Energy Recovery Linac: Power Supplies

R. Lambiase

January 2010

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

C-A/AP/\#373

January 2010

R\&D ERL: Power Supplies

R. Lambiase

Collider-Accelerator Department Brookhaven National Laboratory Upton, NY 11973

Notice: This document has been authorized by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this document, or allow others to do so, for United States Government purposes.

R\&D ERL - Power Supplies

R. Lambiase

February 17, 2010

A magnet power supply system has been developed to meet the field requirements of the ERL in a compact and cost effective fashion.

Design Considerations

The magnet assemblies used in the ERL consist of one or more windings on a common core. Each of the windings represents a separate magnet load for the power supply. As the ERL is operated in a DC fashion, interaction between the windings is not a concern.

Appendix A lists all the magnet assemblies by sector. Each coil is listed by name and model. The model corresponds to a set of electrical and magnet parameters as established by the magnet subsystem.

Some of the coils are connected in series. The connection scheme, plus cabling provides the electrical load characteristics. The load information, plus the operating current, and the stability define the power supply requirements.

Power Supply Listing

All of the magnet power supply requirements for ERL can be satisfied by five different models. The capsule specifications and quantities are shown in Table 1 below.

Model	Voltage, Volts	Current, Amps	Precision, ppm	Quantity
UD320A35V, IE Power	35	320	100	1
Shim Amplifier 892, Danfysik	15	10	100	34
BOP 50-20GL, Kepco	50	20	100	5
MCOR12 / 2A, BiRa	25	2	1000	32
MCOR12 / 6A, BiRa	25	6	1000	6

With the exception of the UD320A35V unit, all models are bipolar, even though not all loads require bipolar operation. But, by using standard off-the-shelf units, development costs were minimized.

Appendix B lists each power supply, by model, with its magnet load. The total AC power requirements for all of these units are estimated at 13.2 KVA of 480 VAC, 3 phase and 25.3 KVA of 208 VAC, 3 phase. Appendix C breaks down this estimate by power supply model.

UD320A35V, IE Power

Ratings: 320A, 35V, 100ppm
Qty: 1
This supply is used to power the six main dipoles in series. It can be seen as the cabinet on the left in Figure 1.

This supply is a thyristor controlled supply using the same design, but slightly different rating, as the 77 medium range power supplies built for the SNS at ORNL.

This supply is controlled by a standard BNL Power Supply Interface (PSI).

BOP 50-20GL, Kepco
Ratings: 50V, 20A, 100ppm
Qty: 5
This supply is used where higher voltage is needed, typically where there is more than one coil in series as a load. All five units can be seen mounted in the cabinet on the right in Figure 1.

These switch mode supplies are a high

Figure 1. IE Power \& Kepco Supplies precision version of the standard Kepco high power BOP. The extra precision is obtained by closing the current loop around a zero flux current sensor (ZFCT) and adding additional output filtering to reduce the output ripple to a level consistent with the higher precision.

Control of these supplies will be by RS-232.

Shim Amplifier 892, Danfysik
Ratings: 10A, 15V, 100ppm Qty: 34

All 34 supplies, plus two spares, are shown in Figure 2. Each crate consists of a bulk power supply and six regulators. Each regulator has a front end switching pre-regulator followed by a linear H bridge. The high stability is maintained by an on-board ZFCT.

These power supplies are scaled down versions of the 20A, 70 V low field correctors designed for the ORNL SNS. By reducing the power, these were able to be packaged in a compact configuration, and used to power shim windings on MRI machines. It's also very useful for us to have this many high precision power supplies in a small volume.

Each channel can be individually manually controlled by the controller seen at the top of the left cabinet. It has the capability to address and control up to 256 regulators.

In operation, these supplies will be controlled by a RS-485 line.

Figure 2. Danfysik Power Supplies

MCOR12 / 2A, BiRa
Rating: 2A, 25V, 1000ppm Qty: 32

MCOR12 / 6A, BiRa

Rating: 6A, 25V, 1000ppm Qty: 6

These magnet power supplies are shown in Figure 3. The 32 regulators rated at 2A each in two crates in the left cabinet, and the six regulators rated at 6A each are in the crate in the right cabinet.

This magnet corrector power supply system was designed at SLAC, and built to their specification by BiRa.

