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Following Ripken’s linear coupling parameterization procedure, the linear coupling parameterization in the
betatron phase rotation frame is introduced. In the parameterization, the two eigenmodes’ betatron oscil-
lation phases and phase advances are well defined. The general expression of the coordinates (x, x′, y, y′) in
the laboratory frame are given independent of different beam excitations.

The transfer matrix P from the betatron phase rotation frame to the laboratory frame are discussed in
detail. It can be obtained from the eigenvectors of the one-turn transfer map T. It also has tight connections
to Twiss and coupling parameters defined in Edwards-Teng’s parameterization. It can be constructed from
BPM turn-by-turn data with the precisely measured eigentunes and betatron initial phases.

The phase ellipses and beam sizes in different projection planes are easily obtained in the betatron phase
rotation parameterization. The physical meanings of the coupling parameter r and the coupling matrix C
defined in Edwards-Teng’s parameterization become clear.

The two eigenmode betatron phase advances, the matrix P, therefore Twiss and coupling parameters at
point s2 are described in terms of the section transfer map T1→2 and Twiss and coupling parameters at the
starting point s1.

The linear coupling betatron phase rotation parameterization is useful for the turn-by-turn BPM data
interpretation. The three dimensional linear coupling parameterization in the betatron phase rotation frame
can be obtained in the same way as the two-dimensional parameterization. And the parameterization using
(x, px, y, py) canonical coordinates is similar to that shown here with (x, x′, y, y′) coordinates. The betatron
phase rotation parameterization can be adjusted for the transport line linear coupling research purpose, too.

1 Introduction

The Courant-Snyder parameterization [1] of the uncoupled one-dimensional particle’s betatron oscillation
in the circular accelerators has been proved to be a great success. The pursuit to cast the coupled two-
dimensional transverse betatron motion into an elegant way as the one-dimensional parameterization is
continuing. Here we give another approach in its sort.

There are two main directions to parameterize the two-dimensional linearly coupled betatron motions.
One is to start from the eigenvectors of the one-turn 4 × 4 transfer matrix to construct the particle’s four
coordinates in the laboratory frame. The eigenvectors transfer from one point to another in the ring so that
the coordinates in the eigenvector frame are constant. Comparing to the one-dimensional Courant-Snyder
parameterization, new Twiss parameters in the two-dimensional situation are defined accordingly. One well-
known parameterization in this sort was achieved by G. Ripken [2, 3, 4]. There, four β and four α functions
are defined. Knowing the expression of the four coordinates in the laboratory frame, the phase ellipses and
beam sizes into different observation planes are easily obtained.

Another approach is to directly decouple the one-turn transfer map in the laboratory frame into an
uncoupled 4 × 4 one-turn map through the matrix similarity transformation. One successful approach in
this direction had been obtained by Edwards and Teng [5, 6] and improved by others [7, 8, 9, 10]. The
parameterization is proved successful. There two sets of Twiss parameters from two eigenmodes are defined
and a coupling matrix is introduced. It has been widely used in coupling measurements, where the normalized
C is used [11, 9].

Comparing the two successful parameterizations by Ripken, Edwards and Teng, we find that Ripken’s
parameterization give straight-forward expression of the particle’s coordinates in the laboratory frame. There
the particle motion’s phases and phase advances between two points are both well defined. The shortcoming
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of this approach is that it is a little complicated. The inverse transfer from its defined Twiss parameters to
the one-turn transfer map hasn’t been found [12].

Edwards-Teng’s parameterization is based on the matrix manipulations. The transfers between its de-
fined Twiss, coupling parameters and the one-turn map are easily obtained. The unsolved problem of the
parameterization is its ambiguous definitions of betatron phases and phase advances. The general expression
of one particle’s motion in the laboratory frame is not given. So it is not used to calculate the phase ellipses,
phase areas and beam sizes in different projection planes. The relation between the one-turn transfer map’s
eigenvectors and its defined Twiss and coupling parameters are not given.

With high performance digital BPMs and the modern analytical techniques [11, 13, 14, 15, 16, 17, 18],
the betatron phase advances can be very precisely measured in the beam experiments. The merit of the
phase measurement is that it is independent from the BPM position offsets and their gains. It has attracted
much attention in how to use them in the past few years [19]. For a specific betatron oscillation, the
two eigenmodes’ phases and phase advances are all well defined. To include them into the linear coupling
parameterizations are demanded. This article will give an approach to tackle those mysteries.

Following the procedure of Ripken’s parameterization, we transfer the four coordinates in the laboratory
frame to the betatron phase rotation frame. Each laboratory coordinate will have four terms. Each eigenmode
contributes two terms. It will be found that the transfer matrix from the laboratory frame to the betatron
phase rotation frame can be obtained simply from the eigenvectors of the one-turn map in the laboratory
frame. The projection phase ellipses and their areas, the coupling tilt angle in the x− y plane are also easily
obtained. The betatron phase rotation parameterization is self-consistent formalism. It is found that the
transfer matrix from the laboratory frame to the betatron phase rotation frame have very tight connections to
Twiss and coupling parameters defined in Edwards-Teng’s parameterization. So they are directly borrowed
into the betatron phase rotation parameterization.

The article is organized in the following way: first we introduce the phase rotation frame starting from
Ripken’s parameterization but with different expression of the four laboratory coordinates. Then we discuss
how to construct the matrix P analytically and experimentally. The phase ellipses and their areas, and the
beam sizes are given. The propagation of the matrix P in terms of the section transfer matrix T1→2 are
obtained.

2 Phase rotation frame

In the general linearly coupled situation, it is known that the displacements x and y include the contributions
from both eigenmodes. we assume that mode I is more linked to the horizontal plane, and mode II is more
linked to the vertical plane. The nth turn’s x and y can be casted as:

{
xn = A1,1 cos(2πµ1(n− 1) + φ1,1) +A1,2 cos(2πµ2(n− 1) + φ1,2)
yn = A2,1 cos(2πµ1(n− 1) + φ2,1) +A2,2 cos(2πµ2(n− 1) + φ2,2)

, (1)

where the amplitude coefficients A and initial phases φ both have subscripts (i, j). The first subscript
represents the horizontal or vertical plane. The second subscript represents mode I or mode II.

