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PRINCIPLE OF GLOBAL DECOUPLING ON THE RAMP

Y. Luo, F. Pilat, D. Trbojevic, T. Roser, J. Wei
Brookhaven National Laboratory, Upton, NY 11973, USA

The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy
Ion Collider (Rhic). In the polarized proton run, the betatron tunes are required to keep almost constant on
the ramp to avoid spin resonance line crossing and the beam polarization loss. Also it is demanded for the
horizontal and vertical orbit corrections separately on the ramp. Some possible correction schemes on the
ramp, like three-ramp correction, the coupling amplitude modulation and the coupling phase modulation,
have been found. Among the three schemes, the coupling phase modulation correction is the most promising
one. However, this scheme has never been tested in a real machine. The on-line application program for
the skew quadrupole modulations, including the coupling amplitude modulation and the coupling phase
modulation, is being developed at Rhic. It will be ready for the next Rhic Run’05. Here we introduce the
principles for these schemes, and the comparisons and comments are given. The Rhic skew quadrupoles’
contributions to the global coupling and their groupings are also discussed.

1 Introduction

For a hadron machine like Rhic, the working points are constrained in a very narrow space. It is demanded
to keep the two tunes close to the linear difference coupling resonance line in order to get good beam lifetime.
Rhic presently has been equipped with applications for the global coupling correction at the injection and
the store. However, the coupling correction on the ramp is still an open problem. Coupling correction on
the ramp becomes more and more important in the past few years, especially during the polarized proton
operations. In order to avoid the spin resonance line crossing and polarization loss, it is essential to keep the
tunes almost flat on the ramp. The coupling situation changes on the ramp with the changes of the beam
optics and the closed orbit. During the non-stop energy ramp, the beta squeezes, transition, re-bucketing,
cogging and so on are included. Global coupling correction is much different to that at the injection and
store. A fast, robust scheme and a set of reliable diagnostics instrumentations are needed to accomplish the
task.

The skew quadrupole strength scan is the general way to decouple the machine globally for a static
machine. It is used for the global coupling correction at the store at Rhic. However, it is not suitable for the
coupling correction on the ramp because it needs to move the tunes to the difference coupling resonance line
before scanning. The procedure of skew quadrupole or skew quadrupole family’s strength scan is slow. And
its large range scan sometime will make the beam unstable even cause the beam loss. In the most correction
procedures at Rhic, this technique adopts the tune meter to obtain the two tunes, its bad resolution sometime
makes it hard to find the minimum tune split during the skew quadrupole strength scan.

As a logical extension, T. Roser suggested the skew quadrupole modulation to replace the skew quadrupole
scan for the global coupling correction on the ramp. The idea is to reduce the amplitude ratio of 1f peak to
2f peak in the fast Fourier transform (FFT) plots of (Q1−Q2− p)2. The f is the skew quadrupole strength
modulation frequency, Q1, Q2 are the two eigentunes. p is the integer part split for the uncoupled tunes
Qx,0, Qy,0. For Rhic optics, p = 28 − 29 = −1. The idea is proved to be true in the following analytical
solution.

However, the idea doesn’t hint how to minimize the ratio of the 1f peak to the 2f peak. The ratio of the
amplitudes of the peaks at 1f and 2f during the skew quadrupole modulation is only a proof or observable
of the global coupling. The skew quadrupole modulation doesn’t tell us how to reduce it. Based on the
analytical solution, it is found that this technique can be used to measure the residual coupling’s projection
on the direction of the modulated skew quadrupole family introduced coupling. With at least two different
family modulations, the residual coupling can be figured out based on the coupling directions of the two
families. The directions of the coupling contributions from skew quadrupole families are obtained from the
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optics model. Then the correction can be carried out based on the residual coupling measurements. Some
Dedicated beam experiments had been done at Rhic in its Run’04. Positive experiment results had been
achieved at the injection and at the store. Since the skew quadrupole modulation measurement technique is
faster than the traditional coupling correction, it is hopeful to be applied to the global coupling measurement
on the ramp.

During the residual coupling projection measurement beam experiment on the ramp, we encountered
some challenges from the phase lock loop (PLL) system. The tunes in the skew quadrupole modulations
are obtained from the PLL system, which is much faster and has much higher resolution. We found the
PLL sometimes lose locking. So besides the PLL system developments, we tried to find other data analysis
techniques and new schemes to to shorten the PLL data taking time. The linear regression of the PLL data
is one promising technique for the projection ratio processing. The data taking time then is greatly reduced
to two or three skew quadrupole modulation periods, which is below 10 seconds.

