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1 Introduction

Following are some notes on the RF capture and acceleration of gold ions
(Au31+) in the AGS Booster. The basic parameters [1, 2, 3, 4] are
reviewed in Sections 2{4. Turn-by-turn simulations of the longitudinal
motion for the present setup in Booster are presented in Sections 5{6.

2 Synchronous Particle and Bucket Parameters

Let � and R be the radius-of-curvature and radius of the design orbit in
the Booster, and let B and Rs be the magnetic �eld and radius for the
synchronous particle. We assume that B and Rs are given throughout the
acceleration cycle and calculate the other synchronous particle parameters
in terms of these. Thus, the synchronous radius-of-curvature is

�s = �(Rs=R)
1=�; � =

1

2t
(1)

where
� = 13:8656; R = 128:454=4 (2)

(meters), � is the \momentum compaction" factor and t = 4:832 is the
transition gamma in the Booster. The synchronous momentum and energy
are then

cps = eQB�s; Es =
q
(cps)2 +m2c4; (3)

where e is the proton charge and eQ and m are the charge and mass of the
particle. (For the present setup [5], gold ions with Q = 31 and

1



mc2 = 183:457375 GeV, are injected into Booster at a nominal magnetic
�eld of 634:5415 Gauss. This gives cps = 41:50638 MeV per nucleon.) The
synchronous �,  and revolution frequency are

�s = cps=Es; s = Es=(mc
2); fs = c�s=(2�Rs): (4)

We also de�ne the phase slip factor

�s = ��
1

2s
=

1

2t
�

1

2s
: (5)

The energy gained by the synchronous particle in one turn around the ring
is

eQVg sin�s = 2�Rs _ps (6)

where �s is the synchronous phase and Vg is the vector sum of the
maximum voltages across the gaps of the RF cavities in the ring. (Here
and throughout, a dot over a parameter denotes the time derivative.)
Using the relation

_ps
ps

=

 
_B

B
+

1

�

_Rs

Rs

!
(7)

we can also write

eQVg sin�s = 2�Rsps

 
_B

B
+

1

�

_Rs

Rs

!
=
Es�

2
s

fs

 
_B

B
+

1

�

_Rs

Rs

!
: (8)

One can then obtain �s if Vg, B, Rs, _B, _Rs are given, and various bucket
parameters can then be calculated. The Bucket Half-Height, �E, is given
by

(�E)2 =
eQVg�

2
sEs

�h�s
f� sin�s � 2�s sin�s � 2 cos�sg (9)

and the Bucket Width is

�t =
j� � �s � �ej

2�hfs
: (10)

Here h is the RF harmonic number; for the present setup in Booster,
h = 6. The phase �e satis�es

cos�e � cos(� � �s) = �f�e � (� � �s)g sin�s: (11)
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For the Stationary Bucket we have either �s = 0 (below transition) or
�s = � (above transition) and the bucket half-height and width become

(�E)S =

(
2eQVg�

2
sEs

�hj�sj

)1=2

; (�t)S =
2�

2�hfs
=

1

hfs
: (12)

The area of a single Stationary Bucket is

AS = 8

�
(�E)S
h!s

�
= 8

Rs

hc

�
2eQVgEs

�hj�sj

�1=2
(13)

where !s = 2�fs = c�s=Rs. The area of the corresponding moving bucket
is

A = �(�s)AS (14)

where �(�s) is the calculated ratio A=AS for a given stable phase �s. The
function �(�s) is tabulated in Reference [6]; an approximate expression is
[4]

�(�s) �
1� sin�s
1 + sin�s

: (15)

For small oscillations about the synchonous phase, the Synchrotron
Frequency is

Fs =
fs
�s

�
�h�seQVg cos�s

2�Es

�1=2
: (16)

