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Spin Tracking with “Real” Siberian Snakes in RHIC

M. Xiao and T. Katayama
(CNS, Graduate School of Science, University of Tokyo/RIKEN)

Abstract: Spin tracking with “real” Siberian Snakes in RHIC was done. The tracking code SPINK was

upgraded in the aspects as follows: (1) the normalized canonical variables (x, px/ps, y, py/ps, -c∆t, pt) were

used, which are consistent to code MAD. (2) Symplectic problem was solved for long term spin tracking.

(3)  the orbital map for the acceleration of a RF-cavity was obtain to guarantee the invariants through the

acceleration to the top energy. (4) special attention was paid to the interpolation for the energy-dependent

symplectified numerical orbital maps and spin matrices of Siberian Snakes during the tracking with

acceleration. The spin tracking results in the presence of intrinsic depolarization and imperfect

depolarization were presented in this report.

1. Introduction

     The depolarization due to resonances can be studied numerically by tracking the

orbital and spin motion of protons in the ring. The spin tracking with Siberian Snakes in

RHIC has been carried out by several authors [1, 2], and the intrinsic and imperfection

resonances have been found. The general idea of these works was to track a certain

number of protons through the machine lattice. Matrices are used to transform orbit and

spin coordinates. The orbit matrices were built from a Twiss file, output of the code

MAD. However, the tracking was done based on analytical modeling of the magnetic

fields for the helical magnets, such as Belewett and Chasman[3]. In addition, since only

corrected vertical closed orbit distortions can be read from the Twiss file, the

misalignments of the magnets in the lattice and field errors were not taken into account.

Furthermore, since the orbital matrices were built from Twiss functions, the coupling

effects introduced by helical magnetic field of Siberian Snakes can not be taken into

calculations.

      Since the strength of spin resonances depends on the distance of a particle from the

equilibrium orbit, the depolarization is affected by the closed orbit after the correction by

the correctors used in the lattice. This is the indirect effect of the correctors on spin

motion. Actually, the correctors have also direct effect on spin motion. That’s why the

best orbit correction not necessary provides the best spin resonance correction.
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      To study these problems, MAD was modified to transmit to the code SPINK the

information of the errors of each machine element as well as corrected closed orbit

distortion. Code SPINK was improved [4] to accordingly displaces and rotates the

corresponding orbit transport maps, and correctors are taken as kick magnets on spin

motion. The “transport” orbital map of each element in lattice was directly output from

MAD. However, we found the following problems have to be solved when the spin

tracking through the acceleration to the top energy is carried out by this version of code

SPINK.

(1) The variables used were (x, x’, y, y’, l, δ), which were not canonical variables and not

consistent to those used in code MAD, although it took the “Transport” maps of the

elements in the lattice directly from the output of MAD.

(2) The emittances are artificially shrinked since the symplectic problem was not taken

into account.

(3) The effect of RF-cavity on orbital motion through the acceleration was not put into

orbit tracking.

(4) The conventions for magnetic field are not consistent to those in code MAD.

Therefore, the upgrading of code SPINK will be described firstly in this report.

The study of spin precession and orbital motion in a “real” Siberian Snake based on

numerically calculated magnetic field by TOSCA [5,6] shows that the spin matrices and

orbital maps of a Siberian Snake are energy dependent. The work gave the energy-

dependent numerical orbital matrices and unitary spin matrices of the Siberian Snakes,

and the orbital maps of a snake were symplectified. The results are used in spin tracking

for the whole acceleration and storage period. The description of the insertion module of

field-map generated matrices of “real” Siberian Snakes into RHIC lattice and the trick of

the interpolation of energy-dependent symplectified numerical orbital maps and spin

matrices during the acceleration are introduced next. Special attention was paid on

keeping the symplecticity of the interpolated orbital maps and the unitarity of the

interpolated spin rotation maps. Fig. 1 gives the logical diagram of the upgraded Code

SPINK.
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     In fact, we found that the symplecticity violation of one turn map is 5.6×10-6 in x-

direction, and 4.46 ×10-9 in y-direction. The one turn map is obtained by concatenating

the matrices of all the elements in the lattice, except Siberian Snake, from the output of

code MAD.  Obviously, it was not accurate enough to do the orbital tracking for about

107 turns. Therefore, we also solved this problem before doing the spin tracking.