Another great breakthrough is the coupling phase modulation correction scheme. This idea is invented by
Y. Luo. The idea is to modulate two orthogonal skew quadrupole families simultaneously. The modulations
are out-of-phase. It introduces a rotating coupling into the machine. Then the right direction of the residual
coupling is easy to be found. The correction strengths are the modulating skew quadrupoles’ strengths
at the time point of the minimum tune split’s square multiplied by a positive factor. The scheme has
many advantages over other schemes. It doesn’t care the detailed PLL data, no FFT or fitting needed. The
correction strength factor is only obtained from the maximum and minimum tune splits. The data processing
is very simple and straight. And the PLL tune data taking time is much shorter than the coupling amplitude
modulation. We define the skew quadrupole modulation which introduces the amplitude modulated coupling
in the machine as the coupling amplitude modulation, and the skew quadrupole modulation which introduces
the phase modulated coupling as the coupling phase modulation.

D. Trbojecvic also put forth an idea to do the global coupling correction on the ramp. This idea suggests
three ramps with different skew quadrupole strength settings at dedicated time stone one the ramp. From
the three tune splits from the three ramp, the residual coupling, including the amplitude and the phase, can
be solved out based on the optics model. The correction is carried out according the measurement. This
scheme is much expensive and low efficient. It is the last choice for the coupling correction on the ramp.

In the following, we will first review the skew quadrupole families’ global coupling contributions and their
groupings for the Rhic rings. The basis of the skew quadrupole modulation and its theory are investigated.
The three global coupling correction schemes are given one by one, followed by their comparisons. One thing
should be mentioned here is that the following schemes dedicated for the global coupling corrections on the
ramp also work at the injection and store.

2 Rhic skew quadrupole families

2.1 Six fold Rhic structure

For each Rhic ring, the Blue ring or the Yellow ring, there are 48 skew quadrupoles for the coupling correc-
tions. All of them are located between the interaction region and the arc in the six sextants of the Blue or
Yellow rings. They are divided into 3 families according to their coupling contributions’ directions. Each
family has 16 individual skew quadrupole magnets. Fig. 1 shows the skew quadrupole locations and their
power supplies in the Blue ring.

2.2 Coupling coefficient

The coupling contribution from the skew quadrupoles in one ring is :

C− =
1

2π

∮ √
βxβykse

i(Ψx−Ψy−∆ 2πs
L )dl, (1)

∆ = Qx,0 −Qy,0 − p, (2)

where Qx,0, Qy,0 are the uncoupled tunes, ksdl is the integrated skew quadrupole strength, βx andβy ,
Ψx and Ψy are the beta functions, betatron phases at the skew quadrupoles. pis the integer split of the
uncoupled tunes. For Rhic, p = 28− 29 = −1. ∆ is the distance to the linear coupling resonance line in the
Qx −Qy plot. So it is the decimal split of the two uncoupled tunes. Fig. 2 shows the coupling contribution
directions from all positively powered skew quadrupoles for the Blue ring at the injection.
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Figure 1: The skew quadrupole corrector locations in the Rhic Blue ring.
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Figure 2: The coupling contribution directions of all positively powered skew quadrupoles for the Blue ring
at the injection.

The decimal parts of the two tunes in the horizontal and vertical planes are very close for most circular
accelerators. For example, for Rhic ∆ is about 0.01. The maximum coupling angle difference coming from
∆ 2πs

L in the Eq.( 1) is small. If ∆ = 0.01, the maximum ∆ 2πs
L is about 360◦ × 0.01 = 3.6◦. In the following

discussion, we ignore this part. The coupling is then approximated by:

C− '
∑ 1

2π

√
βxβykse

i(Ψx−Ψy)dl. (3)

The coupling contribution’s direction from one individual skew quadrupole is then decided by its betatron
phase difference (Ψx −Ψy). This is the criterion for the skew quadrupole grouping.

