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Introduction :

The primary purpose of this note is to address the evaluation of the linear functional,

) =f xa) dr (1)

under a various set of assumptions and where x represents a noisy input signal and s
represents the output signal. The functional above can be generated in a variety of ways
using active or passive circuits. Active circuit configurations commonly include the voltage
feedback amplifier (opamp) configuration', transimpedance configurations’ or current
conveyors’. For passive realizations the RC and RL low pass filters can be employed as
crude approximations to an integral when only relatively short duration integrals are
required.

Further, two special cases of noise signals passed thru linear time invariant low pass
filters are considered.

Case Analysis :
Case 1.

Let x be a stochastic (noise) process that is gaussian, zero mean, white and wide
sense stationary (WSS) . This type of "signal" is commonly used in the analysis of electronic

.



systems and sometimes simply referred to as gaussian white noise. However, in general
white noise does not have to be gaussian, stationary nor have zero mean. WSS specifies that
the mean is constant and autocorrelation depends only on the time difference between the
measurements, and not the actual time they are made. Therefore, in electronics it means
that the expected (average) value and average power of the process are fixed. The average
power of a stationary process is the autocorrelation evaluated at a zero shift. The integral
in (1) exists at least in the mean square sense because the autocorrelation function of white
noise is absolutely integrable*.

In terms of first and second order statistics the input process is describable as :
e = E {x(t)} =0 (2a)
R(4.4) = Bx(4)x(t)} = B3(4-4) = Bé(r) (2D)
where use has been made of the white, zero mean and WSS properties. The mean and

autocorrelation of the output process (the integrator output) are shown below :

T T

u, = B9} = fﬁ{x(a} dt = fu, dt=0 (32

0

44 qh
R(#,8) = BX)4)} = ffﬂx(a)l(ﬁ)} dedB = ”33(0%3) dedB = pmax(4,5) (35)

Therefore, the variance of the output process, which is the autocorrelation evaluated at
T=4=¢t, so R_(t,.1,) = o’ = T. Now the output process, i.e. the integrator output, is still
gaussian because the system is linear however WSS no longer holds because the variance
of the output process grows linearly in t. This implies the probability of finding the process
within € of zero is getting smaller as time goes forward. Therefore, although the expected
value of the output process is zero, there is a smaller and smaller probability that the output
will be in the range -€ < s(t) < €. Practically, this states there exists a small chance that the
noise input will integrate to a near-zero value and a zero chance that the integral results in
identically zero. Graphs of the output probability density function (pdf) are shown as a
function of time in figure 1. Standard tables of normal distributions can be consulted to
determine the probability of finding the output to be in any given interval of values. This



Define the Gaussian Distribution as :
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process is of special interest in stochastic studies and is called a Wiener process and is very
closely related to the random walk process.

Case IL.

Now let the functional be set for determining the average of the continuous process
x. To perform this average, merely scale equation (1) by the gate time. Therefore the
process is now described as:

S(O=%f1(a) d (4)

This is the direct analog of the discrete case where samples are summed and divided by the
number of samples. Following the development above it is straightforward that the expected
value of the output process (4) is still zero, but now the variance of the output process
approaches zero as t approaches infinity. To see this consider the following :

hLb
RJ(#,t) = B(4)sL)} = th: ffﬁ{d‘(“)x(ﬁ)} dxdB = iﬁmax(ﬁ"z) &)
00

and note that when 7=f,=f,, the average power is determined and the RHS of (5)
approaches zero as T approaches infinity. Again note that the output process is not WSS.

A practical consequence of this formulation is that to estimate, within a given
tolerance the average value, of say a constant embedded in additive noise, the minimum
gate time is fixed. This is because the gate time implies a variance in the output process,
even under perfect measurement conditions, and this variance in turn implies the "spread”
of the distribution on the output. For the discrete case, the minimum number of samples
is the parameter that is fixed. Further, if the process in (4) is considered as an estimate of
the average of x over some interval, then the sample variance goes to zero as t approaches
infinity.

Case III

In this case consider a deterministic-random process x. This type of process occurs
when there is special structure to the random process. For example, measuring a 60 Hz wave
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when the phase is a is random variable. Such a situation occurs when integrators are placed
in field applications. The gate time is generally asynchronous with the 60 Hz period. Thus
the integrator output will in general not be zero at the end of the gate. If the assumed form
of the process is :

e
s = f Asin(0 #0) dr (6)

and if the usual assumption of uniform density of @ in [-m,7] is made, then the first and
second moments of the output process are given by :

T =

B =ff Asin(w#8) - ddt - A sin(0T) (74)
21 TW
0 -w

2
R(T,T) = L feos(@ B)-eos(@(T-T)seos(@ T)-1] (78

However, to determine the average power of the process, the autocorrelation function is
evaluated at T=T =T,. The result is :

A2
RYED) = Zfeos@ D)D) @)

Thus if 7=27/w, then the autocorrelation is zero indicating that at those times that the
output power is zero, so the true value of the output must be identically zero. This makes
perfect sense because we have integrated over a whole number of waveform periods.