The spin tracking with single- and multi- particles through the acceleration in RHIC with

“real” Siberian Snakes, in the presence of both intrinsic depolarization and imperfect

depolarization, has be carried out, and the results and discussion will be presented in this

report.

2. Upgraded Code of SPINK

2.1 Normalized canonical variables

SPINK takes the Transport orbital maps from MAD, therefore, the following normalized

canonical variables consistent with MAD are used[7],

where Px and  Py are transverse momenta, Ps is the momentum of a particle,  ∆t is the time

relative to the synchronous particle, and

here, E is the total energy, Eo is the particle energy related to Po(designed energy). -c∆t is

canonically conjugate to pt.

The relation between the slopes x’, y’ and the normalized momenta px, py is

where h is the curvature of the reference orbit in the mid-plane.
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MAD8 (CERN version)
MAD (BNL Version) →
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transport matrix to the second order
Misalignments and field error
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Input
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Fig. 1  The logical diagram of Code SPINK
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2.2 Orbit map for the acceleration of a RF cavity

Assume the cavity is in a straight section, and is a kick of some sorts, the map for the

cavity is

where T=-c∆t is a phase, To is the phase of the synchronous particle, F() is any function.

The designed energy changes too

Expression (2.2.1) can be re-arranged as follows:

 Scaled the right side by ps, and the left side by ps_ f ,  we can get

where

On the other hand, the momenta px and py were changed before and after the cavity since

the momenta Px and Py must also be re-scaled. We get
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Then the function f(T) in expression (2.2.5) will be

Write expression (2.2.4) in a matrix form for the longitudinal motion, we have

 and

Finally, we get the 6-dimensional orbital map for the acceleration of a RF-cavity as

follows

where Ω= φ
ω

cos)(
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dpm is the momentum gain per turn.
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Then we can see that Msymp. is a symplectic matrix, and Mfactor is somewhat a scale matrix

(damping) before and after acceleration.  if d(βγ)/βγ is small enough, i.e., the acceleration

rate is small enough, the tracking can be done up to the top energy without losing the

invariants. In RHIC, dpm is about 3×10-5 (GeV/c), then d(βγ)/βγ  is about 10-7 ~ 10-8.

2.3 The conventions for magnetic field in SPINK

SPINK uses the same conventions for magnetic field as MAD. The following Taylor

expansion for the field on the mid-plane (y=0) was used:

The field coefficients have the following meaning:

      Bo, dipole field, with a positive value in the positive y direction; a positive field bends

            a positively charged particle to the right.

      B1, quadrupole coefficient xBB y ∂∂= /1 ; a positive value corresponds to horizontal

            focussing of a positively charged particle.

     B2,  sextupole coefficient 22
2 / xBB y ∂∂= .

     B3,  octupole coefficient  33
3 / xBB y ∂∂= .

The field components can be computed from the longitudinal component of the vector

potential to order 4 as:
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where h is the curvature of the reference orbit, h=1/ρ

Introducing the magnetic rigidity Bρ, the multipole coefficients are computed as

Since the strength of spin resonances depends on the distance of a particle from the

equilibrium orbit, the magnetic field strength calculated from the position for the pure

dipole, quadrupole, sextupole and multipole were expressed as follows:
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3. Insertion Module for Field-map Generated Matrices of Real
Siberian Snakes into RHIC Lattice

There are two types of Siberian Snakes in each ring of RHIC. Both are supposed to rotate

the spin with 180o, but the spin axis is 45o for Type-A and –45o for Type-B, respectively

with respect to longitudinal direction s on the x-s plane. Two types of real Snakes were

introduced into RHIC lattice as follows:

where M represents both orbital map MT or spin matrix MS. MT is 6-D symplectified

orbital maps of the snakes, L is the length of the Snake, DL/2 is the drift matrix of the half

length of the Snake. Meffect is the thin map of the orbit motion and spin precession.

