

BNL-105729-2014-TECH EP&S No. 13;BNL-105729-2014-IR

A possible muon channel at the AGS and its relevance to a phase II muon channel at NAL

T. Toohig

April 1968

Collider Accelerator Department Brookhaven National Laboratory

# **U.S. Department of Energy**

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.AT-30-2-GEN-16 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

## DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Accelerator Department BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc. Upton, L.I., N.Y.

#### EP & S DIVISION TECHNICAL NOTE

#### No. 13

Timothy E. Toohig

#### April 18, 1968

### A POSSIBLE MUON CHANNEL AT THE AGS AND ITS RELEVANCE TO A PHASE III MUON CHANNEL AT NAL

A Phase III muon channel at NAL would be a more-or-less permanent muon facility at the 200-400 GeV machine. This facility would basically consist of a long quadrupole decay channel coupled at the front end to a production target. At the downstream end it would be coupled through a filter for strongly interacting particles to a muon experimental facility. The characteristics of such decay channels are well known and have been considered at some length both in their own right and with reference to neutrino beams in the 200 and 300 GeV machine studies.<sup>1</sup>

Whether such a channel will be built depends on coupling to neutrino facilities and on the inherent interest in muon physics generated by Phase I and II experiments.

A more fruitful direction of development than consideration of such a facility is suggested by current development plans for the slow extracted beam (SEB) at the AGS. From a systems viewpoint the SEB transport is identical to a muon facility. A long transport channel defined by switching magnets

D. Keefe, UCID 10130, Sept. 9, 1964
T.E. Toohig, UCRL 16830: Summer Study 1964-65, Vol. I., p. 409
D.D. Jovanovic, UCRL 16830: Summer Study 1966, Vol. III, p. 83
D.H. Perkins, CERN/ECFA 67/16 Vol. II, p.1

at either end is coupled to a target at the upstream end and to an experimental facility at the downstream end. By foresight in the choice of magnet apertures and spacings in the proton transport it may be possible to obtain a muon capability in the same channel. In this way a Phase III muon facility could be obtained as early as Phase I at little extra cost above that of the straightforward proton transport. This muon/proton channel compatibility is being pursued with respect to the extension of the SEB at the AGS.

-2-