes (for

AGS only).

�"k = (
1 +G
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P
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�P (

k + �z

P
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�1ze
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�2e
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e
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P
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�2ze

i(k��z)'2 ]g (3:3)

This equation can broken into its real and imaginary parts and simpli�ed by

considering only the K = NP � � where N is a positive integer.

Re(�") = (
1 +G


4�
)

r
�N

�

P (�1)NP (g1

p
�1z cos(NP'1)+g2

p
�2z cos(NP'2)) (3:4)
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Im(�") = (
1 +G


4�
)

r
�N

�

P (�1)NP (g1

p
�1z sin(NP'1)+g2

p
�2z sin(NP'2)) (3:5)

If we assume that equation 3.3 constitutes a linear perturbation to the orig-

inal resonance strength then an approximate solution for the zero resonance

case can be easily developed. For example if we are interested in only the even

resonances which are predominately real then we can solve for g1and g2.

g1 = �g2
s

�2z

�1z

sin(NP'2)

sin(NP'1)
(3:6)

g2 =
�R04�

(1 +G
)
q

�N
�


P
p
�2z[cos(NP'2)� sin(NP'2) cot(NP'1)]

(3:7)

In Figure 3-4 we can see the G
 = 48� �z resonance calculated via DEPOL

and using equations 3.3-3.6 . Again using an 180Æphase advance our approxi-

mation while agreeing that our resonance can be completely suppressed, fails to

locate its position in g1 and g2 space. Never-the-less it is clear that using the

3rd and 17th quadrupoles simultaneously a complete suppression is possible in

theory.

Unfortunately in reality we are limited in the �eld strength values available

to us by the following factors:

1.The integer and half integer tune stop-bands.

2.The speed and strength which the quadrupoles can ramp the �eld.

In fact to completely suppress the G
 = 48��z resonance forces us to tunes

well below the half integer. Given these limitations we limit ourselves to the

problem of weak intrinsic resonance suppression, because the strong resonance

require both a �eld strength beyond the capacity of our current quadrupoles
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and more problematic would require crossing the integer and half integer tunes.

In light of these factors it would be instructive to consider in detail the rela-

tionship between the quadrupole �eld strength and tune as well as expand our

understanding of the impact the quadrupoles have on the betatron function.
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Figure 3: Resonance strength as determined by using equations 3.4-3.6
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Figure 4: Resonance strength with quadrupoles operating in the 3rd and 17th

positions. Data generated by DEPOL

Tune and Betatron perturbations

It is well known that the change in tune can be evaluated by:

�� =
1

4�

Z
�(s)k(s)ds (3:8)

Here k(s)is the distributed quadrupole error which is the same as g(s). The

shift in tune for the two quadrupole case will be given by;

�� = (�1g1 + �2g2 + �3g3)
P

4�
(3:9)

Unfortunately � is not wholly independent of the integrated �eld strength. But

for tune evaluations the change in � at each quadrupole is not signi�cant in the

range of �eld strength we are interested in and equation 3.9 works very well.

Still we are interested in understanding how our betatron function is altered

around the whole lattice to understand the nature of our error in equation 3.2

better. It is well known that the betatron function can change according to.

Jm =
1

2�

I
�k(s)e�im'

ds (3:10)

��(s)

�(s)
= ��o

2

1X
m=�1

Jpe
im'(s)

�2o � (m=2)2
(3:11)
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It is however possible to evaluate these equations more explicitly for our case.

Jm =

P�1X
n=0

e
�

i2�nm
P

�1g1e
�im'1 + �2g2e

�im'2

2�
(3:12)

Which when the sum is evaluated gives:

Jm = e
�

im(P�1)�

P
�P (

m

P
)�1g1e

�im'1 + �2g2e
�im'2

2�
(3:13)

Now considering only when the enhancement function equals P (�1)l when
m=lP and l=integer.(P=even)

JlP =
(�1)lPP

2�
(�1g1e

�iP l'1 + �2g2e
�iP l'2) (3:14)