The deviation of the transverse coordinates (x, px, y, py) of the central ray from (0., 0., 0.,

0.) at the exit of the Snake exists, especially in the low energy region till 100GeV,

although the deviations are quite small.  They need to be corrected in MAD, together

with the lattice misalignments and field errors, by the procedure Micado. The spin

tracking for the time being is done by assuming that the deviation has been corrected, and

the closed orbit will not be affected by the insertion of the maps of the Snakes.

Since both orbital maps and spin matrices of the Snakes are energy dependent, the

interpolation of them at certain energy through the acceleration of polarized proton is

needed. The following introduces the interpolation methods to keep the interpolated

orbital map symplectic and the interpolated spin matrix unitary, respectively.

3.1 The interpolation of orbital map up to the second order

We obtained the symplectic orbital maps of the Snake by extracting the potential

candidates :f: for the Poisson bracket operator from a single vector field representation F
r

as follows [6 ]:

where ∇  is vector field operator, Id is identity map.

]][][[ 2/2/ LeffectL DMDM =

)1.1.3(:)exp(:)exp()( . IdfIdFM sympk =∇⋅=
r
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Therefore, we actually stored the Poisson bracket operator :f: at every 0.5GeV from

25GeV to 250GeV in a file, and then, we do the interpolation on :f: at a certain energy E

if needed. In this way, the interpolated map can be obtained by expression (3.1.1), and its

symplecticity can be guaranteed.

3.2 The interpolation of spin matrices

The orthogonal 3×3 spin matrix consists of 9 elements. The spin matrix at the energy E

between Ei and Ei+1 (i=1, 2, …, n) could be interpolated simply by interpolating each of

the element of the spin matrices at Ei and Ei+1 ( Ei+1 – Ei =∆E , a constant energy).

However, it can be shown that the unitarity of the interpolated spin matrices obtained in

this way can not be guaranteed. It results in spin polarization totally lost after 10,000

turns of spin tracking.

Note that the rotation of the spin is a subgroup of the space rotation SO(3). The spin

matrix can be described completely using a smaller number of parameters, the three

components of vector ),,( 321 vvvv =
r

 as follows [8]:
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The interpolation for the spin matrix on vector v
r

 can be done as follows: First, by

calculating the eigenvalues and eigenvectors of the matrix of Ms(Ei), we obtain the

rotation angle θ and nomalized eigaivector ω
r

 . Therefore, ωθ
rr

=v .  We write and store

the three components of the vector

                           niEvEvEvEv iiii ,....2,1)],(),(),([)( 321 ==
r

                                       (3.2.3)
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at energy E1, E2, …, En from the injection energy of 25GeV to the top energy of 250GeV

with uniform step ∆E. Then, we interpolate the three elements of the vector v
r

 at the

energy E, which is between Ei and Ei+1. Finally, the spin matrix can be recalculated by

Eq. (3.2.1) and its unitarity is thus guaranteed.

4. Symplectification of the orbit maps provided by MAD

4.1  Symplectic Condition Checking

To evaluate the spin precession of polarized proton in RHIC, orbital tracking will be done

with the orbital maps of all the elements in RHIC lattice, except Siberian Snakes, output

directly from MAD. Therefore, the symplecticity has to be checked for these maps before

they are used in long-term tracking.

The maximum symplecticity violation of 9.57 × 10-8 is found for the map of a

quadrupole, Q106, in RHIC lattice. The One Turn Map (OTM) can be obtained by

concatenating every matrix, except Siberian snakes in the ring as follows:

The result of the symplecticity condition checking for OTM is given as follows.

The result of the symplecticity condition checking for OTM is given as follows.
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(OTM)T⋅J⋅(OTM)-J=

Therefore the symplecticity violation in (x, px) phase space is 5.6 × 10-6, in (y, py) phase

space is 4.46× 10-9. Obviously, it is not accurate enough for the tracking over 107 turns.