Case IV.

Now the case of white noise passed through a linear time invariant (LTT) LPF will
be considered. Specifically, the filter is the standard single pole RC type. Extensions to
multipole filters are straightforward. Because the system is LTI, the input and output are
related thru the convolution integral. Hence, so are the input and process statistics. To
analyze a this case, let the input process be white, gaussian, zero mean and WSS. To
describe the output process of the causal LTI LPF the input will be applied at t=0 is
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considered. To be consistent with the definition of white noise, the case where a LPF is
preceded by a switch that is closed at t=0 realizes this setup.

White noise passed through a linear system will have its output mean related to its
input mean through the convolution integral. The limits of the integral are set by the
causality of the input and system. The manipulations are shown below , and rely on the
linearity properties of expected value and convolution :

r r

By} = u, = f Eix(t-a) ) dx - ,.,,,f Ze

0 0

a I

T - p(l-e ) (9)

In (9) the h(a) represents the filter impulse response and 7=RC. Therefore, the output
mean approaches the input mean as the exponential term approaches zero. In this case,
since the input process has zero mean, the output process has zero mean, for all time.

For finding the autocorrelation two methods can be employed depending on where
the transient or steady-state solutions are required. For the case where the inputs can be
considered connected for a long period of time, and the input statistics are time invariant
at least as WSS, then we can relate the input and output power spectral density (psd) by :

R(r) = F S (o) = F {8 (jw)Hjw)H-jo) (10)

here the indicates 7' indicates inverse 1-D fourier transform, and H(jw) is the filter
impulse response. This is known as the spectral factorization® method. Application of this
method requires that the system be considered in the steady-state condition, otherwise the
output is not a WSS process, and then the autocorrelation is not a function of = only.
Therefore the fourier relationship shown in (10) between the power spectral density and the
autocorrelation does not exist. Considering the present case of causal signal input and a
causal LTI LPF, the autocorrelation in both the transient and steady-state regimes can be
determined from the convolution integral. Using the convolution integral expression for the
output process and taking the expected values and noting the x process is a WSS stationary
process we get :

45

R (4:) = f fb(a)fsz,,(u—wa—a)dudv (11)
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In general this is a difficult integral to evaluate, so in most cases only the variance is
determined. In this case the process is zero mean so the average power and variance are the
same quantity, by letting 7=¢,=¢, the result is :

-2t

& = R(th = BYH - 2—“1[1—37] (12)

and the output variance goes to a constant as t approaches infinity. The constant is
determined by the product of the one-sided input power spectral density and the LPF noise
equivalent bandwidth of 1/27 Hz , where 7=RC. The constant is the same value that would
be obtained for the steady state solution using the spectral factorization method shown in
(10). This makes reasonable sense, and the above equations show that a linear time invari-
ant system with a stochastic input will tend to the steady state stationary condition. The
development for the cases above can be used to cascade a LPF with an integrator and the
resulting first and second moments can be directly determined. In fact following the devel-
opment in this section, any type of system block having an analytic impulse response can be
analyzed.

Case V.

Briefly, it should be mentioned that if WSS white noise is put into an ideal brickwall
LPF the output autocorrelation function is a sinc function as shown in figure 2. The main
lobe crossings are at 1/2B points. The significance of this is for sampling systems which
would follow an anti-aliasing filter of "similar" design. If the system was designed to nyquist
sample, i.e. at twice the highest frequency, then the samples are statistically uncorrelated.
In addition for gaussian processes this also says they are independent. This is a useful fact
in simplifying systems analysis problems and also achieving the often quoted 1/N increase
in signal to noise ratio in averaging problems. Contrasting this ideal case with the case above
(12), for practical filters the number of time constants for the autocorrelation function to
reach a negligible value is called the decorrelation time. For single pole systems this is likely
to be many time constants and hence nyquist sampling of the input would not produce
uncorrelated noise samples. Even for the ideal case, sampling faster than 1/2B causes the
noise samples to become more correlated, and the maximum amount of signal to noise
improvement possible with a fixed number of samples cannot be realized.
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Figure 2: (a) Ideal LPF WHite Noise PSD (b) Autocorelation function
Results :

Case I shows that noise does not necessarily integrate to zero regardless of the length
of the integrate gate time. In fact the variance grows linearly in t, and the possibility of
finding the integral far away from zero grows as t grows.

Case II shows in contrast to the above that when the integral is scaled by the gate
time then the variance will approach zero as t approaches infinity, and the result is the
average value of the noise which could in fact be zero.

Case III used a sinusoidal input to show that in this case the output process actually
achieves zero outputs at some equally spaced points. Also in this case the variance in
periodic, with period 27/w.

Case IV shows the output of a LPF has changing mean and variance, however after
several time constants these parameter approach the steady values of the WSS case. This
is directly analogous to the transient response dying away and giving rise to the steady state
solution in deterministic systems.

Case V was included merely to show a meaningful result for sampled data systems
using averaging to increase signal to noise ratio.
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