3 Capture Parameters

The beam entering the Booster from Tandem is not bunched, and is
distributed over the entire length of the ring as the pulse from Tandem is
injected. Subsequent capture of beam at all longitudinal positions requires
stationary RF buckets with the RF voltage raised adiabatically from zero.
In the Booster this is accomplished by \counterphasing" the A3 and B3
RF cavities so that initially the net voltage seen by the beam is zero. By
programming the amount of counterphasing, the net voltage can be raised
from zero to some value Vc at the end of the capture process. Assuming the
energy half-width of the beam entering the Booster is �E, we can calculate
the minimum Vc required to capture the beam. The criterion given by
Weng [2] is that the (single) stationary bucket area be at least equal to the
corresponding area 4�(�E)=(h!s) occupied by the injected beam. Thus

AS = 8

�
(�E)S
h!s

�
�

4�(�E)

h!s
(17)
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and therefore

(�E)S =

(
2eQVg�

2
sEs

�hj�sj

)1=2

�
�

2
(�E): (18)

Hence, the minimum Vc is given by

eVg �

(
�3hj�sj

8Q�2sEs

)
(�E)2 =

(
�3hj�sjEs

8Q�2s

)
(�E=Es)

2 = eVc: (19)

Using the relation
dE

dp
=
c2p

E
= c� (20)

we can express the energy half-width in terms of the momentum half-width
�p. Thus

(�E=Es) = �2s (�p=ps) (21)

and (19) becomes

eVc =

(
�3hj�sj�

2
sEs

8Q

)
(�p=ps)

2: (22)

For Au31+ ions at injection with h = 6 we have f�3hj�sj�
2
sEsg=(8Q) = 261

MeV. Assuming �p=ps is at most 0:001, we then �nd that the minimum Vc
is at most 261 Volts. (So the voltage required to capture the beam is quite
small.) Ideally one would want to raise Vg to a higher voltage so that the
captured beam ends up occupying the central region of a larger stationary
bucket.

We note that since �s = 0 for the stationary bucket, it follows from (8) that

_Rs

Rs
= ��

_B

B
: (23)

Thus, if �s = 0 and _B > 0 during injection and capture, the radius will
decrease and the frequency will increase. For the injection of Au31+ ions in
the Booster, Bdot is nominally 1 G/ms and we have � _B=B = 6:75 � 10�5

per ms. Taking Rs = R = 128:454=4 meters, we then �nd that _Rs = �2:2
mm/ms. If injection and capture without acceleration continue for more
than a few ms, the shift in radius therefore can be quite appreciable. In
practice, the capture time for Au31+ ions in Booster is 1 to 3 ms.
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4 Acceleration Parameters

After capture into stationary buckets with _B = 1 G/ms, the synchronous
phase becomes nonzero and the captured beam is accelerated with Bdot
increasing from 1 G/ms to a maximum of 87 G/ms. Let us assume that
_Rs = 0 during this time. Using the �rst of equations (3) in (8), we then
have

Vg sin�s = 2�Rs�s _B=c (24)

and we see that Vg sin�s scales with Bdot only. Employing Gaussian units
with Rs = (12845:4=4) cm, �s = � = 1386:56 cm, c = 2:99792458 � 1010

cm/s, and _B = 1000 G/s (which is 1 G/ms), we obtain Vg sin�s = 0:933223
Statvolts. Multiplying by 299.792458 to convert to Volts, we then have

Vg sin�s = 279:773Volts; _B = 1G=ms: (25)

At the maximum Bdot we have

Vg sin�s = 24:3 kV; _B = 87G=ms: (26)

Now, the maximum Vg available for the acceleration of heavy ions in
Booster is about 34 kV. Using this in (26) we �nd that at the maximum
Bdot,

sin�s = 24:3=34; �s = 45:6�: (27)

After capture, Vg is generally programmed to increase in proportion to
Bdot until the maximum of 34 keV is reached; it is then held constant at
the maximum value. Thus we have (until the maximum value is reached)

Vg = Vc +K( _B � _Bc) (28)

where Vc is value of Vg at the end of the capture process and _Bc is the
value of _B during capture. Let us assume that the proportionality
constant K is made large enough so that the bucket area increases with
time until the maximum Vg is reached. At this point the bucket area
reaches its maximum value and then decreases as Bdot continues to
increase with Vg held constant. When Bdot reaches the maximum value of
87 G/ms, the bucket area reaches a minimum value A�. This is the
so-called bucket area \bottleneck" in the acceleration cycle. For the
current setup in Booster, the �eld at this point is B� = 1:14 kG and the
corresponding values of Es and �s can be obtained from equations (1{5)
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with Rs = 128:454=4 m. Using these numbers in (13) and taking Vg = 34
keV, we then obtain the (single) stationary bucket area