4.2 Exponential and Cayley Symplectifications

We know that a matrix M can be written in the exponential form [9]

                                                     M = exp(B)                                                             (4.2.1)

where B is a real matrix. Then we may write the relations

Define a matrix T by the equation

                                                 T = tanh(B/2)

With the aid of T, M as given by (4.2.2) has the Cayley representation

Relation (3.2.2) can be solved for T to give the result

Define the matrix V  by the equation
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                                                    V = J-1 T .                                                                (4.2.5)

J is the matrix described in Eq. (1.4.3). We know that V will be symmetric if M is

symplectic, and vice versa. Consequently, V will be nearly symmetric if M is nearly

symplectic. Let us define a symmetric matrix W by taking the symmetric part of V,

then we may define a symplectic matrix R by writing

and R will be a symplectification of M that we call the Cayley symplectification.

The first order matrices of the elements in RHIC lattice are symplectified by the method

described above, and symplecticity of the matrices will be up to machine (computer)

precision.

5. Validation of the Theory

Orbital transfer maps are made symplectic before being used to do the tracking. Then, the

following quantities, in particular the beam oscillation normalized amplitudes will remain

constant during acceleration, if the orbital motions are linear and without coupling.

where

and yTyTxTxT ____ ,,, αβαβ  are Twiss functions of the lattice, yNxN __ ,εε are normalized

emittances in x, y direction. We took ampamp yx ,  to validate the invariants during the

acceleration.
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Actually, the Siberian Snakes introduce transverse coupling into the orbital motion.

However, there still exist three invariants in x, y and s phase space since all the orbital

maps are symplectic. We make the assumption that all eigenvalues λk of a real symplectic

matrix M are distinct. This implies that the eigenvectors vk are all linearly independent

and form a basis in 2N – dimensional space. Since the transfer matrix is real, the

eigenvalues and eigenvectors form complex conjugate pairs. Decomposing the

eigenvalues λk and eigenvectors vk into their real and imaginary parts[10]:

For stable motion, the tune µk are real. The three tunes µk (k = 1, 2, 3) by each One Turn

Map will be calculated to see the effects of the real Siberian Snakes, inserted in the form

of numerical matrix, on the betatron oscillation.

6. Spin Tracking with “Real” Siberian Snakes in RHIC

In this section, if a single particle is tracked, it is extracted from the contour of phase

space with the normalized r.m.s emittances of 5πmm·mrad, 10πmm·mrad, 15πmm·mrad

and 20π mm·mrad, respectively. In a multi-particle simulation, particles are extracted

from the inside of the phase space volume randomly with a Gaussian distribution. Each

particle is tracked with acceleration in RHIC from the injection energy of 25GeV to the

top energy of 250GeV. The momentum gain per turn is 3×10-5 (GeV/c). This value was

obtained by imitating the actual operation mode in RHIC as follows: There are 5 RF

cavities in each RHIC ring, while only two of them will be used for the acceleration of

polarized proton with the peak voltage ~300 KV in 80 second. Totally about 7.5 ×106

turns has to be tracked. In this section, the first order of the orbital map was used after

proper symplectification.   

6.1 Spin tracking with Perfect Siberian Snakes in RHIC with and

without symplectification of the orbital maps
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The orbital map of perfect Siberian Snakes was set to be identity, and the spin rotation

matrices for Snake Type-A and Snake Type-B are given as follows [11],

l Type-A: θ = π/4, φ  = 0, ψ = π, i.e., spin axis is in the x-s plane, beam direction is in

s- direction, then

• Type-B: θ = -π/4, φ = 0, ψ = π, i.e., the spin axis is in the x-s plane, the beam

direction is in s-direction, then

Fig. 2a and Fig. 2b give the spin tracking results of polarized protons without doing

symplectification for the orbital maps of the elements in RHIC lattice. The particle in Fig.

2a was extracted from the contour of 5πmm.mrad, and the particle in Fig. 2b from the

contour of 20πmm.mrad. The normalized amplitudes are recorded since we suppose

perfect Siberian Snakes do not introduce the transverse coupling. Both figures show that

the normalized amplitude in x phase space decreases with the acceleration. It means that

the normalized emittance in x was shrunk artificially. This is identical to the result of

symplecticity checking, since the symplecticity violation of the one turn map is 5.6×10-6

in x-direction, but 4.46×10-9 in y-direction. Therefore, the spin depolarization results in

both cases may be wrong.