Each crate contains one analog interface board and up to 16 MCOR12 regulator cards that can be configured as $2 \mathrm{~A}, 6 \mathrm{~A}$, or 12 A by means of a programming daughter board.

These regulators are powered by a commercial unipolar power supply. In our application, these are Genesys 30V, 50A units.

Completing the system is a 2 U blower assembly which goes between the bulk power supply and the crate. It

Figure 3. BiRa Power Supplies draws air from the front panel through a filter and directs it up between the cards.

Each regulator accepts (via the interface card) one analog current set point, and returns one analog current read back. These signals will come from VME DACs and ADCs in the control crate. In addition, each crate has a group interlock, and group status.

An RS-232 digital interface, which includes the ADC and DAC functions is under development at SLAC, but is not completed at this time.

Rack Layout

The magnet power supplies are all located in a room above the transmitter water room. The arrangement of racks is shown in Figure 4.

Figure 4. Power Supply Rack Layout

Construction Status

All of the magnet power supplies have been delivered, and are nearly fully installed mechanically. Work will continue with installing cables for AC power to the equipment, DC cables from the equipment to the magnets, and control cables from the control system to the power supplies.

This work should be completed by June 2010.

Commissioning Plans

All of the power supplies have been tested at the factory, and there are no technical complexities to commissioning these supplies. The control interface design will be tested prior to the actual magnet loads being connected and the final system testing will proceed as the magnet loads are connected.

Appendix A

Magnet Configuration by Sector

Sector: 1

Magnet Position 1-1:

Assembly ELS1.1
Coil Name: ELS1.1
Assembly Model: 10S10HTS
Coil Model: 10S10HTS

High Temp SC solenoid
PS: Shim Amplifier 892

Sector: 2

Magnet Position 2-1:
Assembly ELS2.1
Coil Name: ELS2.1

Assembly ELC2.1
Coil Name: ELC2.1CH
Coil Name: ELC2.1CV

Assembly Model: 11S10
Coil Model: 11S10
Assembly Model: 5D10
Coil Model: 5DH10
Coil Model: 5DV10

Assembly Model: 7C15
Coil Model: 7CD15
Coil Model: 7CDHT15
Coil Model: 7CQ15
Coil Model: 7CX15

Assembly Model: 7C30
Coil Model: 7CD30
Coil Model: 7CDHT30
Coil Model: 7CQ30
Coil Model: 7CX30

Assembly Model: 7C15
Coil Model: 7CD15
Coil Model: 7CDHT15
Coil Model: 7CQ15
Coil Model: 7CX15

Diagnostic solenoid PS: Shim Amplifier 892

Air coils around 6-way cross
PS: MCOR12 / 2A
PS: MCOR12 / 2A

15 degree combined function
PS: Shim Amplifier 892
PS: MCOR12 / 2A
PS: MCOR12 / 2A
PS: MCOR12 / 2A

30 degree combined function
PS: Shim Amplifier 892
PS: MCOR12 / 2A
PS: MCOR12 / 2A
PS: MCOR12 / 2A

15 degree combined function
PS: Shim Amplifier 892
PS: MCOR12 / 2A
PS: MCOR12 / 2A
PS: MCOR12 / 2A

Magnet Position 3-4:
Assembly ELD3.4
Coil Name: ELD3.4
Coil Name: ELD3.4CH
Coil Name: ELD3.4Q
Coil Name: ELD3.4X

Sector: 4

Magnet Position 4-1:
Assembly ELS4.1
Coil Name: ELS4.1
Magnet Position 4-2:
Assembly ELS4.2
Coil Name: ELS4.2
Magnet Position 4-3:
Assembly ELS4.3
Coil Name: ELS4.3
Magnet Position 4-4:
Assembly ELS4.4
Coil Name: ELS4.4

Sector: 5

Magnet Position 5-1:
Assembly ELS5.1
Coil Name: ELS5.1

Assembly ELD5.1
Coil Name: ELD5.1
Coil Name: ELD5.1CH

Magnet Position 5-2:
Assembly ELS5.2
Coil Name: ELS5.2
Assembly ELD5.2
Coil Name: ELD5. 2
Coil Name: ELD5.2CH