2.1 4× 4 P matrix

Eq. (1) has a very clear physical meaning. The tunes µ1,2 and the initial phase φi,j can be precisely obtained
from BPM turn-by-turn data in beam experiments. They are all well defined quantities for a specific betatron
motion. The angles x′ and y′ also can be casted into two modes’ contributions like Eq. (1). However, the
shortcoming of this parameterization is that there are two many A s and φ s and no clear relations between
them.

One simple alternative is to cast the coordinates with the action-angle variables as the uncoupled one-
dimensional situation [1], where x and y are:

{
x =

√
2Jxβx cos Φx

y =
√

2Jyβy cos Φy
, (2)

where Jx,y are the horizontal and vertical actions, Φx and Φy are the phases of the betatron oscillations.
By taking differentials of the above two equations, we obtain two terms for each x′ or y′ if we still keep the
betatron phases Φx,y.
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So in the linearly coupled case, if we keep the two eigenmodes’ phases, there will probably be four terms
for each coordinate of (x, x′, y, y′) at one point in the ring, then we get:




x
x′

y
y′


 = P ·




cos Φ1

sin Φ1

cos Φ2

sin Φ2


 , (3)

P =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44


 , (4)

where Φ1,2 are the two eigenmodes’ betatron oscillation phases. The one turn’s betatron phase advances
are 2πµ1 for mode I, 2πµ2 for mode II. Eq. (3) looks like that from Ripken’s expression of (x, x′, y, y′)
coordinates. However, here we include four terms for each coordinate, and only two betatron phases are
introduced.

2.2 Phase rotations

Here we give the frequently used phase rotation matrix in accelerator physics:

R(∆Φi) =

(
cos(∆Φi) sin(∆Φi)
− sin(∆Φi) cos(∆Φi)

)
, (5)

R(∆Φ1,∆Φ2) =

(
R(∆Φ1) 0

0 R(∆Φ2)

)
. (6)

Careful readers will notice that both of them are clockwise rotation matrix. In order to get the phase advance
propagation like Φ1,2|s2 = Φ1,2|s1 + ∆Φ1,2, we change the signs of the sin functions in Eq. (3):




x
x′

y
y′


 =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44


 ·




cos Φ1

− sin Φ1

cos Φ2

− sin Φ2


 (7)

It is easily to prove:



cos(Φ1 + ∆Φ1)
− sin(Φ1 + ∆Φ1)
cos(Φ2 + ∆Φ2)
− sin(Φ2 + ∆Φ2)




2

= R(∆Φ1,∆Φ2) ·




cos(Φ1)
− sin(Φ1)
cos(Φ2)
− sin(Φ2)




1

, (8)

So the coordinates in the betatron phase rotation frame are rotating with the two eigenmodes’ phase advances
when the particle travels along the ring. The amplitude of coordinates in the rotation frame are constant.

2.3 Actions J1 and J2

By now the elements of P are related with the particle’s oscillation amplitudes or energy. In order to make
pij independent of individual particles, here we introduce actions into. In the uncoupled situation, the action
J1 of mode I will appear in the left upper block of P. Action J2 of mode II will appear in the right lower
block of P. Then we modify Eq. (7) as:




x
x′

y
y′


 =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44


 ·




√
2J1 cos Φ1

−√2J1 sin Φ1√
2J2 cos Φ2

−√2J2 sin Φ2


 . (9)

The propagation of the coordinates in the betatron phase rotation frame is :



√
J1 cos(Φ1 + ∆Φ1)
−√J1 sin(Φ1 + ∆Φ1)√
J2 cos(Φ2 + ∆Φ2)
−√J2 sin(Φ2 + ∆Φ2)




2

= R(∆Φ1,∆Φ2) ·




√
J1 cos(Φ1)

−√J1 sin(Φ1)√
J2 cos(Φ2)

−√J2 sin(Φ2)




1

. (10)
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2.4 Betatron phases Φ1 and Φ2

In Eq. (10) there is still an ambiguity in the definitions of eigenmodes’ phases Φ1,2. In principle, one can
define arbitrary Φ1,2 in Eq. (10), there still will be a constant P at one point in the ring.

We notice that in the uncoupled one-dimensional situation, Courant and Snyder defined the displace-
ment’s phase as the eigenmode’s phase. Therefore there is only one term for the displacement coordinate.
Then x′ or y′ has two terms if we keep the displacement’s phase. Among them, one term is in-phase to the
displacement, another is out-of-phase to the displacement.

Here we forcedly define Φ1 as the phase of mode I ’s contribution to x displacement, and Φ2 as the phase
of mode II’s contribution to y displacement. Therefore, the element p12 and p34 in matrix P equal to zero:




x
x′

y
y′


 =




p11 0 p13 p14

p21 p22 p23 p24

p31 p32 p33 0
p41 p42 p43 p44


 ·




√
2J1 cos Φ1

−√2J1 sin Φ1√
2J2 cos Φ2

−√2J2 sin Φ2


 . (11)

The eigenmode phases at one point in the ring are:

{
Φ1 = 2πµ1(n− 1) + φ1,0

Φ2 = 2πµ2(n− 1) + φ2,0
, (12)

φ1,0 and φ2,0 are the initial betatron phases for the two eigenmodes at that point. They can be precisely
measured experimentally from the turn-by-turn BPM data.

Each coordinate in the laboratory frame is then given :





x = p11

√
2J1 cos Φ1 + p13

√
2J2 cos Φ2 − p14

√
2J2 sin Φ2

x′ = p21

√
2J1 cos Φ1 − p22

√
2J1 sin Φ1 + p23

√
2J2 cos Φ2 − p24

√
2J2 sin Φ2

y = p31

√
2J1 cos Φ1 − p32

√
2J1 sin Φ1 + p33

√
2J2 cos Φ2

y′ = p41

√
2J1 cos Φ1 − p42

√
2J1 sin Φ1 + p43

√
2J2 sin Φ2 − p44

√
2J2 sin Φ2

(13)

Eq. (13) is a general expression to (x, x′, y, y′) coordinates of one particle’s motion. It has very clear
physical meanings, and it is convenient for the experimental BPM turn-by-turn data interpretations. And
in the betatron phase rotation frame, the eigentunes, the eigenmodes’ initial phases and the eigenmodes’
phase advances are clearly defined. The particle oscillation energy and two eigenmodes’ action are also well
defined. In the following, we will see that Eq. (13) is useful for the analytical calculations.