2.3 Skew quadrupoles close to one IR

Since the small β∗ are used for the high colliding luminosity in the colliders, the betatron phase advances in
the horizontal and vertical planes across the interaction region are about 180◦ different. The beta functions
at the symmetric points range from 10 m at the injection to 1 m at the IP6 and IP8 at the store. We
also ignore the phase advances between the skew quadrupoles on each side of one interaction region, then
the betatron phase differences (Ψx − Ψy) between the left and right sides of one IR are the same since

3



(Ψx + 180◦)− (Ψy + 180◦) = (Ψx−Ψy). According to Eq.( 3), the contributions from the skew quadrupoles
on each sides of one IR are almost same if their strengths are same. Then they are sorted into one same
skew quadrupole family.

2.4 Three skew quadrupole families

There are 6 interaction regions in each ring of Rhic. The optics of the six arcs are almost same. Then
the betatron phase advances in each sextant are almost the same. Since the tune integer part split of the
uncoupled tunes for Rhic Blue and Yellow ring are 1 unit, so the total (Ψx −Ψy) of the whole ring is 360◦.
The (Ψx − Ψy)s between two adjacent IRs are 360◦/6 = 60◦. So it is recommended to divide the six skew
quadrupole sub-families into three families. The skew quadrupoles located close to IR8 and IR2 are grouped
into family F1, the skew quadrupoles located close to IR10 and IR4 are grouped into family F2, the skew
quadrupoles located close to IR12 and IR6 are grouped as family F3. In each family, the skew quadrupoles
from different IR are oppositely powered in order to get the same directions of their coupling contributions.
The default positive polarizations of the skew quadrupoles are shown in Fig. 1. The three families’ coupling
contribution directions are shown in Fig. 3. It is found that the directions of the three families are not 120◦

apart. It is due to the conventional definition of the polarizations of the three skew quadrupole families.
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Figure 3: The coupling angles from the three skew quadrupole families with the grouping in Fig. 1

2.5 Summary

Through the above discussion, we draw the following conclusion to the coupling contribution directions of
the three skew quadrupole families. The directions of the three skew quadrupole families shown in Fig. 3 is
valid when the following conditions are met:

• the betatron phase advances in every sextant are same, or almost same.

• the Qx, Qy integer part split are 1.

• the Qx, Qy decimal part split is small, say ≤ 0.015.

The conclusion holds at the injection, store , and on the ramp. The coupling angle differences among the
three families are very important, it is the basic assumption for the following residual coupling measurements
and corrections for the three-ramp correction and the coupling amplitude modulation correction schemes.

In the operation, each skew quadrupole in one family has the same integrated strength absolute value.
The relation between the coupling amplitude and the integrated strength for each family can be estimated
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from the optics model according to Eq (1):

C− ' (
∑

i

1

2π

√
βi,xβi,y)| one family × (ksdl) (4)

|C−| ' 60× |k1sdl| (5)

The scaling factor is calculated out at the injection. For the specific lattice, the scaling factor will shift a
little. It’s better to re-calculate it after the optics model changed.

3 Skew quadrupole modulation

Skew quadrupole modulation is to modulate the currents, therefore the integrated strengths of the skew
quadrupoles. In Rhic, we modulation one skew quadruple family’s strength each time. And the sinuous
modulations are chosen so that the currents of the power supplies start modulation from zero currents and
end modulation with zero currents.

3.1 Analytical solution

There are several approaches to tackle the linear coupling. Since we are interested in the two global tunes’
response to the skew quadrupole modulation, perturbation theory [1, 2] based on the Hamiltonian mechanism
is more straight and simple, and therefore is adopted here. The two eigentunes Q1, Q2 are given by:

{
Q1 = Qx,0 − ∆

2 + 1
2

√
∆2 + (C−)2,

Q2 = Qy,0 + ∆
2 − 1

2

√
∆2 + (C−)2.

(6)

the tune separation’s square is obtained:

(Q1 −Q2)2 = ∆2 + (C−)2. (7)

Please pay attention to that the coupling coefficient C− is a complex number normally.
In order to distinguish the different sources of coupling coefficient, in the following we designate C−tot as

the total coupling coefficient or coupling, C−res the residual coupling, C−mod the introduced coupling by the
skew quadrupole modulation.