Fig. 3a and Fig. 3b give the spin tracking results with the symplectified orbital maps for

the particle from a contour of 5πmm.mrad and 20πmm.mrad. The figures show that the

normalized amplitudes are kept constant through the whole acceleration range. We can

see that the spin depolarization results are different from those without doing

symplectification. Fig. 4 gives the spin tracking results of 5πmm.mrad, 10πmm.mrad,

15πmm.mrad and 20πmm.mrad. We know that the intrinsic resonances are enhanced due
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to the P superperiods at K=mP± νy  and the M FODO cells at K=mPM± νB, where νB  is

the total accumulated phase advance in dipole cells. But the enhancement due to M is

much more important because normally M>>P in high energy accelerators. Since

mPM±νB may not necessarily coincide with the resonance condition of mP± νy, important

resonances occur at those K=nP± νy such that they are closest to mPM± νB. Furthermore,

dominant resonances are located at m=odd integers, since where spin kicks due to

focusing and defocusing quadrupoles add up coherently. We found in Fig. 4 that three

strong depolarization resonances happened at (Gγ)1 = 3×81- (νy –12)=225.82, (Gγ)2 =

3×81+ (νy –12)=260.18, and (Gγ)4 = 5×81+ (νy –12)= 422.18, where 81 is the product of

superperiodicity P=3 and the “effective” FODO cells per superperoid M=27, which

includes dispersion suppressors in RHIC. 2πνB=2π(νy -12) is the accumulated phase

advance of all FODO cells. Another strong depolarizing resonance has found at the

location of (Gγ)3 = 5×81- (νy –6)=381.82.

6.2 Spin tracking with “real” Siberian Snakes in RHIC in the presence

of intrinsic and imperfection resonances

6.2.1 In the presence of  intrinsic resonances

The spin tracking of polarized proton was carried out with “real” Siberian Snakes using

symplectifed numerical orbit maps and spin matrices for the two types of Snakes in RHIC

lattice. Fig. 5 gives the single particle tracking results in a RHIC machine with no

misalignment and no field error for the particle extracted from the contour of

5πmm.mrad, 10πmm.mrad, 15πmm.mrad and 20πmm.mrad, respectively. Then, the

depolarization resonances shown in these figures are only intrinsic resonances.

Comparing with results in Fig. 4, we find that “real” snakes can maintain the polarization

of the proton better than the perfect snakes in RHIC.  In the case of perfect snakes in

RHIC, the depolarization can not be recovered completely after  (Gγ)3 = 5×81- (νy –

6)=381.82 for the particle from  10πmm.mrad and the final polarization is kept to 88%.

On the other hand, the polarization can be kept to 95% at the top energy (Gγ=477) in the

case of “real” snakes.
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We recorded the betatron amplitudes in x and y directions at 6 – o’clock (the starting

point of the RHIC ring,  β*T_x = 9.956m, β*T_y =   1 0.044m ) in the ring for perfect snake

and “real” snake cases, shown in Fig. 6a and Fig. 6b, respectively. The particle is

extracted from the emittance of εx =εy =5πmm.mrad. The x and y amplitudes decrease

with the acceleration due to the adiabatic damping effect. In Fig. 6b the amplitude in y

direction is getting smaller, and x direction is getting larger comparing to the betatron

oscillations in Fig. 6a where amplitudes in x and y directions are the same values

throughout the acceleration.  We also found that the amplitudes oscillated strongly at low

energy region (Gγ<150) for the “real” snake case. It is because the “real” Siberian Snakes

in the ring introduce the transverse coupling effects in betatron motions.