Here we introduce �
(0)to indicate the unperturbed betatron function. Fi-

nally inserting equation 3.14 into 3.11 and changing the sum from 0 to in�nity

we obtain

��s = �s(g1�
(0)
1 �s;1 + g2�

(0)
2 �s;2) (3:15)

Where we have introduced

�i;j =
��0P
2�

1X
l=0

cos(lP ('i � 'j))

�20 � ( lP2 )2
(3:16)

We note that �i;j = �j;ibecause cosine is an even function. We also note

that the subscript s denotes where the Betatron perturbation is being evaluated.
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Calculations for Three Families of Quadrupoles

Clearly using two quadrupoles can give us arbitrary control over either the ver-

tical or horizontal tunes. However in the particular instance of the 3rd and 17th

quadrupole the requirement to both keep the tune �xed and fully suppress each

resonance make ful�lling both requirements impossible since equation 3.6 and

3.7 �xes the �eld to values di�erent than equation 3.9. Perhaps using three

families of quadrupoles will allow the freedom necessary to satisfy both require-

ments. For this case we proceed �rst considering the change in the betatron

function to be small. Thus we alter equation 3.9 to include a third quadrupole.

Likewise we proceed with equations 3.3-3.5 including a third quadrupole. If we

assume that our unperturbed resonance strength is composed primarily of a real

component one can obtain the following �xed tune, zero resonance solution.

g3 =

�R04�
(1+G
)P

q
�

�N

+
��4�(

p
�2 cos(PN'2)�m2;1

p
�1 cos(PN'1))

P (�1m2;1��2)

(
�3�m3;1�1
m2;1�1��2

)(
p
�2 cos(PN'2)�m2;1

p
�1 cos(PN'1))�m3;1

p
�1 cos(PN'1) +

p
�3 cos(PN'3)

(3:17)

g1 = �g2m2;1 � g3m3;1 (3:18)

g2 = g3(
�3 �m3;1�1

m2;1�1 � �2
)� ��4�

P (�1m2;1 � �2)
(3:19)

Where we use

mi;j =

s
�i

�j

sin(PN'i)

sin(PN'j)
(3:20)

If our resonance is primarily imaginary then our solution is;
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g3 =

�R04�
(1+G
)P

q
�

�N

+
��4�(

p
�2 sin(PN'2)�I2;1

p
�1 sin(PN'1))

P (�1I2;1��2)

(
�3�I3;1�1
I2;1�1��2

)(
p
�2 sin(PN'2)� I2;1

p
�1 sin(PN'1))� I3;1

p
�1 sin(PN'1) +

p
�3 sin(PN'3)

(3:21)

g1 = �g2I2;1 � g3I3;1 (3:22)

g2 = g3(
�3 � I3;1�1

I2;1�1 � �2
)� ��4�

P (�1I2;1 � �2)
(3:23)

Where we use

Ii;j =

s
�i

�j

cos(PN'i)

cos(PN'j)
(3:24)

If we consider the �rst theta location to be the 3rd, second the 15th and third

the 17th quadrupole family we can use these equations to estimate of the �eld

strength necessary to keep��z zero while suppressing the G
 = 48��resonance.
Calculation shows g3 = 0:0057 g2 = �0:00667 and g1 = 0:003945. These clearly

are reasonable �eld strength values. From these numbers we can also calculate

the horizontal tune drift to be approximately 0:06. Using DEPOL however

we found our actual �eld strength values to be g3 = �0:014 g2 = 0:006 and

g1 = 0:001here �z = 8:7322and �x = 8:4696. Clearly our horizontal tune is not

acceptable so if we relax our vertical tune requirements we can �nd several cases

which accomplish our goal of both suppression and tune control. An example

can be see in Figure 5. However a note should be made about this particular

plot.

One might now wonder if the use of three quadrupoles would a�ord us the

strength to suppress the strong resonances. A quick calculation shows though
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that the required �eld strength values remain impracticable. For example the

G
 = 36 � �resonance requires g3 = 0:206 clearly beyond the capcity of the

quadrupoles available.
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Figure 5: Using three quadrupole families at the 3rd, 15th and 17th positions

the resonances is both minimized and vertical and horizontal tunes kept

within the integer and half integer stop-bands (�x = 8:617 �z = 8:629).

