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Abstract

The motivation for the treatment of intrabeam scattering theory
given in this paper was to find results which would be convenient
for computing the intrabeam scattering growth rates for particle dis-
tributions which are more complicated than a simple gaussian. Tt
was shown by A. Piwinski that beam growth rates due to intrabeam
scattering can be expressed as a multidimensional integral [1]. It was
pointed out by J. Bjorken and S. Mtingwa [2] that the reduction of the
multidimensional integral to a 3-dimensional untegral is made easier
by writing the integral so that its relativistic transformation proper-
ties are more obvious. The starting point in [2] was a result from the
treatment of the two body scattering problem in relativistic quantum
theory . In this paper the starting point is the relativistic transfor-
mation properties of the scattering cross section which may be a more
familiar starting point. The resulting expression for the multidimen-
sional integral is simpler to reduce. In addition, the results do not
depend on the particular form of the Coulomb cross section that was
used in [2] and are valid for any collision cross section.

1 Introduction

The motivation for the treatment of intrabeam scattering theory given in
this paper was to find results which would be convenient for computing the
intrabeam scattering growth rates for particle distributions which are more
complicated than a simple gaussian. It was shown by A. Piwinski that beam
growth rates due to intrabeam scattering can be expressed as a multidimen-
sional integral [1]. It was pointed out by J. Bjorken and S. Mtingwa [2] that



the reduction of the multidimensional integral to a 3-dimensional untegral
is made easier by writing the integral so that its relativistic transformation
properties are more obvious. The starting point in [2] was a result from the
treatment of the two body scattering problem in relativistic quantum theory
. In this paper the starting point is the relativistic transformation properties
of the scattering cross section which may be a more familiar starting point.
The resulting expression for the multidimensional integral is simpler to re-
duce. In addition, the results do not depend on the particular form of the
Coulomb cross section that was used in [2] and are valid for any collision
cross section.The final result is given by Eq.(14), which can be used for com-
puting the intrabeam scattering growth rates for particle distributions which
are more complicated than a simple gaussian.

2 Transformation properties of the cross sec-
tion

The cross section, o, which describes the the scattering of particles with the
momentum p; from the target particles with momentum py is first defined
in the CS (coordinate system) where the target particles are at rest, p, = 0.
In a scattering event, the particle momenta change from p;, ps to p,py. As
we are assuming that both momentum and energy are conserved , the final
momenta, p},p) are determined by the direction of p| which is indicated
by the unit vector 1;’1. In this CS where p; = 0, ¢ is defined so that the
number of incident particles which are scattered by the target particles with
momemtum p, which are in the volume element, d®z, in ‘the time interval dt,
into the solid angle d€)’' corresponding to the direction pj is given by

SN = odpi(z)v1ps(z)d>xdt (1)

where p;(z), p2(x) are the density functions and v; is the velocity of the
incident particle.

Now let us go to a CS where py # 0. In this CS, o is defined by requiring
odf) to be invariant, that is to have the same value in all coordinate systems.
A simple way to find the relationship between § N and ¢ in this CS is to write
ON as (see [3])

SN = PP D) b Bt (2)
M Y2



where p;(x)/7; is an invariant as it is just the density function for particle 1
in the CS where p; = 0. Similarly for py(z)/7,. If one can find an invariant
F(p1, p2) which for p, = 0 gives F' = v, then this expression for N gives
the correct result when ps = 0 and also gives the correct result when p, # 0.

F(p1, p2) that satifies these requirements is
[(p1p2)? — mim3c']®

MMy C2

(3)

Here, py, py are 4-vectors whose first three components are the components
of the momemtum and the fourth component is iE/c, E = (p?c® + m?c*)?.
F(p1,p2) is an invariant and when p, = 0, F' = y;v1. The result for F(p, ps)

given by Eq.(3) can also be written as
F(pi,p2) = 71720[(51 - ﬂ;)? - (51 X 5;)2]'5 (4)

Here, @, ﬁ; are vectors in 3-space corresponding to the velocities of the par-
ticles divide by c.