These coupling effects may result in the change of actual tune Qx and Qy change. We

calculated these tunes from the eigenvalues of the One Turn Map (OTM), which was

concatenated by the matrix of each element in the lattice, including two Siberian Snakes’

maps at a certain energy. Fig. 7 gives the betatron tunes in x and y direction varied with

the acceleration due to the insertion of the Snakes. We can see that they decrease with the

energy of the polarized proton. The maximum tune shifts from the designed working

points are ∆Qx =0.01919, ∆Qy =0.0306 at injection energy 25GeV. Fig. 8 is the tune

diagram showing the selected working point in RHIC at Qx = 28.19 and Qy =29.18, and

the neighboring sum resonances nQx + mQy = p, where n, m and p are positive integers

and n+m denotes the order of the resonances, as well as difference resonance Qx - Qy =-1.

The usable tune range in RHIC is 0.034, as the nominal tune is located between the 5th

order resonance at 28.20 and the 6th order resonance at 28.166. It also indicates that the

working point with “real” Siberian Snakes moves to the selected working point of RHIC.

We can see that it crosses 5th and 10th order sum resonance lines when the energies are

less than 37.5GeV (Gγ=71.67), causing transverse coupling, which may result in a large

amplitude of betatron oscillation in both x and y directions. In the region of energies from

45 GeV to 70 GeV (Gγ from 86.01 to 133.79), the working point crosses difference

resonance Qx - Qy =-1. Since difference resonances only cause the phase space topology

distorted, the system is still kept stable.

We found that the strong resonance strengths in the low energy region are about 3 factors

smaller than those in the high-energy region. Therefore, the spin motion was not so
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seriously affected by the large betatron oscillation amplitude in the low energy region due

to the transverse coupling.

6.2.2 In the presence of both intrinsic and imperfection resonances

Spin tracking was also done in a RHIC machine with misalignments. The misalignments

of each magnet in all the FODO arc cells of the lattice were assigned randomly in MAD

by truncated Gaussian distribution functions. To study the effect of lattice misalignments

as well as the direct and indirect effect of the closed orbit correctors on spin motion, the

simulation was carried out in two groups.

Group 1:

The standard deviations of the truncated Gaussian distribution functions for the

misalignment assignment of main dipoles are 1 mrad only for the rotation angle around

the s-axis, and for those of the main quadrupoles (QF, QD) and sextupoles are 1 mm for

the positions in x-direction and y-direction. The r.m.s. value (σ) in Gaussian distribution

function is set to be 0.1mm, 0.5mm, 1.0mm and 2.5mm, respectively. The closed orbit

distortions were all corrected to about 0.180mm (r.m.s) using Micado, and the tune Qx

and Qy were kept to be 28.19 and 29.18, respectively by adjusting the quadrupoles’

strengths of the arc cells. The single-particle tracking was done for the particle extract

from zero emittance εx =εy =0.  In this case, the imperfection resonances play the main

role in spin depolarizing resonances. The tracking results are given in Fig. 9 (a), (b), (c)

and (d), respectively.  It was shown in these figures that the bigger the misalignments, the

stronger the depolarization. It reflects the direct and local effect of the correctors in the

lattice on spin motion.  If the misalignments are bigger, the magnetic field strengths of

the correctors should be stronger to correct the closed orbit to the same value. Therefore,

the transverse perturbation radial fields arising from the correctors on spin are getting

larger.

Group 2:

The standard deviations of the truncated Gaussian distribution functions for the

misalignment assignment of main dipoles are 1 mrad only for the rotation angle around

the s-axis, and for those of the main quadrupoles (QF, QD) and sextuples are 1 mm for

the positions in x-direction and y-direction. The r.m.s. value (σ) in Gaussian distribution
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function is set 2.5mm. By using the procedures of Micado in MAD, the vertical closed

orbit distortion was corrected to about 0.189mm (r.m.s.) and 0.512mm (r.m.s.). The tune

Qx and Qy were kept to be 28.19 and 29.18, respectively in both cases by adjusting the

quadruples’ strengths of the arc cell. Since the strength of spin resonances depends on the

distance of a particle from the central orbit, the depolarization affected by lattice errors

can be simulated in this way. The single particle spin tracking was done for the particle

from the emittance of 5πmm.mrad, 10πmm.mrad, 15πmm.mrad and 20πmm.mrad,

respectively. The results are shown for corrected closed orbit distortion of 0.189mm in