2.5 Reduce to uncoupled situation

In the uncoupled situation, all elements in the two off-diagonal blocks of matrix P will disappear:




x
x′

y
y′


 =




p11 0 0 0
p21 p22 0 0
0 0 p33 0
0 0 p43 p44


 ·




√
2J1 cos Φ1

−√2J1 sin Φ1√
2J2 cos Φ2

−√2J2 sin Φ2


 . (14)

The four coordinates in the laboratory frame are:

{
x = p11

√
2J1 cos Φ1

x′ = p21

√
2J1 cos Φ1 − p22

√
2J1 sin Φ1

(15)

{
y = p33

√
2J2 cos Φ2

y′ = p43

√
2J2 cos Φ2 − p44

√
2J2 sin Φ2

(16)

Comparing to the uncoupled one-dimensional Courant-Snyder parameterization:

{
x =

√
2Jxβx cos(

∫
1
βx
ds+ φx,0)

x′ = −αx
√

2Jx/βx cos(
∫

1
βx
ds+ φx,0)−

√
2Jx/βx sin(

∫
1
βx
ds+ φx,0)

, (17)

{
y =

√
2Jyβy cos(

∫
1
βy
ds+ φy,0)

y′ = −αy
√

2Jy/βy cos(
∫

1
βy
ds+ φy,0)−

√
2Jy/βy sin(

∫
1
βy
ds+ φy,0)

, (18)
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we find the connections of pijs to Twiss parameters defined in Courant-Synder’s one-dimensional parame-
terization as: 




p11 =
√
βx

p21 = −αx
√
βx

p22 = 1/
√
βx

p33 =
√
βy

p43 = −αy
√
βy

p44 = 1/
√
βy

. (19)

And the betatron phase connections are:
{

Φ1 =
∫

1
βx
ds+ φx,0

Φ2 =
∫

1
βy
ds+ φy,0

, (20)

which coincides with our previous definitions.

2.6 One eigenmode excitation

In order to measure the betatron oscillation optics, we coherently shake the beam with one eigenmode’s
frequency [11, 20]. If only mode I is activated, the oscillation of the center of the bunch is:




x
x′

y
y′


 =




p11 0 p13 p14

p21 p22 p23 p24

p31 p32 p33 0
p41 p42 p43 p44


 ·




√
2J1 cos Φ1

−√2J1 sin Φ1

0
0


 , (21)

each coordinate in the laboratory frame is given by:




x = p11

√
2J1 cos Φ1

x′ = p21

√
2J1 cos Φ1 − p22

√
2J1 sin Φ1

y = p31

√
2J1 cos Φ1 − p32

√
2J1 sin Φ1

y′ = p41

√
2J1 cos Φ1 − p42

√
2J1 sin Φ1

. (22)

If only mode II is activated, the oscillation of the center of the bunch is given by:



x
x′

y
y′


 =




p11 0 p13 p14

p21 p22 p23 p24

p31 p32 p33 0
p41 p42 p43 p44


 ·




0
0√

2J2 cos Φ2

−√2J2 sin Φ2


 , (23)

each coordinate in the laboratory frame is given by:




x = p13

√
2J2 cos Φ2 − p14

√
2J2 sin Φ2

x′ = p23

√
2J2 cos Φ2 − p24

√
2J2 sin Φ2

y = p33

√
2J2 cos Φ2

y′ = p43

√
2J2 cos Φ2 − p44

√
2J2 sin Φ2

(24)

So mode I’s betatron phase is reflected in x coordinate when the beam is shaked with mode I’s frequency,
the mode II’s betatron phase is reflected in y coordinate when the beam is shaked with mode II’s frequency.
The phase in y displacement with mode I frequency shaking , or the phase in x displacement with mode II
frequency shaking reflects the off-diagonal terms of matrix P.

P. Bagley [11], R. Talman [21], G. Bourianoff [22] also derived x and y coordinates under one eigenmode
excitation. Twiss parameters and/or normalized coupling matrix C are used. Comparing to their expressions,
Eq. (22) and Eq. (24) are simple, which is only one specification to the general expression Eq. (13).

2.7 Matrix P and T1→2

The coordinates in the laboratory frame at s2 can be obtained from those at s1 by:



x
x′

y
y′




2

= T1→2 ·




x
x′

y
y′




1

, (25)
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or through the betatron phase rotation frame:



x
x′

y
y′




2

= P2 ·R(∆Φ1,∆Φ2) ·P−1 ·




x
x′

y
y′




1

. (26)

So we obtain:
T1→2 = P2 ·R(∆Φ1,∆Φ2) ·P−1 . (27)

If the phase advances between the two points are known, then we can calculate matrix P2 with the section
transfer map T1→2 and matrix P1:

P2 = T1→2 ·P1 ·R−(∆Φ1,∆Φ2). (28)

For the one-turn transfer map, we obtain:

T = P ·R(2πµ1,2πµ2) ·P−. (29)

3 Construction of matrix P

In this section, we discuss how to construct the matrix P analytically and experimentally. It will be found that
the matrix P can be obtained from the eigenvectors of the one-turn transfer map T in the laboratory frame,
and has tight connections with Twiss and coupling parameters defined in Edwards-Teng’s parameterization.

3.1 Matrix P and eigenvectors

We assume the four eigenvectors of the one-turn transfer matrix T are: v1, v∗1, v2, v∗2. Their eigenvalues
λi , i = 1, 2, 3, 4, are ei2πµ1 , e−i2πµ1 , ei2πµ2 , e−i2πµ2 , respectively.





T · v1 = ei2πµ1 · v1

T · v∗1 = e−i2πµ1 · v∗1
T · v2 = ei2πµ2 · v2

T · v∗2 = e−i2πµ2 · v∗2

. (30)

Substituting Eq. (29) into the above equations, after some matrix manipulations, we get:




R(2πµ1,2πµ2) · (P− · v1) = ei2πµ1 · (P− · v1)
R(2πµ1,2πµ2) · (P− · v∗1) = e−i2πµ1 · (P− · v∗1)
R(2πµ1,2πµ2) · (P− · v2) = ei2πµ2 · (P− · v2)
R(2πµ1,2πµ2) · (P− · v∗2) = e−i2πµ2 · (P− · v∗2)

. (31)

We normalize the eigenvectors of the one-turn transfer map T according to:

vT
1,2 · v∗1,2 = 1 (32)

However, after the normalization, v1,2 and v1,2 · eiφ both meet Eq. (32), and have the same eigenvalues.
In order to assure p12 and p34 in the matrix P equal to zero, here we will force v1 and v∗1 ’s first elements
to be purely imaginary numbers. Their amplitudes will not be changed. The reason for that will be clear in
the following when we connect matrix P to the eigenvectors of the one-turn transfer map T.