F(p1,p2) = ¢

3 The f(z,p) distribution and the scattering
rate 0NV

Let us now treat the case where the particles are contained within a bunch
and their distibution is given by f(x,p) where N f(x,p) is the number of
particles in d3zd®p. N is the number of particles in the bunch, all particles
have the same rest mass m and

/ dPzd’p f(z,p) =1

Let SN be the number of particles with momentum p; in d®p; and space
coordinate x in d*z which are scattered by the particles with momentum p,
in d®p, which are also in d3z, in the time interval d¢ , into the solid angle
d€Y corresponding to the direction pj. Then 6N can be obtained using the
same procedure used in obtaining Eq.(2), provided one knows that d®p/~ and
f(z,p) are invariants, which is shown in section 5. JNV is given by

3 3
ON = NZUdQI%% (@, p1) f (2, p2) F(pr, po)d>adt
1 2
[(p1p2)? — m*]
F(pi,p) = —— sz (5)



One may note that the right hand side of this expression for N is an in-
variant. We will be putting ¢ = 1 except when something may be gained by
showing c¢ explicitly.

4 Growth rates for < p;p; >

Growth rates will be given for < p;p; >. where the <> indicate an average
over all the particles in the bunch. From these one can compute the growth
rates for the emittances, < ¢; >. The advantage due to computing growth
rates for < p;p; > stems from the observation that if p;, p; are the components
of the momentum 4-vector, then p;p; is a tensor in 4-space and so is § <
pip; >, as will be seen below, where § < p;p; > is the change in < p;p; >
in a time interval dt. The transfornation properties of a tensor can then be
used to facilitate the transfer of results between two CS.

In a scattering event, where a particle with momentum p; scatters off a
particle with momentum py, the momenta will change to p| and p),. Let dp;;
represent the change in py; in the collision, and similarly for §(p1ip1;). Then

opii = Plu — Pui
d(prip1;) PP — PLib1j (6)

Using the scattering rate given by Eq.(5), one can now compute § <
pipj >

d*p, d®
< d(prprj) > = N/ d%ﬂﬂ (z,p1) f(z, p2) F(p1, p2)

T 72
JdQ’(p'up'lj — puip1;)dt
2 _ A5
F(pi,p2) = ) ] (7)

m2

One may note that
< 6(prip1y) >= 0 < puip1j >

and that 6 < py;p1; > is a tensor in 4-space because of the transformation
properties given above for the quantities appearing on the right hand side of
Eq.(7). Eq.(7) is our general result for the growth rates , holds in all CS,
and can be used for any particle distribution, f(z,p).



This result can be further simplified by first considering the integral, for
a given b1, P2,

Cij = /UdQl(pllipllj —puplj) (8)

C;; has the transformation properties of a tensor in 4-space as odY is an
invariant. For a given py, ps, Cj; can be evaluated in the CMS ( the center of
mass CS ) and if the result can be written in terms of 4-vectors and tensors
in 4-space, then the result in this form. will hold in all CS. The calculation
of Cj; can be simplified by noting that because of the symmetry in p; and p,
we have

< 8(priprj) > = < 0(paipe;) > 9)
and we can define Cj; as
,1
Cij = /UdQ 5[5(P1iplj) + 5(p2ip2j)] (10)

and Eq.(7) can be written as

3 d3p1 d3p2
< 6(pupij) > = N/ d $—T (z,p1) f (z,p2) F(p1, p2) Cijdt (11)

We will now further evaluate C;; by first evaluating C;; for some particular
values of p;,ps in the CMS corresponding to p;,po and and then using the
tensor properties of Cj; to find a result that holds in any other CS. We are
particularly interested in finding a result in the Rest CS, which is the CS
which moves along with the bunch. In the CMS,

b2 = —DM
= 9 b1 —DpP2) =DM
G = py—p
@ —q1
Using ¢ = p71 — p1 and ¢3 = —¢7, one can show that
1
5(5(1011'101;') + 6(p2ip2j) = quiqrj + Digqr; + Djqui (12)