Assembly Model: 7C30
Coil Model: 7CD30
Coil Model: 7CDHT30
Coil Model: 7CQ30
Coil Model: 7CX30

Assembly Model: 11S10 Coil Model: 11S10

Assembly Model: $11 \mathrm{S10}$ Coil Model: 11S10

Assembly Model: 11S10 Coil Model: 11S10

Assembly Model: 11S10
Coil Model: 11S10

Assembly Model: 11S10 Coil Model: 11S10

Assembly Model: 6D20
Coil Model: 6D20
Coil Model: 6DT20

Assembly Model: 11S10 Coil Model: 11S10

Assembly Model: 6D40 Coil Model: 6D40

Coil Model: 6DT40

30 degree combined function
PS: Shim Amplifier 892
PS: MCOR12 / 2A
PS: MCOR12 / 2A
PS: MCOR12 / 2A

Injection line solenoid PS: BOP 50-20GL

Injection line solenoid PS: BOP 50-20GL

Extraction line solenoid PS: BOP 50-20GL

Extraction line solenoid PS: BOP 50-20GL

Solenoid after the chicane PS: BOP 50-20GL

1st Extraction dipole
PS: BOP 50-20GL
PS: MCOR12 / 2A

Solenoid after the chicane PS: BOP 50-20GL

Compensating chicane
PS: BOP 50-20GL
PS: MCOR12 / 2A
Magnet Position 5-3:

Assembly ELD5.3
Coil Name: ELD5.3
Coil Name: ELD5.3CH

Assembly Model: 6D20
Coil Model: 6D20
Coil Model: 6DT20

Compensating chicane PS: BOP 50-20GL

PS: MCOR12 / 2A

Sector: 6

Magnet Position 6-1:

Assembly ELD6.1
Coil Name: ELD6.1
Coil Name: ELD6.1CH

Assembly ELQ6.1
Coil Name: ELQ6.1
Magnet Position 6-2:
Assembly ELQ6.2
Coil Name: ELQ6.2
Coil Name: ELQ6.2CV

Magnet Position 6-3:
Assembly ELQ6.3
Coil Name: ELQ6.3

Assembly Model: 3D60 Coil Model: 3D60 Coil Model: 3DT60

Assembly Model: 6Q12 Coil Model: 6Q12

Assembly Model: 6Q12 Coil Model: 6Q12 Coil Model: 6QTV12

Assembly Model: 6Q12
Coil Model: 6Q12

Assembly Model: 3D60 Coil Model: 3D60

Coil Model: 3DT60

Assembly Model: 6Q12
Coil Model: 6Q12
Coil Model: 6QTH12

Assembly Model: 6Q12
Coil Model: 6Q12
Coil Model: 6QTV12

60 degree dipole, 20 cm radius
PS: UD320A35V
PS: MCOR12 / 6A
Regular quadrupole
PS: Shim Amplifier 892

Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Regular quadrupole
PS: Shim Amplifier 892

60 degree dipole, 20 cm radius
PS: UD320A35V
PS: MCOR12 / 6A
Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Magnet Position 7-3:
Assembly ELQ7.3 Assembly Model: 6Q12
Coil Name: ELQ7.3
Coil Model: 6Q12

Sector: 8

Magnet Position 8-1:
Assembly ELD8.1 Assembly Model: 3D60
Coil Name: ELD8.1
Coil Name: ELD8.1CH

Assembly ELQ8.1
Coil Name: ELQ8.1
Magnet Position 8-2:
Assembly ELQ8.2
Coil Name: ELQ8.2
Coil Name: ELQ8.2CV
Magnet Position 8-3:
Assembly ELQ8.3
Coil Name: ELQ8.3
Coil Name: ELQ8.3CH

Sector: 9
Magnet Position $9-1$:
Assembly ELQ9.1
Coil Name: ELQ9.1
Magnet Position 9-2:
Assembly ELQ9.2
Coil Name: ELQ9.2
Coil Name: ELQ9.2CV

Assembly Model: 6Q12 Coil Model: 6Q12

Assembly Model: 6Q12
Coil Model: 6Q12
Coil Model: 6QTV12

Regular quadrupole
PS: Shim Amplifier 892

60 degree dipole, 20 cm radius
PS: UD320A35V
PS: MCOR12 / 6A

Regular quadrupole
PS: Shim Amplifier 892

Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Sector: 10

Magnet Position 10-1:
Assembly ELQ10.1
Coil Name: ELQ10.1
Assembly Model: 6Q12
Coil Model: 6Q12
Regular quadrupole
PS: Shim Amplifier 892