If the phase of the first element of v1 is eiθ1 , we multiply v1 by ei(−π/2−θ). Then the phase of the first
element of v∗1 is e−iθ1 , we multiply v∗1 by ei(π/2+θ1). The same procedure is needed for the eigenvectors v2

and v∗2. If the phase of the third element of v2 is eiθ2 , we multiply v2 by ei(−π/2−θ2). Then the phase of the
third element of v∗2 is e−iθ2 , we multiply v∗2 by ei(π/2+θ2). After that the first elements of v1 and v∗1, the
third elements of v2 and v∗2 are all purely imaginary numbers.

For the rotation matrix R(2πµ1,2πµ2), there are also four normalized eigenvectors. Their eigenvalues
λi , i = 1, 2, 3, 4, are ei2πµ1 , e−i2πµ1 , ei2πµ2 , e−i2πµ2 , respectively. The normalized eigenvectors of the matrix
R(2πµ1,2πµ2) are ṽ1, ṽ∗1 , ṽ2, ṽ∗2 : 




ṽ1 = 1√
2
(-i 1 0 0)T

ṽ∗1 = 1√
2
(i 1 0 0)T

ṽ2 = 1√
2
(0 0 -i 1)T

ṽ∗2 = 1√
2
(0 0 i 1)T

, (33)
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



R(2πµ1,2πµ2) · ṽ1 = ei2πµ1 · ṽ1

R(2πµ1,2πµ2) · ṽ∗1 = e−i2πµ1 · ṽ∗1
R(2πµ1,2πµ2) · ṽ2 = ei2πµ2 · ṽ2

R(2πµ1,2πµ2) · ṽ∗2 = e−i2πµ2 · ṽ∗2

. (34)

Comparing Eq. (31) and Eq. (34), we obtain:





P− · v1 = 1√
2
(-i 1 0 0)T

P− · v∗1 = 1√
2
(i 1 0 0)T

P− · v2 = 1√
2
(0 0 -i 1)T

P− · v∗2 = 1√
2
(0 0 i 1)T

, (35)

The eigenvectors of matrix T and R(2πµ1,2πµ2) are all complex. Here we recombine the above four
equations: 




P− · i√
2

(v1 − v∗1) = (1 0 0 0)T

P− · 1√
2

(v1 + v∗1) = (0 1 0 0)T

P− · i√
2

(v2 − v∗2) = (0 0 1 0)T

P− · 1√
2

(v2 + v∗2) = (0 0 0 1)T

, (36)

Defining four new vectors from the eigenvectors of matrix T:





e1 = i√
2
(v1 − v∗1)

e2 = 1√
2
(v1 + v∗1)

e3 = i√
2
(v2 − v∗2)

e4 = 1√
2
(v2 + v∗2)

, (37)

then Eq. (36) can be re-written as:





P− · e1 = (1 0 0 0)T

P− · e2 = (0 1 0 0)T

P− · e3 = (0 0 1 0)T

P− · e4 = (0 0 0 1)T

, (38)

or in a compact way:
P− · e = I, (39)

where matrix e is constructed as:
e = (e1 e2 e3 e4). (40)

I is 4× 4 identity unit matrix. From Eq. (39), we obtain:

P = e. (41)

Since P’s determinant is 1, so we should normalize matrix e to make its determinant to be 1 in the end of
the procedure.

Then we find that the matrix P can be directly constructed from the eigenvectors of the one-turn transfer
map T in a sample way. It is easy to check that p12 and p34 in the matrix P are both zero from the above
procedure.

3.2 Matrix P and Twiss, coupling parameters

Edwards-Teng’s parameterization decouples the coupled one-turn transfer map like:

T = V ·
(

A 0
0 B

)
·V−, (42)

V =

(
rI C
−C+ rI

)
. (43)
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In order to easily distinguish Twiss parameter γ, the author uses r in the matrix V instead of γ in other
literatures. Each matrix A and matrix B are parameterized like one-dimensional Courant-Snyder parame-
terization [1]. Matrix A and matrix B can be further parameterized as Ui ·R(2πµi) ·U−i :

Ui =

( √
βi 0

−αi/
√
βi 1/

√
βi

)
, (44)

Then the one-turn map T is:
T = V ·U ·R(2πµ1,2πµ2) ·U− ·V−, (45)

U =

(
U1 0
0 U2

)
. (46)

Comparing to Eq. (29) and Eq. (45), we obtain:

P = V ·U, (47)

||P|| = ||V|| · ||U|| = 1. (48)

It is interesting that the matrix P is the same as the matrix V·U defined in Edwards-Teng’s parameterization.
Expanding V·U into Twiss and coupling parameters defined in Edwards-Teng’s parameterization, we obtain:

P =

(
P11 P12
P21 P22

)
=

(
rU1 CU2

−C+U1 rU2

)
. (49)

P =




r
√
β1 0 c11

√
β2 − c12α2/

√
β2 −c12/

√
β2

−α1r/
√
β1 r/

√
β1 c21

√
β2 − c22α2/

√
β2 c22/

√
β2

−c12α1/
√
β1 − c22

√
β1 c12/

√
β1 r

√
β2 0

c11α1/
√
β1 + c21

√
β1 −c11/

√
β1 −α2r/

√
β2 r/

√
β2


 . (50)

The matrix P is independent of Edwards-Teng’s parameterization. However, since Edwards-Teng’s pa-
rameterization gives the well-defined Twiss parameters and the coupling matrix C, we would like directly
borrow them into the betatron phase rotation parameterization.