In the CMS, we introduce a polar coordinate system 6, ¢ where 6 is mea-
sured relative to the direction of pi or A and we assume that o(f, ¢) is a
fumction of # only. we can then write

pio= (0,0,1)[4
P, = (sinfcos ¢,sinfsin ¢, cos )| A
gi = (sinfcos@,sinfsin¢p,cosl — 1)\&|
Considering p;,ps to be 4-vectors, and A = .5(p; — p2), ¢1 = p} — p1, then A,

q1 are also 4-vectors and in the CMS, A, =0, ¢4 = 0.
Using Eqs(10) and (12), one now finds for C;; in the CMS

Cij = 7r/7T dfo sin® 0 |A[?
0

oSN OO
o O OO

10
01
00 -
0 0

To find Cj; in the Rest CS or in the Lab CS, we will try to find an expression
for Cj; in terms of the 4-vectors pi;, po; which gives the above result for Cj;
in the CMS. The expression that does this is given by

AA; WW;

Ci = 7T/o dfo sin® 0 A%[5i; — 3 A2 + WZJ] i,j=1,4
1
Ai = 5(]711‘ — Pai)

where o is the cross section in the CMS. Let us now verify that this expression
gives the correct result for C;; in the CMS. In the CMS,

A? = [AP+A7=|AP
W, = 0i=1,3
A o= 0i=1,2 Ay=|A|

so that Eq.(13) does give the correct result in the CMS.

An important further simplification results from the fact that the particle
motion is non-relativistic in the CMS and also in the Rest CS which moves
along with the bunch. For RHIC parameters, for v = 100, one finds that
p=~1le—3 me. One can then drop the W;W;/W? term. Also A% = |A[? in

6



the CMS and in the Rest CS and one can evaluate F(p;, py) using Eq.(4) as
F(p1,p2) = 2¢f where (c is the velocity of either particle in the CMS . In
the Rest CS, one can write

Cij = 71'/7r dfo sin® 0 [|&|25Z~j —3MA;] i,7=1,3
0

1
A; = §(P1i —in)
< d(priprj) > = N/ d*xd’pid*paf (x, p1) f (2, p2)28c Cij dt
Be = |Al/m (14)

Eq.(14) would be a good starting point for computing growth rates for a
particle distribution more complicated than a simple gaussian. For the case
of the Coulomb cross section, one can write C;; as

CZ" = 277'(7“0/252)2 ln(l + (QBmeax/’ro)z) [|&|251J — 3A1A]] Z,j = 1, 3
o = (ro/28%)?/(1 — cosh)?
ro = Z%*/mc® (15)

bmas is the largest allowed impact parameters in the CMS.

5 Invariants d’p/y and f(z,p)

In order to eatablish Eq.(5), one needs to know that d*p/y and f(z,p) are
invariants. Consider a CS moving with the velocity vy with respect to the
Laboratory CS. Let the coordinates be z, p in the Laboratory CS and z,p in
the new CS. p, p are related by

Ps = "Y(ps — k)

Pz = Pz
Py = Dy

E = /p*+m?
Yo = 1/4y/1 =12 (16)

It then follows that
dps = 7o(dps — vodE)
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dE = (ps/E)dps pa,pyconstant
dpAs = 70(1_U0ps/E)dps

E = P>+ m?
E = %(E — vps)
Yo(1l —wvps/E) = E/E

dp dps
= = 17
E E )

Thus dp, /7 is invariant under this momentum transformation and also d®p/~y
is invariant.

Now let us show that f(z,p) is an invariant. Since f(z,p)d®zd®p is an
invariant, as it gives the number of particles in d*zd*p, we need to show that
d?®xd®p is an invariant. Consider the point x,p in some CS. In the moving
CS where ps = 0, which is moving with the velocity v = p;/FE with respect
to the first CS,

dps = 7(dps —vdE)
dE = (ps/E)dps ps,pyconstant

dps dps/vy
vy = 1/vV/1—122 (18)

Since dp,/y = dp, holds for any CS, dp,/v is an invariant and d*p/v is an
invariant. One also has yd>z is invariant because of the Lorentz-Fitsgerald
contraction. We have then that that d*zd>p is an invariant.
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