A�

S = 8
Rs

hc

�
2eQVgEs

�hj�sj

�1=2
= 21:0 (eV s): (29)

The stable phase is 45:6� at this point, so the actual (single) bucket area is

A� = �(45:6�)A�

S = (0:157)A�

S = 3:30 (eV s): (30)

This gives an upper limit on the phase-space area that can be captured
and accelerated without beam loss. Setting the total phase-space area
occupied by the beam at injection equal to hA�, we have

4�

!s
�E =

4�

!s
Es�

2
s (�p=ps) = hA� (31)

where �E is the energy half-width of the beam and !s, Es, �s, ps are
evaluated at injection. Solving for (�p=ps) we have

(�p=ps) =
h!sA

�

4�Es�2s
= 0:0018: (32)

Thus, if �p=ps at injection is any larger than 0:0018, the phase-space area
occupied by the beam will be larger than A�, and beam will be lost during
acceleration.

5 Turn-by-Turn Equations for Longitudinal

Motion

To calculate the evolution of a given particle distribution during capture
and acceleration we need a suitable set of turn-by-turn equations for the
longitudinal motion. These are derived here following the treatment of
MacLachlan [7]. We consider a ring with a single RF gap and de�ne

T s
n+1 = T s

n + 2�=!s
n; Tn+1 = Tn + 2�=!n: (33)

Here T s
n and Tn are respectively the times at which the synchronous and

non-synchronous particles make their nth pass through the gap; !s
n and !n

are the corresponding angular frequencies. De�ning

tn = Tn � T s
n; tn+1 = Tn+1 � T s

n+1 (34)
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we then have

tn+1 = tn + 2�

�
1

!n
�

1

!s
n

�
= tn +

2�

!s
n

�
!s
n � !n
!n

�
: (35)

Let � and R be the radius of curvature and radius of the design orbit, and
let bsn and Rs

n be the �eld and radius for the synchronous particle on its
nth turn around the machine. We assume that bsn and Rs

n are given and
then calculate the other parameters of the synchronous particle in terms of
these. Thus, the radius-of-curvature, momentum, energy, velocity, angular
frequency, and revolution frequency of the synchronous particle just after
the nth pass through the RF gap are given by

�sn = �(Rs
n=R)

1=�; cpsn = eQbsn�
s
n; Es

n =
q
(cpsn)

2 +m2c4 (36)

and
vsn = c�sn = c2psn=E

s
n; !s

n = vsn=R
s
n; 2�f sn = !s

n: (37)

We also have

sn = 1=
q
1� (�sn)

2 = Es
n=(mc

2); �sn =
1

2t
�

1

(sn)
2

(38)

and the synchronous phase is given by

sin�sn+1 = (Es
n+1 �Es

n)=(eQVg): (39)

Similarly, for the non-synchronous particle with energy En, we calculate
the momentum, velocity, radius-of-curvature, radius, and angular
frequency in terms of En. Thus

cpn =
q
E2
n �m2c4; vn = c2pn=En (40)

and
�n =

cpn
eQbn

; Rn = R(�n=�)
�; !n = vn=Rn: (41)

Here we assume that bn = bsn. The turn-by-turn equations for the
longitudinal motion of the non-synchronous particle are then

tn+1 = tn + 2�

�
1

!n
�

1

!s
n

�
= tn +

2�

!s
n

�
!s
n � !n
!n

�
(42)

and
en+1 = en + eQVg

�
sin(�n+1 + �sn+1)� sin(�sn+1)

	
(43)
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where
en = En �Es

n; en+1 = En+1 �Es
n+1 (44)

and
�n+1 = tn+1h!

s
n+1: (45)