The results for the weak resonance appear encouraging when considering the use

of three quadrupoles. It appears that complete suppression of the resonance and
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maintaining the vertical and horizontal tune within the integer and half-integer

stop bands is possible. But this requires the installation of quadrupoles in the

�fteenth position. One might wonder if we move our goal from completely su-

pressing the weak resonances to signi�cantly reducing them, what the maximum

reduction possible is using the existing 3rd and 17th families while remaining

with in the integer and half integer stop bands. Going ahead with an full �eld

strength sweep for the 3rd and 17th families has shown that with �x = 8:5216,

�z = 8:844, g1 = �0:002 and g2 = �0:007 we can achieve a 34.5% reduction in

the resonance strength, this corresponds to a 2.4% depolarization. Similarly for

24 + � at �x = 8:501 ,�z = 8:886,g1 = �0:004 and g2 = �0:007 we can achieve

a 26% reduction in resonance strength, this corresponds to a 1.83% depolariza-

tion. Finally for 24� � at the same tune and �eld strength values as the 24+ �

case we can achieve a 53% reduction in resonance strength corresponding to a

0.17 % depolarization. With this correction scheme would should be able to

achieve about 4.34% depolarization from all the weak resonances this compares

with a 9.4% depolarization on a bare machine. Of course we will have to back

away from the half integer stop band so this represents only the upper limit of

polarization gains.

Correction to Quadrupole Resonance Perturbations

Our approximation given in equation 3.2 while very close to actual perturbation

values at each quadrupole, does not account for the signi�cant e�ect which the

perturbation to the betatron function will have on the original elements of the

lattice. An examination of the calculated response of the resonance strength to

varying quadrupole �eld strength showed a distinctly linear response. This is

an encouraging prospect if one where interested in developing a more accurate

linear model of this process. We proceed by noting that the resonance value
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calculated in Depole can be expressed as in a general simpli�ed fashion.

"k =
X
n

An

p
�n (3:26)

Here An is a function of the phase, �eld strength, and bending angle at

each element. When one introduces a quadrupole element into the lattice, the

betatron values at each element are perturbed in a manner described in equation

3.15 and 3.16. For a single quadrupole equation 3.35 can be expressed with a

small deviation Æ:

"k + Æ =
X
n

An

p
�n +��n (3:27)

where,

��n = �ng1�1�n;1 (3:28)

"k + Æ =
X
n

An

p
�n(1 + g1�1�n;1)

1=2 (3:29)

providing that jg1j < .1 the square root can be expanded to �rst order and

we arrive at an approximation for Æ:

Æ = g1�1

X
n

An

p
�n

�n;1

2
(3:30)

or more explicitly:

Æ =
��0P�1g1

4�

X
n;l

An

p
�n

cos('n � '1)

�20 � ( lP2 )2
(3:31)

An observation of the functional behavior reveals that Æ is a function g1times
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a value constant for each resonance. So Æ is clearly to �rst order a linear function

of g1. A direct calculation of equation 3.31 is not very practical since this is

really what DEPOL already accomplishes but if we can establish the slope as

a function of g1this makes subsequent evaluation of the resonance strength at

each g1value much quicker and easier. So now our new improved resonance

approximation becomes

"k = R0(NP ) + �"(g1; NP )k + Æ(g1; NP ) (3:32);

where �"kwas given in 3.2 . In principle we can factor out g1from the last two

terms and �t the line simply using two data points generated by DEPOL. In

the case when there are more than one quadrupole insertion the development

is identical with each new quadrupole introducing a perturbation linearly de-

pendent on its �eld strength. This con�rms what saw visually in our Figures

2-5.
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Figure 6: An overlay of our linear �t on data from Figure 5.
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�t. Quadrupoles are located in the 3rd and 17th positions.Vertical lines

indicate location of vertical and horizontal tune values

.

