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Abstract

This note lists results for the intrabeam scattering growth rates
for a bi-gaussian distribution. The derivation of these results will be
given in a future note.

Introduction

This note finds results for the intrabeam scattering growth rates for a bi-
gaussian distribution.

The bi-gaussian distribution is interesting for studying the possibility of
using electron cooling in RHIC. Studies done using the SIMCOOL program
[1] indicate that in the presence of electron cooling, the beam distribution
changes so that it developes a strong core and a long tail which is not de-
scribed well by a gaussian, but may be better described by a bi-gaussian.
Being able to compute the effects of intrabeam scattering for a bi-gaussian
distribution would be useful in computing the effects of electron cooling,
which depend critically on the details of the intrabeam scattering.

Gaussian distribution

Before defining the bi-gaussian distribution, the gaussian distribution will be
reviewed.



N f(z,p) gives the number of particles in d>zd®p, where N is the number

of particles in a bunch. For a gaussian distribution, f(z,p) Is given by

1

f(@,p) = peap[=S(z,p)]

Se + Sy + S,

1
gez (xﬂa pzﬂ/p())

T

— D(p —po)/po

= pz/po—D'(p—po)/po

Vo2 + 20z + Bpx"?

—e, (Y, Py/Po)
Y

vny + 20,y + Byy”

1 2
207 ( ) 202((17—170)/?0)

1 1
&5
0s/0p

2050,

/ d*xd®p exp[—S(z,p)]

3~ .3
T €x€y€5D)

< ei(l‘,p) > 1= Ty Y, S

(s = 5¢)” + Bs((p — o) /p0)?

6165(5 — 5¢, (P — P0)/Po)

(1)

(2)

D is the horizontal dispersion. D' = dD/ds. <> indicates an average
over all the particles in a bunch.

Growth rates for a Gaussian distribution

In the following,the growth rates are given in the Rest Coordinate System,
which is the coordinate system moving along with the bunch. Growth rates



are given for < p;p; >. From these one can compute the growth rates for
< €; > using the relations given at the end of this note.
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The integral over d®A is an integral over all possible values of the relative
momemtum for any two particles in a bunch.fy, 7, are the beta and gamma
corresponding to pg, the central momemtum of the bunch in the Laboratory
Coordinate System. v = 7,

The above 3-dimensional integral can be reduced to a 2-dimensional in-

tegral by integrating over |A| and using d*A = |A2d|A|sinfdfd¢.
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Bi-Gaussian distribution

The bi-gaussian distribution will be assumed to have the form given by the
following.

N f(x,p) gives the number of particles in d*zd®p, where N is the number
of particles in a bunch. For a bi-gaussian distribution, f(z,p) ls given by
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In the first gaussian,to find I'y, S, then in the expressions for ', S, given
above for the gaussian distribution, replace €, €, €; by €34, €yq, €5a- In the
second gaussian, in the expressions for I', S, replace €, €, €; by €z, €, €5-
In addition. N, + N, = N. This bi-gaussian has 7 parameters instead of the
three parameters of a gaussian.

f(z,p) = = =exp[—Sa(z, p)]

Growth rates for a Bi- Gaussian distribution

In the following,the growth rates are given in the Rest Coordinate System,
which is the coordinate system moving along with the bunch. Growth rates
are given for < p;p; >. From these one can compute the growth rates for
< €; > using the relations given at the end of this note.
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R,, Ry, R, are each the same as R, given above except that ¢;, are replaced
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by €, €, € TESPECtively.
The above 3-dimensional integral can be reduced to a 2-dimensional in-
tegral by integrating over |A| .
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F,, Fy, F,. are each the same F that was defined for the Gaussian distri-
bution except that the & are replaced by €,, €, €. respectively.

The above results for the growth rates for a bi-gaussian distribution are
expressed as an integral which contains 3 terms, each of which is similar
to the one term in the results for the gaussian distribution. These three
terms may be given a simple interpertation. The first term represents the
contribution to the growth rates due to the scattering of the IV, particles of
the first gaussian from themselves, the seond term the contribution due to
the scattering of the N, particles of the second gaussian from themselves,
and the third term the contribution due to the scattering of the N, particles
of the first gaussian from the N, partcles of the second gaussian.



Emittance growth rates

One can compute growth rates for the average emittances, < ¢; > in the Lab-
oratory Coordinate System, from the growth rates for < p;p; > in the Rest
Coordinate System.In the following , dt is the time interval in the Laboratory
System and df is the time interval in the Rest System. dt = ydf

d Bs d 2792 D? + D? 27,2 ~d 2
€ o p2/pE > + 5 T v /vg 77 < PaP /Pq

d By d 2/ 2

dtey - v dij < py/pO >

d _ d 9/ 9

%es - ﬂsfyd_f < ps/pO > (8)

[ thank I. Ben-Zvi for his comments and encouragement. The results given
above were found using the results given in references [2,3,4,].The derivation
of the results is given in Ref.[5]
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