Note that the transformation from (tn, en) to (tn+1, en+1) is symplectic, so
the area in (t, e) space is preserved. Let us now de�ne

� = h!s
nt; W = e=!s

n; (46)

where t and e are deviations from the synchronous time and energy. Then
the \instantaneous" RF buckets for the nth turn are de�ned by the
function W (�), where

W 2(�) =
eQVg
asn�

�
Cs
n+1 � cos(�+ �sn+1)� � sin(�sn+1)

	
; (47)

asn =
h�sn(!

s
n)

2

(�sn)
2Es

n

; �sn =
1

2t
�

1

(sn)
2
; (48)

and
Cs
n+1 = cos(� � �sn+1) + (� � 2�sn+1) sin�

s
n+1: (49)

Using (46) we can obtain the RF bucket in terms of t and e. The area of a
single bucket on the nth turn is

An = �(�sn)A
S
n (50)

where

AS
n = 8

Rs
n

hc

�
2eQVgE

s
n

�hj�snj

�1=2
: (51)

Particles that fall outside the RF bucket during acceleration will be lost.

6 Simulation of Capture and Acceleration

Using the turn-by-turn equations of the previous section, we simulate the
capture and acceleration of an initial distribution of gold ions in Booster.
Each particle in the distribution is tracked until it either falls out of the
RF bucket or reaches full energy.
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6.1 Magnetic Field and Gap-Volt Programs

The simulation requires magnetic �eld and gap-volt programs for the
acceleration cycle. These are chosen to closely match those actually used
in Booster. Although Bdot is nonzero in the actual cycle, we shall assume
that during capture, B is held constant with Vg increasing linearly from
zero to Vc in time Tc. (This is a reasonable approximation since Bdot is
small (1 G/ms) at this time.) Thus, for 0 � t � Tc, we have

B = Bc; _B = 0; Vg(t) = (Vc=Tc)t (52)

where Bc = 634:5415 (Gauss) is the nominal injection �eld. After capture,
and until the maximum Bdot is reached at time T � (i.e. for Tc � t � T �),
we shall assume that

B(t) = Bc + a(t� Tc)
3; _B(t) = 3a(t� Tc)

2 (53)

and
Vg(t) = Vc +K _B(t): (54)

Here Vg increases in proportion to Bdot until the maximum of 34 keV is
reached; it is then held constant at the maximum value. The
proportionality constant K is an adjustable parameter of the simulation.
The parameter a is chosen so that _B(t) reaches the prescribed maximum
value _B� at time T �. Thus

a =
_B�

3(T � � Tc)2
(55)

and the �eld at time T � becomes

B� = B(T �) = Bc + _B�(T � � Tc)=3: (56)

Setting
_B� = 87 G=ms; T � � Tc = 17:4 ms (57)

gives a magnetic �eld cycle which closely matches the one actually used in
Booster. After the maximum Bdot is reached, B continues to increase at
constant Bdot. Thus, for t � T �,

B(t) = B� + _B�(t� T �): (58)

Using these magnetic �eld and gap-volt programs we can obtain the
turn-by-turn values of the synchronous phase (�sn) and other parameters of
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Figure 1: Bdot, Gap Volts, Stable Phase, and Bucket Area with Tc = 3 ms,
Vc = 0:8 kV, and K = 1:2 kV/(G/ms).

the synchronous particle. These can then be used in (50{51) to obtain the
bucket area. Fig. 1 shows a plot of _B(t), Vg(t), and the resulting
synchronous phase and (single) bucket area for the case in which Tc = 3
ms, Vc = 0:8 kV, and K = 1:2 kV/(G/ms). (Note that what is actually
plotted is _B=2 and 10 times the single bucket area.) Here we see that the
bucket area increases (and goes o� scale) until Vg(t) reaches its maximum
value of 34 kV; it then decreases to the \bottleneck" at 20.4 ms, after
which it slowly increases as B increases with Bdot held constant at 87
G/ms. If K is too small then the bucket area will decrease immediately
after capture as shown in Fig. 2. Here Tc = 3 ms and Vc = 0:8 kV as in
Fig. 1, but K = 0:6 kV/(G/ms). The decrease in bucket area at this point
may result in beam loss.