On the other hand, we can calculate Twiss parameters and coupling parameters from matrix P. For
example, the two eigenmodes’ Twiss parameters and r can be obtained in the following equations:





r =
√
p11 · p22 =

√
p33 · p44

β1 = p11/p22

α1 = −p21/p22

γ1 = (1 + α2
1)/β1 = (p2

21 + p2
22)/p11p22

β2 = p33/p44

α2 = −p43/p44

γ2 = (1 + α2
2)/β2 = (p2

43 + p2
44)/p33p44

. (51)

The coupling matrix C can be obtained, for example, through P12 and U2:

C = P12 ·U−2 = P12 ·P22−/r. (52)

For the one-turn map there are ten independents. For the matrix P there are eight independents since two
independents µ1 and µ2 have been split ed out. There are different ways to define those eight independents
of the matrix P.

3.3 Construct matrix P experimentally

To fully construct matrix P, we need to know the turn-by-turn (x, x′, y, y′) data at one point in the ring. In
each interaction region of the Relativistic Heavy Ion Collider ( RHIC ), there are two DXBPMs which are
close to the last magnet DX and face to the IP. There is no other magnet between the two BPMs if we ignore
or switch off the detector’s solenoid field, so we obtain the turn-by-turn angle informations of the particle’s
motion at the two BPMs.

Here we give an example of the matrix P construction through the simulation data. The two DXBPMs
in the IR8 in the Blue ring are used to get the angle information. The design distance from the two BPMs to
the design IP is 8.33 m. We designate the DXBPM in the upstream of IP8 as DXBPM81, and the DXBPM
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in the downstream of IP82 as DXBPM82. In the following we use SAD code [23] to produce the BPM
turn-by-turn data. In the simulation, only one free oscillation particle circulates in the Blue ring.

The two eigentunes can be precisely obtained from the turn-by-turn x and/or y data with the fast Fourier
transformation( FFT ) technique. The uncoupled tunes are µx,0 = 28.22, µy,0 = 29.23. We set the skew
quadrupole family 1 ’s integrated strength to be 0.0005 m−1 to introduce the coupling. From FFT of (x+y)
turn-by-turn data at DXBPM81, the two tunes are obtained 28.2126, 29.2375, respectively.

3.3.1 Initial phases

Knowing the two eigentunes µ1 and µ2, we first obtain the initial phases of two eigenmodes. Multiplying
cos(2πµ1(n − 1)), sin(2πµ1(n − 1)) to x turn-by-turn data, and taking summations to the maximum Nth
turn, we get: 




C1 =
∑N
i=1 xi · cos(2πµ1(n− 1))

S1 =
∑N

i=1 xi · sin(2πµ1(n− 1))

, (53)

φ1,0 is given by: 



sinφ1,0 = −S1/
√
S2

1 + C2
1

cosφ1,0 = C1/
√
S2

1 + C2
1

φ1,0 = arctan (−S1/C1).

. (54)

The same procedure to y turn-by-turn BPM data, we get:




C2 =
∑N

i=1 yi · cos(2πµ2(n− 1))

S2 =
∑N
i=1 yi · sin(2πµ2(n− 1))

, (55)

the φ2,0 is given by: 



sinφ2,0 = −S2/
√
S2

2 + C2
2

cosφ2,0 = C2/
√
S2

2 + C2
2

φ2,0 = arctan (−S2/C2).

. (56)

From x turn-by-turn data at DXBPM81, we get mode I’s betatron oscillation initial phase 138.6449◦.
From y turn-by-turn data from DXBPM81, we get mode II’s betatron oscillation initial phase−152.1502◦. At
DXBPM82, we similarly get mode I and mode II’s initial phases −54.9332◦ and 14.0882◦. So the eigenmodes’
phase advances between the two BPMs are 166.4218◦ and 166.2384◦ for mode I and mode II, respectively.
From the analytical calculation with SAD code, they are 166.4212◦ and 166.2399◦. Here we see that the
phase advances are very precisely reproduced from the simulation turn-by-turn BPM data.

3.3.2 Matrix A

Eq. (11) can be rewritten as:



x
x′

y
y′


 =




√
2J1p11 −√2J1p12

√
2J2p13 −√2J2p14√

2J1p21 −√2J1p22

√
2J2p23 −√2J2p24√

2J1p31 −√2J1p32

√
2J2p33 −√2J2p34√

2J1p41 −√2J1p42

√
2J2p43 −√2J2p44


 ·




cos Φ1

sin Φ1

cos Φ2

sin Φ2


 . (57)

In order to facilitate narration, we define an interim matrix A as :

A =

(
A11 A12
A21 A22

)
=




√
2J1p11 −√2J1p12

√
2J2p13 −√2J2p14√

2J1p21 −√2J1p22

√
2J2p23 −√2J2p24√

2J1p31 −√2J1p32

√
2J2p33 −√2J2p34√

2J1p41 −√2J1p42

√
2J2p43 −√2J2p44


 . (58)

we still use harmonic analysis technique to get the coefficients Aij . For example, from x turn-by-turn data
we get: 




A11 = (
∑N

i=1 xi · cos(2πµ1(n− 1) + φ1,0) · 2/N
A12 = (

∑N
i=1 xi · sin(2πµ1(n− 1) + φ1,0) · 2/N

A13 = (
∑N

i=1 xi · cos(2πµ2(n− 1) + φ2,0) · 2/N
A14 = (

∑N
i=1 xi · sin(2πµ2(n− 1) + φ2,0) · 2/N

. (59)
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Similarly from x′, y and y′ turn-by-turn data, we obtain A2j , A3j and A4j , j = 1, 2, 3, 4. From the above
(x, x′, y, y′) simulation data at DXBPM81, we obtain matrix A:

A =




7.505× 10−4 −1.852× 10−16 −1.451× 10−4 5.040× 10−5

−8.898× 10−5 −1.061× 10−5 1.790× 10−5 −3.912× 10−6

4.579× 10−4 1.675× 10−4 2.390× 10−4 4.485× 10−17

−5.187× 10−5 −2.634× 10−5 −2.831× 10−5 −3.419× 10−6


 (60)

3.3.3 Normalize matrix P

Matrix A includes the action informations. From the determinant of the left upper 2×2 block and the right
lower 2× 2 block of matrix A, we get the ratio of the two actions:

k =
√
J1/J2 =

√
||A11||/||A22||. (61)

According to the definition of matrix A, we first invert the signs of the elements of matrix A, then divide
the first two column elements by k. Normalizing the new matrix’s determinant to 1, then we get the matrix
P. Please be advised the order of the procedures.