Assuming the modulation amplitude of the coupling is C−mod,amp , the introduced and total coupling are
given by:

C−mod = C−mod,amp sin(2πft) (8)

C−tot = C−res + C−mod (9)

We introduce the slow varying approximation, that is, the skew quadrupole modulation frequency is
slow enough so that the eigentunes at one time are only determined by the modulation strengths at that
time. Of course, the modulation amplitude should be small so that the above perturbation theory still holds.
Substituting Eq. (8) into Eq. (22), we obtain:

(Q1 −Q2)2 = ∆2 + |C2
res|2 +

1

2
|C2
mod,amp|2

+2|C−res||C−mod,amp| cos(ϕ) sin(2πft)

−1

2
|C−mod,amp|2 cos(4πft) (10)

where the ϕ is the angle difference between C−res and Cmod,amp. |C−res| cos(ϕ) is the projection of the residual
coupling onto the modulation coupling.

Now it is clear from Eq. (10) that the 2f item is only related to the skew quadruple modulation amplitude,
the 1f item is related to the dot multiplication of the modulation coupling and the residual coupling. In the
frequency domain of (Q1 − Q2)2 during skew quadruploe modulation, we will see two peaks located at 1f
and 2f if the machine is originally coupled, or only the 2f peak if the machine originally well decoupled. So
the 1f peak is one reflection, or observable of the global residual coupling in one accelerator.
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3.2 Projection ratio

A straight application of Eq. (10) is the projection ratio of the residual coupling onto the modulation coupling
direction. It is defined as:

κ =
|C−res| cos(ϕ)

|C−mod,amp|
. (11)

κ is a dimensionless quantity, however it has its sign which is decided by the difference angle ϕ between the
residual and modulation couplings. From FFT of (Q1 − Q2)2, we could get 1f and 2f peaks’ amplitudes,
say A1f , A2f , then

|κ| = (
A1f

A2f
)/4. (12)

κ’s sign is the same to that of
∑N
i=1(Q1−Q2)2

i × imod,courrent , where imod,courrent = I0 sin(2πft), is the
skew quadrupole modulation power supply current, I0 is normally positive.

3.3 Linear regression

In order to shorten the PLL data taking time on the ramp, linear regression for Eq. (10) is used. The fitting
function is assumed as:

f(ti) = A+B1 sin(2πfti) +B2 cos(2πfti)

+C1 sin(4πfti) + C2 cos(4πfti)

+Eti + Ft2i . (13)

The linear and quadratic terms are included considering the possible tune shifts on the ramp. We use the
linear regression technique to minimize the error function χ2:

χ2 =

N∑

i=1

[(Q1 −Q2)2 − f(ti)]
2. (14)

To minimize χ2 in Eq.( 14) is equivalent to solve the following linear matrix equation:

M ·X = V, (15)

where

X =




A
B1
B2
C1
C2
E
F




, V =
∑

i




∆Q2
i

∆Q2
i sin(2πfti)

∆Q2
i sin(2πfti)

∆Q2
i sin(4πfti)

∆Q2
i cos(4πfti)
∆Q2

i ti
∆Q2

i t
2
i




, (16)

M =
∑
i ∆Q2

i ·




1 sin(2πfti) cos(2πfti) sin(4πfti)
sin(2πfti) sin(2πfti) sin(2πfti) sin(2πfti) cos(2πfti) sin(2πfti) sin(4πfti)
cos(2πfti) cos(2πfti) sin(2πfti) cos(2πfti) cos(2πfti) cos(2πfti) sin(4πfti)
sin(4πfti) sin(4πfti) sin(4πfti) sin(4πfti) cos(2πfti) sin(4πfti) sin(4πfti)
cos(4πfti) cos(4πfti) sin(4πfti) cos(4πfti) cos(2πfti) cos(4πfti) sin(4πfti)

ti ti sin(2πfti) ti cos(2πfti) ti sin(4πfti)
t2i t2i sin(2πfti) t2i cos(2πfti) t2i sin(4πfti)

cos(4πfti) ti t2i
sin(2πfti) cos(4πfti) sin(2πfti)ti sin(2πfti)t

2
i

cos(2πfti) cos(4πfti) cos(2πfti)ti cos(2πfti)t
2
i

sin(4πfti) cos(4πfti) sin(4πfti)ti sin(4πfti)t
2
i

cos(4πfti) cos(4πfti) cos(4πfti)ti cos(4πfti)t
2
i

ti cos(4πfti) titi tit
2
i

t2i cos(4πfti) t2i ti t2i t
2
i




.