Fig 4.10 and 0.512mm in Fig 4.11, respectively. The depolarization resonances shown in

these figures are getting larger in the presence of both intrinsic and imperfection

resonances. We know that the tolerable imperfection resonance strength decreases

dramatically due to the overlapping effect of two types of resonances[12].   In case of the

closed orbit distortion corrected to within 0.189mm (r.m.s.), the imperfection resonance

strength is less than 0.07, about 6 times less than the intrinsic resonance strength, the

polarization can still be kept to 88% if the polarized proton is extracted from a contour of

10πmm⋅mrad. On the other hand, when the corrected closed orbit distortion is 0.5mm, the

polarization can be kept to only 36% even though the polarized proton is extracted from a

contour of 5πmm⋅mrad, and to 44% for 10πmm⋅mrad case.

6.3 Multi – particle tracking results

Multi – particle tracking is performed with 32 particles generated from the inside of the

phase space volume randomly with a Gaussian distribution. We observe from single

particle tracking results that two strong depolarization resonances happen at Gγ =381.82

and Gγ= 422.18. Therefore, the particles are tracked with acceleration in RHIC from

197.92 GeV (Gγ =378.18) to the top energy 250 GeV (Gγ= 477.67), for 32 particles

extracted from the emittance of 10πmm.mrad.

The average polarization was calculated in two ways as follows:
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where N is the number of particles, Sy is the polarization of each particle during the

acceleration. Firstly, we have tracked with perfect Siberian Snakes and with “real”

Siberian Snakes in a RHIC machine with no lattice misalignment.  Fig. 12a and Fig. 12b

indicate the average polarization Sy_average and Sy_average (r.m.s) of 32 particles in two cases

respectively. It was found that the strong depolarizing resonances happen around Gγ=

411 - νy =381.82 and 451 - νy = 421.82.  The perfect snakes can keep the spin

polarization up to 88.86% for average and 87.67% for r.m.s. value at the top energy 250

GeV, but “real” Siberian Snakes can keep the polarization up to 96.25% for average and

94.65% for r.m.s value. These results are consistent to those of single-particle tracking.

We also tracked in a RHIC machine with r.m.s. lattice misalignments of 2.5mm and the

vertical corrected closed orbit distortion of 0.189mm. The average polarization Sy_average

and Sy_average (r.m.s) are given in Fig. 13.  It was found that the spin polarization could be

kept up to 63.06% for average and 73.00% for r.m.s. value for the real Snakes.

7. Summary

The spin tracking with “real” Siberian Snakes in RHIC has been performed in the

presence of intrinsic and imperfection resonances. We summarize the results as follows

(1) Single particle tracking shows that “real” Siberian Snakes can keep the polarization of

the protons through the acceleration to more than 95% in a RHIC machine with no

misalignment and no field error, if the polarized proton is extracted from a contour of

10πmm.mrad;  Since the closed orbit correctors has direct and indirect effect on spin

motion in the ring, we found that the bigger the misalignments, the stronger the

depolarization resonances; In the case that the misalignment (r.m.s.) is 2.5mm, “real”

Siberian Snakes can keep the polarization of the proton to more than 88% in a

machine with corrected vertical closed orbit distortion (r.m.s.) of 0.189mm, if the

polarized proton is extracted from a contour of 10πmm.mrad;  But the polarization is

only 38% when the polarized proton is extracted from a contour of 5πmm.mrad in the

case that corrected closed orbit distortion is 0.512mm(r.m.s).
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(2) Multi-particle tracking shows that “real” Siberian Snakes can keep the polarization of

the protons to 73.00% (r.m.s.) through the acceleration in a RHIC machine with r.m.s.

misalignment of 2.5mm and corrected vertical closed orbit distortion of 0.189mm

(r.m.s), if the polarized protons are extracted from a contour of 10πmm.mrad.

(3) The symplectic problem on the orbital motion is one of the key issues for spin

tracking. We have solved this problem for the “real”  Siberian Snakes to predict the

“actual” operation conditions in RHIC.