Based on the above obtained A, we obtain:

P =




6.873 1.696× 10−12 −4.385 −1.523
−0.8148 0.09712 0.5412 0.1183

4.193 −1.534 7.225 −1.356× 10−12

−0.4750 0.2412 −0.8558 0.1033


 . (62)

From matrix P, we can continue to calculate Twiss and coupling parameters, the one-turn map. If we
know P1 and P2 at two points in the ring, the transfer matrix T1→2 between them can be obtained. The
section transfer map is hopefully useful for the field error diagnostics, on-line optics modeling and so on.

3.3.4 Construct P from eigenvectors

Here we want to take a little time to check the method of the matrix P construction from the eigenvectors
from the eigenvectors of one-turn transfer matrix T. According to Eq. (29), the one-turn transfer map at
DXBPM81 is obtained:

T =




8.399 69.276 0.2010 1.0966
−0.9873 −8.025 −0.01593 −0.06211
−0.1946 −2.1840 8.3359 69.3290
0.03089 0.3202 −0.9869 −8.0890


 . (63)

Solve out the eigenvectors and normalize them according to the above given procedures in section 3.1, we
re-construct the matrix P from the eigenvectors of one-turn transfer map T:

P =




7.035 4.308× 10−16 −4.284 1.488
−0.834 −0.0994 0.5287 −0.1155
4.292 1.570 7.0579 4.322× 10−16

−0.486 −0.247 −0.836 −0.101


 , (64)

which is close to the original one Eq. (62).

4 Phase ellipses and Σ matrix

In the uncoupled one-dimensional situation, it is well-known that the particle traces out an ellipse in the
x−x′ or y−y′ plane. For the linearly coupled situation, there are two modes’ contributions in each laboratory
coordinate shown in Eq. (13). There are several ellipses in different projection planes.
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4.1 Projection in the x− x′ plane from mode I

(x, x′, y, y′) coordinates from mode I is :




x
x′

y
y′



I

= P ·




√
2J1 cos Φ1

−√2J1 sin Φ1

0
0


 =

(
P11 P12
P21 P22

)
·




√
2J1 cos Φ1

−√2J1 sin Φ1

0
0


 (65)

The projection in the x− x′ plane is given:

(
x
x′

)

I

= P11 ·
( √

2J1 cos Φ1

−√2J1 sin Φ1

)
. (66)

Since P11 is 2× 2 matrix, its determinant is r2, so

P11+ = r2 ·P11−. (67)

Multiply P11+ to both sides of Eq. (66), we obtain:

P11+ ·
(

x
x′

)

I

= r2 ·
√

2J1 ·
(

cos Φ1

− sin Φ1

)
, (68)

(
p22 0
−p21 p11

)
·
(

x
x′

)

I

= r2 ·
√

2J1 ·
(

cos Φ1

− sin Φ1

)
. (69)

We normalize P11+ to a unit determinant matrix P11+:

P11+ = P11+/r =

(
p22 0
−p21 p11

)
=

(
p22/r 0
−p21/r p11/r

)
. (70)

Then we re-write Eq. (68) as:

P11+ ·
(

x
x′

)

I

= r ·
√

2J1 ·
(

cos Φ1

− sin Φ1

)
, (71)

P11+ is a 2× 2 matrix, its determinant equals to 1, so after its transferring, the phase area will not change.

(
X
X ′

)

I

= P11+ ·
(

x
x′

)

I

, (72)

(
X
X ′

)

I

= r ·
√

2J1 ·
(

cos Φ1

− sin Φ1

)
, (73)

where (X,X ′) are the new coordinates. The phase area in X −X ′ plane, or in the x− x′ plane from mode
I’s contribution is:

εI,x−x′ = r2 · 2πJ1 . (74)

The projection in the x− x′ plane from mode I is an ellipse. From Eq. (69), we get:

(p22 x)2 + (−p21 x+ p22 x
′)2 = r4 · 2J1, (75)

or in Twiss parameters,

γ1x
2 + 2α1xx

′ + β2
1x
′2 = 2J1 · r2, (76)

Under the uncoupled situation, the above ellipse reduced to:

γ1x
2 + 2α1xx

′ + β1x
′2 = 2J1, (77)

which is the same as Courant-Snyder’s parameterization [1].
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4.2 Projection in the y − y′ plane from mode I

Similarly, we calculate the projection in the y − y′ plane from the contribution of mode I:

(
y
y′

)

I

= P21 ·
( √

2J1 cos Φ1

−√2J1 sin Φ1

)
. (78)

P21+ ·
(

y
y′

)

I

= (1− r2) ·
√

2J1

(
cos Φ1

− sin Φ1

)
. (79)

Normalize P21+ to a unit determinant matrix P21+:

P21+ = P21+/
√

1− r2, (80)

then we obtain:

P21+ ·
(

y
y′

)

I

=
√

1− r2 ·
√

2J1

(
cos Φ1

− sin Φ1

)
. (81)

(
Y
Y ′

)

I

=
√

1− r2 ·
√

2J1

(
cos Φ1

− sin Φ1

)
. (82)

Then the phase area in the Y − Y ′ plane or in the y − y′ plane contributed from mode I is:

εI,y−y′ = (1− r2) · 2πJ1. (83)

The phase shape in the y − y′ plane is an ellipse. From Eq. (79):

(p42 y − p32 y
′)2 + (−p41 y + p31 y

′)2 = (1− r2)2 · 2J1. (84)

Its shape and orientation is decided by the elements of P21, or the coupling matrix C defined in Edwards-
Teng’s parameterization.

The total phase area from mode I in the y − y′ and x− x′ planes is:

εI = εI,x−x′ + εI,y−y′ = 2πJ1 . (85)

We define the phase area partition ratio κI between x − x′ plane and y − y′ plane projection phase areas
from mode I as:

κI = εI,y−y′/εI,x−x′ = (1− r2)/r2. (86)

4.3 Projection in the x− y plane from mode I

We also can obtain the projection in the x− y plane from mode I:

(
x
y

)

I

=

(
p11 0
p31 p32

)
·
( √

2J1 cos Φ1

−√2J1 sin Φ1

)
. (87)

It is easy to prove that the projection phase shape in x− y plane from mode I is still an ellipse.