(17)
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Then the solution to X is :
X = M− ·V . (18)

The projection ratio is:

|κ| =
√
B2

1 +B2
2/
√
C2

1 + C2
2 . (19)

Using the linear regression, the modulation measurement time can be reduced below 10 s and it opens
the possibility of the continuous measurement of coupling on the whole ramp. However, FFT data analysis
is still needed sometimes, especially under situations where the PLL data quality is not good enough. FFT
is more robust than fitting, and reveals more physics.

3.4 Simulation

Simulation is important for the skew quadrupole modulation study. The coupling measurement and cor-
rection simulations have been performed based on the Rhic optics model. There are two ways to perform
the skew quadrupole modulation simulations. The simple one is to use the smooth accelerator model. The
complicate one is to use the element-by-element tracking.

A simulation program has been developed with the smooth accelerator model. The uncoupled motion is
simply represented by {

x
′′

+ (
Qx,0
R )2x = 0

y
′′

+ (
Qy,0
R )2y = 0

(20)

where R is the average radius of the circular accelerator. Three skew quadrupoles presenting the three
families are distributed along the ring. The 4× 4 uncoupled transfer matrix between the skew quadrupoles
are adopted.

In the model, each quadrupole could have constant, modulated strengths, or both. The constant strengths
of the three skew quadrupoles present the residual coupling. The modulating strengths are used for the
residual coupling measurements.

In the code, the uncoupled tunes are the same as those of the Rhic, that is, (Qx,0, Qy,0) = (28.22, 29.23).
The average radius R = L/2π, L is the Rhic ring circumference 3833.84 m. For every tracking job, one
particle with the initial horizontal and vertical displacement coordinates is launched. The successive particle
x and y coordinates are recorded at the observation point. One set of the two eigentunes are obtained from
4096 turns’ (x+ y). The projection ratio is from the FFT of 1024 sets of (Q1 −Q2)2.

Fig. 4 shows the two tunes and Fig. 5 is the FFT of the (Q1 − Q2)2 from simulation when the third
skew quadrupole strength modulates with integrated strength amplitude ((ksdl)3)amp,mod = 0.0005 m−1,
modulation frequency 0.5 Hz, under condition that the first and the second skew quadruple strengths are
constant at (ksdl)1,2 = 0.0005 m−1.

Beside the simplified simulation with the smooth accelerator model, the element-by-element tracking
simulations have been performed with the SAD [3] code. The Rhic optics model is used. The interaction
region nonlinear field errors are also included in the model. The results from element-by-element tracking
can be used for comparison with the on-line measurement.

The smooth accelerator model and the element-by-element tracking both verify the principle of the skew
coupling modulation technique. The projection ratios are close to the predication under the simulation
condition where the known coupling sources are intentionally introduced into the model. The element-by-
element tracking simulation requires a lot of computer calculation time. So most of the simulations are
performed with the smooth accelerator model.

By now all the coupling measurement and correction simulations are taken in a static model. Energy
ramp is not taken into account. Further element-by-element tracking on the ramp with the skew quadrupole
modulation is in progress. However, if the machine situation changes not too fast, the conclusion from the
static machine simulation is still valid for the ramp.
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Figure 4: An example of tunes from simulation during skew quadruploe modulation. Every set of tunes
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Figure 5: An example of tunes from simulation during skew quadruploe modulation. Every set of tunes
(Q1,Q2) are achieved from FFT of 4096 turns’ (x+ y) data.

4 Three-ramp correction

D. Trbojevic suggested using three ramps to measure and correct the residual coupling at one specific ramp
time stone. This idea is quit simple and straight. With three ramps with the different three skew quadrupole
families’ strengths settings at the specific ramp stone, the residual coupling can be solved out from the three
tune splits.

For every ramp at one ramp time stone, the total introduced coupling from the three families’ strengths
are calculated according to Eq.( 5). Their relative coupling contribution directions are shown in Fig. ??.