(4) Due to the presence of large longitudinal magnetic fields in “real” Snake, the

coupling of horizontal and vertical betatron motions are found, and the vertical

betatron tune is found to change from 29.22 at the injection energy 25 GeV to 29.18

at the top energy 250 GeV. It is found that the operation points cross four 10th order

sum resonances lines, four 5th order sum resonance lines and one difference resonance

line during the acceleration. At these resonance crossings, the betatron amplitudes

rapidly oscillate, and the vertical amplitude becomes larger due to the coupling

effects. However, these motions in the low energy region do not affect so seriously

the spin polarization.
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   Fig 2 Results of spin tracking with perfect Snakes in RHIC. Orbital tracking has been
            done with the“transport” matrices directly from Code MAD without
            symplectification. Normalized beam amplitudes are calculated at the
             β*T_x=9.956m, β*T_y=10.044m



24

   Fig 3 Results of spin tracking with perfect Snakes in RHIC. Orbital tracking has been
            done with the“transport” matrices directly from Code MAD with
            symplectification. Normalized beam amplitudes are calculated at the
             β*T_x=9.956m, β*T_y=10.044m
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  Fig 4 Spin tracking with perfect Snakes in RHIC, orbital tracking with the
            symplectified “transport” matrices from Code MAD
        a. εx = εy =    5πmm⋅mrad,      b. εx = εy = 10πmm⋅mrad,
             c.  εx = εy = 15πmm⋅mrad,      d. εx = εy = 20πmm⋅mrad.
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Fig 5 Spin tracking with real Snakes in RHIC, orbital tracking with the
            symplectified “transport” matrices from Code MAD

        a. εx = εy =    5πmm⋅mrad,      b. εx = εy = 10πmm⋅mrad,
              c.  εx = εy = 15πmm⋅mrad,      d.  εx = εy = 20πmm⋅mrad.
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Fig 6 Betatron amplitude in x and y directions at 6’oclock in the RHIC ring
         Original emittance:5πmm.mrad.
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                Fig 7 The transverse betatron tunes Qx and Qy shifts through the acceleration
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  Fig 8 Tune diagram showing the selected working point of RHIC at Qx = 28.19 and Qy =
29.18 (with symbol “o”) with neighboring sum and difference resonances. The
shifted working point due to the insertion of Snakes are shown with  symbol “∆”
in the diagram.
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Fig 9 The effect of the misalignments of RHIC on spin motion. Spin tracking was
done by single particle extracted from the emmittance of zero. Corrected vertical
closed orbit distortions ≈ 0.18mm. Original r.m.s. misalignments are

                    (a) 0.1mm, (b) 0.5mm, (c) 1.0mm, and (d) 2.5mm



31

  Fig 10 Spin tracking with real Snakes in RHIC, orbital tracking with the
              symplectified “transport” matrices from Code MAD
              Misalignment randomly assigned,
              Corrected Closed Orbit Distortion  ≈ 0.2 mm

                       a. εx = εy =    5πmm⋅mrad,      b. εx = εy = 10πmm⋅mrad,
              c.  εx = εy = 15πmm⋅mrad,      d. εx = εy = 20πmm⋅mrad.
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  Fig 11 Spin tracking with real Snakes in RHIC, orbital tracking with the
              symplectified “transport” matrices from Code MAD
              Misalignment randomly assigned,
              Corrected Closed Orbit Distortion  ≈ 0.5 mm
               a. εx = εy =    5πmm⋅mrad,      b. εx = εy =  10πmm⋅mrad,
              c.  εx = εy = 15πmm⋅mrad,      d.  εx = εy = 20πmm⋅mrad
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                                                               (a) with “perfect” snakes in RHIC

                                                              (b) with “perfect” snakes in RHIC

Fig 12 The average results of polarization from 32 particles’s tracking in RHIC with
            No misalignment and no field errors. Original emittance:10πmm.mrad.

Fig 13 The average results of polarization from 32 particles’s tracking in RHIC with
           r.m.s. misalignment of 2.5mm and corrected vertical closed orbit distortion of
           0.189mm.   Original emittance:10πmm.mrad.