(p32 x)2 + (−p31 x+ p11 y)2 = (c12/r)
2 · r4 · 2J1. (88)

Its shape and orientation are decided by the coupling matrix C.
Its phase area is:

εI,x−y = |p11 p32| · 2πJ1 = |c12/r| · r2 · 2πJ1. (89)

If c12 = 0, no phase area into x− y plane.
In the one eigenmode excitation, x and y turn-by-turn coordinates at the dual direction BPMs can be

measured, then we can measure some coupling parameters in the x− y projection plane.
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4.4 Projections from mode II

Similar to mode I, mode II also has projections in the y − y′, x − x′, x − y planes. These coordinates from
mode II are given by:




x
x′

y
y′



II

= P ·




0
0√

2J2 cos Φ2

−√2J2 sin Φ2


 =

(
P11 P12
P21 P22

)
·




0
0√

2J2 cos Φ2

−√2J2 sin Φ2


 , (90)

(
y
y′

)

II

= P22 ·
( √

2J2 cos Φ2

−√2J2 sin Φ2

)
, (91)

(
x
x′

)

II

= P12 ·
( √

2J2 cos Φ2

−√2J2 sin Φ2

)
(92)

(
x
y

)

II

=

(
p13 p14

p33 0

)
·
( √

2J2 cos Φ2

−√2J2 sin Φ2

)
. (93)

These phase ellipses’ areas are obtained:





εII,y−y′ = r2 · 2πJ2

εII,x−x′ = (1− r2) · 2πJ2

εII,x−y = |c12/r| · r2 · 2πJ2

. (94)

And we also see the phase projection area of mode II is conservative:

εII = εII,y−y′ + εII,x−x′ = 2πJ2 (95)

The phase area partition ratio κII between the x− x′ and y − y′ plane projections from mode II is defined
as:

κII = εII,x−x′/εII,y−y′ = (1− r2)/r2, (96)

then κI = κII = κ.

4.5 Σ matrix and tilt angle

It is interesting to investigate the projections of all particles in one bunch in different projection planes,
therefore Σ matrix is defined [24]:

Σ =




σ2
x σx,x′ σx,y σx,y′

σx′,x σ2
x′ σx′,y σx′,y′

σy,x σy,x′ σ2
y σy,y′

σy′,x σy′,x′ σy′,y σ2
y′


 =




< x2 > < xx′ > < xy > < xy′ >
< x′x > < x′2 > < x′y > < x′y′ >
< yx > < yx′ > < y2 > < yy′ >
< y′x > < y′x′ > < y′y > < y′2 >


 . (97)

Among them, the particles’ projection into the x− y planes is more interesting. Using Eq. (13), it is easy to
obtain: 




< x2 > = p2
11 < J1 > +p2

13 < J2 > +p2
14 < J2 >

< y2 > = p2
31 < J1 > +p2

32 < J1 > +p33 < J2 >
< xy > = p11p31 < J1 > +p13p33 < J2 >

. (98)

Normally the projection of the beam in the x−y plane doesn’t like an ellipse since each particle’s projection
is combination of two ellipses. However, here we still define the coupling tilt angle for one bunch as other
literatures [25]:

tan Ψ =
2 < xy >

< x >2 − < y >2
, (99)

which is valid for < x >2 − < y >2 6= 0. The tilt angle is experimentally observable through the synchrotron
light monitor for the electron beam when the coupling is weak.
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5 Propagation of matrix P

Here we investigate the propagation of matrix P. The phase advances, Twiss parameters and coupling
matrix at s2 are also given in the elements of the section transfer matrix T1→2. Propagation of matrix P is
the key to other parameters’ propagations.

5.1 Matrix P’s propagation

In order to easily distinguish the elements of P at position s1 and s2, we denote the quantity at s2 has a
tilde overhead. The transfer matrix T1→2 in the laboratory frame from s1 to s2 is written into 2× 2 block
matrix:

T1→2 =

(
T11 T12
T21 T22

)
=




t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44


 . (100)

According to Eq. (28), the propagation of P from s1 to s2 can be re-written as:

(
P̃11 P̃12

P̃21 P̃22

)
=

(
T11 T12
T21 T22

)
·
(

P11 P12
P21 P22

)
·
(

R−(∆Φ1) 0
0 R−(∆Φ2)

)
, (101)

P̃11 = (T11 ·P11 + T12 ·P21) ·R−(∆Φ1), (102)

P̃21 = (T21 ·P11 + T22 ·P21) ·R−(∆Φ1), (103)

P̃12 = (T11 ·P12 + T12 ·P22) ·R−(∆Φ2), (104)

P̃22 = (T21 ·P12 + T22 ·P22) ·R−(∆Φ2). (105)

From the above equations, if we know the phase advance ∆Φ1, ∆Φ2, the matrix P2 at s2 can be obtained
with the matrix P1 and the transfer matrix T1→2.

5.2 The phase advances

As we know the phase advances are independent from particle to particle. So here we investigate one particle
which only has mode I ’s coordinates at s1 in the betatron phase rotation frame, just like one eigenmode
excitation. The coordinates in the laboratory frame at s1 is:




x
x′

y
y′




1

=
√

2J1




p11 cos Φ1

p21 cos Φ1 − p22 sin Φ1

p31 cos Φ1 − p32 sin Φ1

p41 cos Φ1 − p42 sin Φ1


 . (106)

The coordinates in the laboratory frame at s2 is:




x
x′

y
y′




2

=
√

2J1




p̃11 cos(Φ1 + ∆Φ1)
p̃21 cos(Φ1 + ∆Φ1)− p̃22(Φ1 + ∆Φ1)

p̃31 cos(Φ1 + ∆Φ1)− p̃32 sin(Φ1 + ∆Φ1)
p̃41 cos(Φ1 + ∆Φ1)− p̃42 sin(Φ1 + ∆Φ1)


 . (107)

From Eq. (25), we obtain:




p̃11 cos(Φ1 + ∆Φ1)
p̃21 cos(Φ1 + ∆Φ1)− p̃22 sin(Φ1 + ∆Φ1)
p̃31 cos(Φ1 + ∆Φ1)− p̃32 sin(Φ1 + ∆Φ1)
p̃41 cos(Φ1 + ∆Φ1)− p̃42 sin(Φ1 + ∆Φ1)