6.2 Initial Particle Distribution

The initial particle distribution used in the simulation is an array of points
in (t, e) space chosen to cover the distribution of gold beam in Booster just
after the beam pulse from tandem has been injected and before RF
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Figure 2: Same as Fig. 1 except K = 0:6 kV/(G/ms).

capture begins. The beam is unbunched at this time and is spread
uniformly around the ring. We shall assume that the distribution of
energies within the beam is uniform and is centered on the nominal
injection energy. The initial particle distribution is then taken to be a
uniform 50-by-50 rectangular array of points in (t, e) space with boundries
at t = ��t and e = ��e. We shall take �e = 0:36 MeV. This corresponds to
the momentum deviation �p given by �p=ps = �e=(Es�

2
s ) = 0:001 with ps,

Es, and �s evaluated at injection. At harmonic h = 6, the width of a single
stationary bucket at injection is 2.518 �s, so we take �t = 1:259 �s. The
resulting array of 2500 points is shown in Fig. 3. The longitudinal
emittance of the (single bucket) array is 4(�t)(�e) = 1:813 eV-s.

6.3 Evolution of Particle Distribution

Tracking each of the 2500 particles of the initial distribution, one obtains
the turn-by-turn evolution of the distribution throughout the acceleration
cycle. For the magnetic �eld and gap-volt parameters of Fig. 1, we obtain
the distributions and corresponding RF buckets shown in Figures (4-8).
(The rectangle of points in the �gures is the border of the initial particle
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distribution.) The distribution at the end of Capture is shown in Fig. 4.
Here one sees some �lamentation of the beam emittance, but all 2500
particles are captured. The distribution at the point of maximum bucket
area is shown in Fig. 5. The distribution just after bottleneck is shown in
Figures 6 and 7, and the distribution at the full (kinetic) energy of 95:2
GeV per nucleon is shown in Figure 8. All 2500 particles survive
acceleration to full energy.

6.4 Comments

Although the momentum spread (�p=ps = �0:001) and (single-bucket)
longitudinal emittance (1:813 eV-s) of the initial particle distribution used
in the simulation are (presumably) overestimates of the actual spread and
emittance of the Gold beam from Tandem, they serve to de�ne the
boundries of the phase-space area that can be accelerated with the present
setup in Booster. This is clear from Figures 6 and 7 which show that there
is not much room to spare at the bucket area bottleneck.

In Section 4 we showed that, in principle, there is enough bucket area to
accommodate the acceleration of an initial particle distribution with
�p=ps = �0:0018 and a (single-bucket) emittance of 3:30 eV-s. However,
due to emittance �lamentation during capture, as shown in Figure 4, a
larger bucket is required.

The �lamentation that occurs during capture is a critical factor in
determining the bucket area requirements for subsequent acceleration not
only in Booster but also in AGS and RHIC. The amount of �lamentation
can be reduced by slowing down the capture process. Figure 9 shows the
particle distribution at the end of capture with Tc extended to 12 ms.
Comparing with Figure 10 (which is the same as Figure 4), we see that
there is much less �lamentation. Unfortunately, extending the capture
time in practice is not compatible with the need to accelerate the beam as
quickly as possible in order to avoid poorly understood loss mechanisms at
low energy.
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Figure 3: Au31+ Initial Particle Distribution.
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Figure 4: Particle Distribution at end of Capture (Tc = 3:0 ms).

13



−1500.0 −1000.0 −500.0 0.0 500.0 1000.0 1500.0
t (ns)

−6.0

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

e 
(M

eV
)

Figure 5: Particle Distribution at point of maximum bucket area.
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Figure 6: Particle Distribution just after Bottleneck.
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Figure 7: Enlarged View of Fig. 6 (just after Bottleneck).
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Figure 8: Particle Distribution at Full Energy.
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Figure 9: Particle Distribution at end of Capture (Tc = 12 ms).
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Figure 10: Particle Distribution at end of Capture (Tc = 3 ms).
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