Below is the full three dimensional �t to our resonance using only two data

points generated by DEPOL. The full complex function is:

"(24� �)k � g1(0:0048)� g2(0:01253) + g3(0:07153) + 0:00024+

i(�g1(0:05513) + g2(0:0272) + g3(0:00906) + 0:000011) (3:33)
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"(24 + �)k � g1(0:06186)� g2(0:01173) + g3(0:0362) + 0:000507+

i(�g1(0:04853) + g2(0:02773)� g3(0:006266)� 0:000022) (3:34)

"(48� �)k � g1(0:06193) + g2(0:02706)� g3(0:05813) + 0:000652+

i(g1(0:0956) + g2(0:01353)� g3(0:0066) + 0:000029) (3:35)

The tune can then be tracked just using equation 3.9 applied to the three

quadrupole case:

�z � 8:73� 3

�
(g1(22:164) + g2(10:355) + g3(22:016)) (3:36)

�x � 8:69 +
3

�
(g1(10:403) + g2(22:238) + g3(10:454)) (3:37)

Using these equations we can completely map out the behavior of the reso-

nances and tunes under the perturbing e�ect of a family of quadrupoles. Pro-

ceeding with this �t we can achieve a better approximation as show in Figure

6 repeating the 48� � resonance graph in Figure 5. In Figure 7 we also repeat

the results we found in the previous subsection. We show again just how far we

can go in minimizing the weak resonances with our existing quadrupoles.
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3 Technical Considerations regarding Quadrupole

performance

In an ideal situation we could move the �eld strength in the quadrupoles to any

chosen value during acceleration. Unfortunately in reality we limited by the

inductivity of the existing quadrupoles. This situation forces us to account for

the tune requirements of the rf dipole. Injection occurs below the G
 = 0 + �z

resonance and extraction just after the G
 = 36 + �z resonance. Since the

resonance frequency of the rf dipole system must be set manually before a run,

the operating tune is �xed at each strong intrinsic resonance. Currently the RF

dipole has been set to a resonance frequency corresponding to a vertical tune

of 8.7 and applied to the G
 = 0 + �z, G
 = 12 + �z, and the G
 = 36 � �z

resonances.


 From G
 To G
 �G
 �t(sec) �I(Amps) �K*L(1/m)

6.69 0+�z* 24-�z 6.6 0.058 384 0.032

10.04 24-�z 12+�z* 5.4 0.048 318 0.018

13.39 12+�z* 36-�z* 6.6 0.058 384 0.016

16.73 36-�z* 24+�z 5.4 0.048 318 0.0105

20.08 24+�z 48-�z 6.6 0.058 384 0.0102

23.43 48-�z 36+�z* 5.4 0.048 318 0.0075

Table 2: The maximum possible integrated �eld strength change between each

resonance. We assume an acceleration of 4.8E-5 1/rad and employ a cur-

rent transfer function of 1.73E-3 T/Amp[10]. The tune quadrupoles which

are currently installed in the 3rd and 17th position in the AGS each have

a total resistance of R=0.161
, inductance of L=0.02567 H and maximum

Voltage of V=170V.1
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So if we keep the vertical tune at 8.7 and want to simultaneously suppress the

weak intrinsic resonances we will have to jump back and forth between �eld �eld

strengths necessary to suppress a particular weak resonance and values which

�x the vertical tune at 8.7. For most of the resonance crossings this should not

be a problem since the maximum change in �eld strength required to minimize

a resonance is �g =-0.007. Though the 48-�z seems very close though in any

event we will probably have to back away from the half integer resonance.

To apply this method it would be ideal if we could take very accurate data at

two �eld strength points for each energy where we want to suppress a resonance.

Unfortunately while this might be feasible at lower energies, at higher energies

where our weak resonances are strongest we do not have the analyzing power

to measure polarization to the accuracy required.

4 Future Experiments

The method can at most raise polarization by 10%. However the error bar of

the polarization measurement is 10% close to maximum energy of the AGS for a

typical polarization measurements of 20-30 minutes. We could however test the

working principle of this method by focusing on resonances at lower energies. If

we look at the extreme cases our di�erential in polarization can be as much as

20%. For example we could test the odd resonance at G
 = 12 + �z, while we

know that we cannot completely suppress this resonance we can strongly e�ect

its polarization. Thus we can test in principle the workings of this method.

1The (*) indicates the resonances where the RF dipole is employed.
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