C−ind = C−F1 + C−F2 + C−F3, (21)

where C−F1, C
−
F2, C

−
F3 are the coupling contributions from the three skew quadrupole families. Then the tune
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splits at that time stone for the three ramps are obtained:





∆Q1 = ∆2 + (Cres,r + Cind−1,r)
2 + (Cres,i + Cind−1,i)

2

∆Q2 = ∆2 + (Cres,r + Cind−2,r)
2 + (Cres,i + Cind−2,i)

2

∆Q3 = ∆2 + (Cres,r + Cind−3,r)
2 + (Cres,i + Cind−3,i)

2
, (22)

where Cres,r , Cres,i are the real and imaginary parts of the residual coupling. C−ind−j,r, Cind−j,i are the real
and the imaginary parts of the coupling from the three skew quadrupole families at the time stone. The
subscribe j in C−ind−j,r means the three separate ramps.

In the above equations, everything is real. There are three unknowns: ∆2, Cres,r, Cres,i. So with three
ramps, they can be solved out. Then the correction to the residual coupling is easily obtained. By the way,
since there are three families of skew quadrupoles, the corrections also have different combination choices of
the three families.

This method was proved effective in the real operational coupling corrections in the Rhic Run’04. The
shortcoming of this method is clear. It needs three ramps, which is much expensive. Another solution to this
is to automatically change the skew quadrupole families’ settings close to the dedicated ramp time stone. So
one ramp is sufficient to figure out the residual coupling. And the coupling measurements at different time
stones can be sandwiched into one ramp, which will reduce the price of the correction.

This method has tight connections to the lattice. We should have the knowledges of the directions of the
three skew quadrupole families, and the scaling factor between the coupling coefficient and the integrated
strength. Both of them only can be obtained from the optics model.

This method also works at injection and store. Maybe it is faster than the skew quadrupole scan.
The resolution of the tune measurements are still of concern. Up to now, this method uses the tune

meter data. Tunes are calculated from the 1024 turns’ BPM reading. Its resolution is not good enough. If
the PLL data are used, the effectiveness will be improved.

This method is expensive so that it is the last choice for the coupling correction on ramp.

5 Coupling amplitude modulation

Since the skew quadrupole modulation can determinate the projections of the residual coupling onto the
modulated coupling directions, it can be used for the residual coupling measurements and therefore correc-
tions. At least two skew quadrupole modulations of two different skew quadrupole families are needed to
determinate the residual coupling. The directions of the coupling contributions from the the modulated skew
quadrupole families are needed.

It is wise to choose two orthogonal modulation directions to get two orthogonal projections. Then the
residual coupling and its correction are easy to be figured out:

{
(ksdl)corr1 = −κ1 × (ksdl)amp,mod1

(ksdl)corr2 = −κ2 × (ksdl)amp,mod2

(23)

Each Rhic ring has three correction skew quadrupole families, F1,F2 and F3. There are several combina-
tions of them to construct the two orthogonal modulations. For example, according to Fig. 3 , we modulate
F1 and F2 simultaneously with the same frequency and the same modulation amplitude. The introduced
coupling is then normal to that from F3 modulation. It is shown in Fig. 6.

This method is fast. For the Rhic PLL tune measurement system, 177 sets of tunes are obtained each
second. If we use FFT technique to achieve the projections, for one measurement it will take at least 13
seconds to get 2048 sets of tunes. So two separate modulations to determinate the residual coupling need
26 seconds. If adopting the linear regression technique, the PLL data taking time will be reduced to two or
three modulation periods for each projection measurement. To avoid the PLL lose locking, we choose not
too fast modulation frequency. The default modulation frequency is 0.5Hz. So two periods modulation time
is 4 seconds. The two separate projection measurements need 8 seconds. The two separate modulations are
arranged close to the dedicated time stone on the ramp.

The residual coupling correction can be carried out in two modes: feed-forth and feed-back. By now we
use feed-forth mode for the global coupling correction since it is not frequently demanded to do the global
coupling correction.

To determine the residual coupling, the angle informations of the three families’ coupling contributions are
needed. For the orthogonal modulations, the correction strengths are from the projection ratios, the scaling
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Figure 6: Orthogonal modulations in the coupling amplitude modulation measurement and correction.

factor between the coupling and the integrated strength for the skew quadrupole family is not needed. If
two modulation families are used, even they are not strictly orthogonal, the residual coupling still could be
corrected by iterations.

6 Coupling phase modulation

6.1 Principle

To further shorten the time period occupied by the PLL data taking, one promising correction scheme was
put forth. The above discussed coupling amplitude modulation introduces an amplitude modulated coupling
in the machine, the direction of coupling doesn’t change. Here we introduce the coupling phase modulation.
It will introduce a rotating coupling with constant amplitude into the machine.