Magnet Position 10-2:

Assembly ELQ10.2
Coil Name: ELQ10.2
Coil Name: ELQ10.2C

Assembly Model: 6Q12
Coil Model: 6Q12
Coil Model: 6QTH12

Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Sector: 11

Magnet Position 11-1:
Assembly ELQ11.1
Coil Name: ELQ11.1
Magnet Position 11-2:
Assembly ELQ11.2
Coil Name: ELQ11.2
Coil Name: ELQ11.2C
Assembly Model: 6Q12
Coil Model: 6Q12
Coil Model: 6QTH12

Sector: 12

Magnet Position 12-1:
Assembly ELD12.1
Coil Name: ELD12.1
Coil Name: ELD12.1CH
Assembly ELQ12.1
Coil Name: ELQ12.1
Magnet Position 12-2:
Assembly ELQ12.2
Coil Name: ELQ12.2
Coil Name: ELQ12.2C

Sector: 13

Magnet Position 13-1:
Assembly ELD13.1
Coil Name: ELD13.1
Coil Name: ELD13.1CH
Assembly ELQ13.1
Coil Name: ELQ13.1
Coil Name: ELQ13.1C

Regular quadrupole
PS: Shim Amplifier 892

Regular quadrupole PS: Shim Amplifier 892

PS: MCOR12 / 2A

60 degree dipole, 20 cm radius
PS: UD320A35V
PS: MCOR12 / 6A
Regular quadrupole
PS: Shim Amplifier 892

Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Assembly Model: 6Q12 Coil Model: 6Q12
Coil Model: 6QTV12

Assembly Model: 3D60
Coil Model: 3D60
Coil Model: 3DT60
Assembly Model: 6Q12 Coil Model: 6Q12 Coil Model: 6QTH12

Assembly Model: 3D60
Coil Model: 3D60
Coil Model: 3DT60
Assembly Model: 6Q12 Coil Model: 6Q12

60 degree dipole, 20 cm radius
PS: UD320A35V
PS: MCOR12 / 6A
Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Magnet Position 13-2:

Assembly ELQ13.2
Coil Name: ELQ13.2
Coil Name: ELQ13.2C
Magnet Position 13-3:
Assembly ELQ13.3
Coil Name: ELQ13.3

Assembly Model: 6Q12 Coil Model: 6Q12

Coil Model: 6QTV12

Assembly Model: 6Q12
Coil Model: 6Q12

Assembly Model: 3D60
Coil Model: 3D60
Coil Model: 3DT60
Assembly Model: 6Q12
Coil Model: 6Q12
Magnet Position 14-2:

Sector: 14

Magnet Position 14-1:
Assembly ELD14.1
Coil Name: ELD14.1
Coil Name: ELD14.1CH
Assembly ELQ14.1
Coil Name: ELQ14.1

Assembly ELQ14.2
Coil Name: ELQ14.2
Coil Name: ELQ14.2C
Magnet Position 14-3:
Assembly ELQ14.3
Coil Name: ELQ14.3
Coil Name: ELQ14.3C
Assembly Model: 6Q12
Coil Model: 6Q12
Coil Model: 6QTV12

Assembly Model: 6Q12 Coil Model: 6Q12 Coil Model: 6QTH12

Sector: 15

Magnet Position 15-1:
Assembly ELD15.1
Coil Name: ELD15.1
Assembly ELQ15.1
Coil Name: ELQ15.1

Assembly Model: 3D2
Coil Model: 3D2
Assembly Model: 3Q12 Coil Model: 3Q12

Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Regular quadrupole
PS: Shim Amplifier 892

60 degree dipole, 20 cm radius
PS: UD320A35V
PS: MCOR12 / 6A
Regular quadrupole
PS: Shim Amplifier 892

Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Regular quadrupole
PS: Shim Amplifier 892
PS: MCOR12 / 2A

Small compensating dipole
PS: Shim Amplifier 892
Small quadrupole
PS: Shim Amplifier 892
Magnet Position 15-2:

Assembly ELD15.2 Assembly Model: 3D2
Coil Name: ELD15.2 Coil Model: 3D2
Assembly ELQ15.2 Assembly Model: 3Q12
Coil Name: ELQ15.2

Sector: 16
Magnet Position 16-1:
Assembly ELS16.1
Coil Name: ELS16.1
Assembly ELC16.1
Coil Name: ELC16.1CH
Coil Name: ELC16.1CV
Assembly ELD16.1
Coil Name: ELD16.1
Magnet Position 16-2:
Assembly ELS16.2
Coil Name: ELS16.2
Magnet Position 16-3:
Assembly ELS16.3
Coil Name: ELS16.3
Magnet Position 16-4:
Assembly ELS16.4
Coil Name: ELS16.4

Assembly Model: 10S10 Coil Model: 10S10

Assembly Model: 5D10 Coil Model: 5DH10

Coil Model: 5DV10
Assembly Model: 6D30
Coil Model: 6D30

Assembly Model: 10S10
Coil Model: 10S10

Assembly Model: 10S10
Coil Model: 10S10

Assembly Model: 10 S10 Coil Model: 10S10

Small compensating dipole
PS: Shim Amplifier 892
Small quadrupole
PS: Shim Amplifier 892

Driving to Beam Dump Solenoid PS: BOP 50-20GL

Corrector in extraction line PS: MCOR12 / 2A

PS: MCOR12 / 2A
Dipole just before the beam dump PS: Shim Amplifier 892

Driving to Beam Dump Solenoid PS: BOP 50-20GL

Driving to Beam Dump Solenoid PS: BOP 50-20GL

Driving to Beam Dump Solenoid PS: BOP 50-20GL

Appendix B
 Magnet Circuits by Power Supply Model

UD320A35V, IE Power

1. PS_ELDMain	60 degree dipole, 20 cm radius
Magnet Name	Magnet Model
ELD6.1	$3 D 60$
ELD7.1	$3 D 60$
ELD8.1	$3 D 60$
ELD12.1	$3 D 60$
ELD13.1	$3 D 60$
ELD14.1	$3 D 60$

Shim Amplifier 892, Danfysik

1. PS_ELD15.1 Small compensating dipole

Magnet Name Magnet Model
ELD15.1 3D2
2. PS_ELD15.2 Small compensating dipole

Magnet Name Magnet Model
ELD15.2 3D2
3. PS_ELD16.1 Dipole just before the beam dump

Magnet Name Magnet Model
ELD16.1 6D30
4. PS_ELD3.1 15 degree combined function

Magnet Name Magnet Model
ELD3.1 7CD15
5. PS_ELD3.2 30 degree combined function

Magnet Name Magnet Model
ELD3.2 7CD30
6 . PS_ELD3.3 15 degree combined function
Magnet Name Magnet Model
ELD3.3 7CD15
7. PS_ELD3.4 30 degree combined function

Magnet Name Magnet Model
ELD3.4 7CD30

8	PS_ELQ10.1	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ10.1	6Q12
9	PS_ELQ10.2	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ10.2	6Q12
10	PS_ELQ11.1	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ11.1	6Q12
11	PS_ELQ11.2	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ11.2	6Q12
12	PS_ELQ12.1	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ12.1	6Q12
13	PS_ELQ12.2	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ12.2	6Q12
14	PS_ELQ13.1	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ13.1	6Q12
15	PS_ELQ13.2	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ13.2	6Q12
16	PS_ELQ13.3	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ13.3	6Q12
17	PS_ELQ14.1	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ14.1	6Q12
18	PS_ELQ14.2	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ14.2	6Q12

19.	PS_ELQ14.3	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ14.3	6Q12
20	PS_ELQ15.1	Small quadrupole
	Magnet Name	Magnet Model
	ELQ15.1	3Q12
21	PS_ELQ15.2	Small quadrupole
	Magnet Name	Magnet Model
	ELQ15.2	3Q12
22	PS_ELQ6.1	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ6.1	6Q12
23	PS_ELQ6.2	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ6.2	6Q12
24	PS_ELQ6.3	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ6.3	6Q12
25	PS_ELQ7.1	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ7.1	6Q12
26	PS_ELQ7.2	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ7.2	6Q12
27	PS_ELQ7.3	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ7.3	6Q12
28	PS_ELQ8.1	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ8.1	6Q12
29	PS_ELQ8.2	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ8.2	6Q12