 =




t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44


 ·




p11 cos Φ1

p21 cos Φ1 − p22 sin Φ1

p31 cos Φ1 − p32 sin Φ1

p41 cos Φ1 − p42 sin Φ1




(108)
For p̃11, we obtain:

p̃11 cos(Φ1 + ∆Φ1) = (t11p11 + t12p21 + t13p31 + t14p41) cos Φ1

−(t12p22 + t13p32 + t14p42) sin Φ1.
(109)
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For simplicity, we define:
G = T1→2 ·P1, (110)

Gij = Σtikpkj , k = 1, 2, 3, 4. (111)

So ∆Φ1 is given: 



cos Φ1 = G11/
√
G2

11 +G2
12

sin Φ1 = G12/
√
G2

11 +G2
12

∆Φ1 = arctan(G12/G11)

. (112)

And we also obtain:

p̃11 =
√
G2

11 +G2
12. (113)

The phase advance ∆Φ2 for mode II also can be achieved in the above procedure except we assume the
particle only have mode II coordinates in the betatron phase rotation frame at s1. ∆Φ2 and p̃33 are obtained:





cos ∆Φ = G33/
√
G2

33 +G2
34

sin ∆Φ = G34/
√
G2

33 +G2
34

∆Φ2 = arctan(G34/G33)

, (114)

p̃33 =
√
G2

33 +G2
34. (115)

5.3 p̃ij at s2

Knowing the eigenmodes’ betatron oscillation phase advances ∆Φ1 and ∆Φ2, according to Eq. (102) to
Eq. (105), the matrix P2 is given:

P̃11 =
1

p̃11

(
G11 G12

G21 G22

)
·
(
G11 −G12

G12 G11

)
, (116)

P̃21 =
1

p̃11

(
G31 G32

G41 G42

)
·
(
G11 −G12

G12 G11

)
, (117)

P̃12 =
1

p̃33

(
G13 G14

G23 G24

)
·
(
G33 −G34

G34 G33

)
, (118)

P̃22 =
1

p̃33

(
G33 G34

G43 G44

)
·
(
G33 −G34

G34 G33

)
. (119)

It is easy to check that the elements p̃12 = 0, p̃34 = 0.

5.4 Twiss and coupling parameters at s2

Then we are able to describe Twiss parameters at s2 in these at s1 and the transfer matrix T1→2’s elements.




β̃1 = p̃11/p̃22 =
G2

11+G2
12

G11G22−G12G21

α̃1 = −p̃21/p̃22 = G11G21+G12G22

−G11G22+G12G21

, (120)





β̃2 = p̃33/p̃34 =
S2

33+S2
34

G33G44−G34G43

α̃2 = −p̃43/p̃44 = G33G43+G34G44

−G33G44+G34G43

. (121)

The coupling parameter r̃ at s2 can be obtained:

r̃ = p̃11 · p̃22 = G11G22 −G12G21, (122)

or
r̃ = p̃33 · p̃44 = G33G44 −G34G43. (123)

From Eq. (52), Eq. (103), Eq. (104), we get:

r̃ · C̃ = P̃12 · P̃22
−

= (T11 ·P12 + T12 ·P22) · (P12− ·T21− + T22− ·P22−)
= T11 ·T21− + T12 ·T22− + T11 · (r ·C) ·T22− + T12 · (r ·C−) ·T21−.

(124)
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5.5 Reduce to uncoupled situation

Under the uncoupled situation,

G =




p11t11 + p21t12 p22t12 0 0
p11t21 + p21t22 p22t22 0 0

0 0 p33t33 + p43t34 p44p34

0 0 p33t43 + p43t44 p44p44


 . (125)

The phase advances then equal to:
{

∆Φ1 = arctan(p22t12/(p11t11 + p21t12))
∆Φ2 = arctan(p44t34/(p33t33 + p43t34))

, (126)

or in Twiss parameters at s1

{
∆Φ1 = arctan(t12/(β1t11 − α1t12))
∆Φ2 = arctan(t34/(β2t33 − α2t34))

. (127)

β̃1 at s2 is:

β̃1 = ((p22t12)2 + (p11t11 + p21t12)2)/(p11p22(t11t22 − t12t21))

= β1t
2
11 − 2α1t11t12 + γ1t

2
12.

(128)

α̃1 at s2 is:

α̃1 = (p2
22t12t22 + (p11t11 + p21t12)(p11t21 + p21t22))/(p11p22(t12t21 − t11t22))

= −t11t12β1 + (t11t22 + t12t21)α1 − t12t22γ1.
(129)

All of them are the same to that from the uncoupled one-dimensional situation. For the mode II, we also
have similar conclusion.

5.6 Reduces to uncoupled section

Under the uncoupled situation,T12 = 0, T21 = 0. From Eq. (102), we obtain:

||P̃11|| = ||P11||. (130)

Since r̃ = ||P̃11|| and r = ||P11||, so we obtain that r keeps constant in the uncoupled section. And the
propagation of coupling matrix propagation in Eq. (124) reduces to:

C̃ = T11 ·C ·T22−. (131)

5.7 In the interaction region

In the drifts of interaction regions, from the β waist where αi = 0, we have:

G =




p11 s · p22 p13 + s · p23 p14 + s · p24

0 p22 p23 p24

p31 + s · p41 p32 + s · p42 p33 s · p44

p41 p42 0 p44


 , (132)

s is the distance from the β waist. Then the phase advances from the waist is given:
{

∆Φ1(s) = arctan(s · p22/p11) = arctan(s/β1)
∆Φ2(s) = arctan(s · p44/p33) = arctan(s/β2)

. (133)

Twiss parameters at s are given:

{
β̃1 =

p2
11+(s·p22)2

p11p22
= β∗1 + s2/β∗1

β̃2 =
p2

33+(s·p44)2

p33p44
= β∗2 + s2/β∗2

, (134)
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{
α̃1 = −s · β∗1
α̃2 = −s · β∗2

. (135)

These expressions are same to the uncoupled one-dimensional situation, no matter of the coupling parameters
at the β waist. The phase advances between the two BPMs close to the IP are used to measure β∗s at the
IP.
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