To construct the rotating coupling, we should have two orthogonal modulations simultaneously. Their
coupling modulation amplitude and the modulation frequency are also the same. However, the two orthogonal
modulations are out-of-phase, it means that one modulation is co-sinuous function modulation, the other
one is the sinuous function modulation, as shown in Fig. 7.

The couplings introduced from the coupling phase modulation is:

{
C−1 = C−mod,amp · cos(2πft)

C−2 = C−mod,amp · sin(2πft) · i, (24)

where C−mod,amp is the amplitude of the two orthogonal modulations, which is a positive number. f is the
modulation frequency. The imaginary number unit “i” in the second equation comes from the assumption
that their coupling phases are out-of-phase. Then the total introduced coupling is:

C−mod,ind = C−1 + C−2 = C−mod,amp · ei2πft. (25)

So it is clear that the total introduced coupling is rotated, the rotation frequency is the same as the modu-
lation frequency. The couping phase linearly increased with the time like 2πft. For one cycle modulation,
the coupling phase change 2π = 360◦.

Now we discuss the advantage of the coupling phase modulation. In the Fig. ??, when the introduced
coupling rotates, it will scan 360◦ per modulation period. When the introduced coupling overlaps onto the
residual coupling, or their coupling directions are the same, the total coupling in the machine is the biggest.
Then we will observe the biggest eigen tune split. However, when the introduced coupling rotates to the
opposite direction of the residual coupling, the total coupling in the machine is the smallest, then we observe

10
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Figure 7: Skew quadrupoles’ Currents in the operational coupling phase modulation

the smallest eigen tune split. The tune split’s square in the coupling phase modulation is given according to
Eq.( 7):

(Q1 −Q2 − p)2 = ∆2 + |C−res + C−mod,amp|2
= ∆2 + |C−res,amp · eiφres + C−mod,amp · ei2πft|2
= ∆2 + |C−res|2 + |C−mod,amp|2 + 2|C−res||C−mod,amp| cos (2πft− φres).

(26)

From Eq.( 26), it is clear that there are only one peaks located at the modulation frequency in the FFT
plot of (Q1−Q2−p)2, which is different from the coupling amplitude modulation. For the coupling amplitude
modulation, there are two peaks which are located at the 1f and 2f frequencies, respectively.

Also from Eq.( 26), we obtain the maximum (Q1−Q2− p)2 when the residual and the rotating coupling
have the same coupling phase, and the minimum of (Q1 − Q2 − p)2 when the residual and the rotating
coupling have the opposite coupling phases. Since the rotating coupling’s amplitude is assumed here to be
constant and the residual coupling’s amplitude also constant. We designate the residual coupling’s amplitude
is k times of the rotating coupling’s amplitude. Then according to Eq.( 26), the maximum and minimum
tune split’s squares are obtained:

{
∆Q2

min = ∆2 + (k − 1)2 · |C−mod,amp|2
∆Q2

max = ∆2 + (k + 1)2 · |C−mod,amp|2
. (27)

Together with ∆Q2
0 without any introduced coupling,

∆Q2
0 = ∆2 + k2 · |C−mod,amp|2 (28)

The factor k is easily obtained:

k = (
∆Q2

max −∆Q2
0

∆Q2
max −∆Q2

min

− 1

2
)−1. (29)

The factor k has very significant meaning for the coupling correction. As discussed above, the minimum
tune split is achieved when the rotating coupling has opposite direction to the residual coupling, so the
correction coupling should also in the direction of the rotating coupling at that time point. Since we know
the modulation strengths ( or currents ) for the skew quadrupoles involved in the rotating coupling, the
correction strengths are therefore the strengths of those skew quadrupoles at the minimum tune split’s
square multiplied by a positive factor. This factor is the ratio of the residual coupling amplitude to that of
the rotation coupling, that is, k in Eq.( 29).
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Figure 8: Skew quadrupoles’ Currents in the operational coupling phase modulation

6.2 Comments

The advantage of the coupling phase modulation is very clear. It doesn’t need FFT or FIT to the PLL tune
data, only the ∆Q2

0 under no introduced coupling situation, ∆Q2
max and ∆Q2

min during the coupling phase
modulation are needed. The correction strengths are also easily obtained. They are just the modulation
strengths at the minimum tune split square time point multiplied by the positive factor k. We doesn’t
need to figure out the residual coupling first. The correction strengths are directly found in the modulation
procedure.

The time period occupied by the coupling phase modulation is much shorter. In principle, one modulation
period is enough to find the correction strengths. Since the power supplies’ currents need to rise from
zero current, the co-sinuous function modulation is obtained operationally by starting a sinuous function
modulation 1/4 period ahead the coupling phase modulation, as shown in Fig. 8. So the time occupied in
the modulation is about 2 modulation periods.

We have encountered problems in the modulation frequency choice in the coupling strength modulation.
Faster modulation will introduce more peaks in the FFT of (Q1 −Q2 − p)2. And also the PLL system may
not be able to track the tune’s modulation. Too slow modulation frequency will lengthen the PLL data
taking time, and the two peaks in FFT plot of (Q1 − Q2 − p)2 locate in the very tight narrow frequency
region, which makes it hard to distinguish the two peaks. However, here we have not this problem. The
modulation frequency could be slow or fast, just up to the capability of the PLL system.

This correction scheme is also robust since only the ∆Q2
0, ∆Q2

max and ∆Q2
min are needed. It doesn’t

care too much about the spikes in the detailed tune data from PLL. In order to swept off the large spikes,
the co-sinuous fitting according Eq.( 26) can be used to find the ∆Q2

max and ∆Q2
min.

It is also easy to prove that the orthogonal modulations are not strictly demanded. The above solution
to factor k is still valid even if the two modulation is not strictly out-of-phase, or the two modulation
amplitudes are not exactly the same. There the rotating coupling traces out an ellipse instead the circle
in Fig. 7. Considering the radial symmetry of the ellipse, the rotating coupling at the maximum and the
minimum tune split are 180◦ different, the amplitudes are the same. So we still could use Eq. (29) to figure
out the factor k. So the coupling phase modulation scheme has less connections to the optics.

6.3 Simulation example

Here we use the combination of skew quadrupole F1 and F2 to construct a F12, which is orthogonal to F3.
In order to make the modulation amplitude of F12 and F3 are the same, F1 and F2 ’s modulation strengths
are set to 1/

√
3 = 0.577 of F3.

We give an simulation correction example based on the smooth accelerator model. The residual coupling
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is introduced by setting the constant integrated strengths of F1,F2,F3 to 0.m−1, -0.001 m−1, -0.0015 m−1.
Please be reminded that there are only three skew quadrupoles in the tracking model to represent the three
families. The integrated strengths given here is not the same to the individual skew quadrupole integrated
strength in the real lattice model.

We modulate F3 with integrated strength amplitude 0.0005 m−1, modulate F1 and F2 with 0.0005/
√

3
m−1. The modulation frequency is 0.2 Hz. And F3’s strength is modulated like co-sinuous function, F1
and F2 ’s strengths are modulated like sinuous function. It is shown in Fig. 9. Fig. 10 shows the tunes’
modulation during the coupling phase modulation. Fig. 11 shows the (Q1 − Q2 − p)2 during the coupling
phase modulation. Fig. 12 shows the tunes in the whole procedure of coupling phase modulation correction.
The minimum (Q1 − Q2 − p)2 happens at the modulation phase 380◦. The correction strengths are given
by the modulation strengths at that time point multiplied by the factor k = 5.0. After correction, we see in
Fig. 12 that the tunes restore to the design tunes.

7 Conclusion

The principles for the three candidate methods to the global decoupling on the ramp in the Rhic have been
reviewed. Some simulation results are given. The grouping of the Rhic skew quadrupoles are also discussed.
The coupling phase modulation correction is the most promising scheme for the coupling correction on the
ramp. It will be tested in the coming Rhic Run’05. If it is successful, it will be the fastest scheme for the
global decoupling among those ever found . All the schemes discussed in this note are also suitable for the
global coupling correction at the injection, store and on the ramp.
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Figure 9: Skew quadrupoles’ currents during the coupling phase modulation.
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Figure 10: Tunes’ modulation during the coupling phase modulation.
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Figure 11: The (Q1 −Q2 − p)2 during the coupling phase modulation.
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Figure 12: The tunes in the whole procedure of global decoupling in the simulation.
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