30 . PS_ELQ8.3	Regular quadrupole
Magnet Name	Magnet Model
ELQ8.3	6 Q12
31. PS_ELQ9.1	Regular quadrupole
Magnet Name	Magnet Model
ELQ9.1	6 612
32. PS_ELQ9.2	Regular quadrupole
Magnet Name	Magnet Model
ELQ9.2	6 612
33. PS_ELS1.1	High Temp SC solenoid
Magnet Name	Magnet Model
ELS1.1	10 10HTS
34. PS_ELS2.1	Diagnostic solenoid
Magnet Name	Magnet Model
ELS2.1	$11 S 10$

MCOR12 / 6A, BiRa

1.PS_ELD12.1CH

Magnet Name Magnet Model ELD12.1CH 3DT60
2.PS_ELD13.1CH 60 degree dipole, 20 cm radius

Magnet Name Magnet Model ELD13.1CH 3DT60
3.PS_ELD14.1CH 60 degree dipole, 20 cm radius

Magnet Name Magnet Model ELD14.1CH 3DT60
4.PS_ELD6.1CH 60 degree dipole, 20 cm radius

Magnet Name Magnet Model ELD6.1CH 3DT60
5.PS_ELD7.1CH 60 degree dipole, 20 cm radius

Magnet Name Magnet Model ELD7.1CH 3DT60

6 . PS_ELD8.1CH 60 degree dipole, 20 cm radius
Magnet Name Magnet Model
ELD8.1CH 3DT60

MCOR12 / 2A, BiRa

1. PS_ELC16.1CH Corrector in extraction line

Magnet Name Magnet Model
ELC16.1CH 5DH10
2. PS_ELC16.1CV Corrector in extraction line

Magnet Name Magnet Model
ELC16.1CV 5DV10
3.PS_ELC2.1CH Air coils around 6-way cross

Magnet Name Magnet Model
ELC2.1CH 5DH10
4.PS_ELC2.1CV Air coils around 6-way cross

Magnet Name Magnet Model
ELC2.1CV 5DV10
5. PS_ELD3.1CH 15 degree combined function

Magnet Name Magnet Model
ELD3.1CH 7CDHT15

6 . PS_ELD3.1Q 15 degree combined function
Magnet Name Magnet Model
ELD3.1Q 7CQ15
7. PS_ELD3.1X 15 degree combined function

Magnet Name Magnet Model
ELD3.1X 7CX15
8.PS_ELD3.2CH 30 degree combined function

Magnet Name Magnet Model
ELD3.2CH 7CDHT30
9.PS_ELD3.2Q 30 degree combined function

Magnet Name Magnet Model
ELD3.2Q 7CQ30
10. PS_ELD3.2X 30 degree combined function

Magnet Name Magnet Model
ELD3.2X 7CX30
11.PS_ELD3.3CH 15 degree combined function

	Magnet Name ELD3.3CH	Magnet Model 7CDHT15
12	PS_ELD3.3Q	15 degree combined function
	Magnet Name	Magnet Model
	ELD3.3Q	7CQ15
13	PS_ELD3.3X	15 degree combined function
	Magnet Name	Magnet Model
	ELD3.3X	7CX15
14	PS_ELD3.4CH	30 degree combined function
	Magnet Name	Magnet Model
	ELD3.4CH	7CDHT30
15	PS_ELD3.4Q	30 degree combined function
	Magnet Name	Magnet Model
	ELD3.4Q	7CQ30
16	PS_ELD3.4X	30 degree combined function
	Magnet Name	Magnet Model
	ELD3.4X	7CX30
17	PS_ELD5.1CH	1st Extraction dipole
	Magnet Name	Magnet Model
	ELD5.1CH	6DT20
18	PS_ELD5.2CH	Compensating chicane
	Magnet Name	Magnet Model
	ELD5.2CH	6DT40
19	PS_ELD5.3CH	Compensating chicane
	Magnet Name	Magnet Model
	ELD5.3CH	6DT20
20	PS_ELQ10.2CH	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ10.2CH	6QTH12
21	PS_ELQ11.2CH	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ11.2CH	6QTH12
22	PS_ELQ12.2CV	Regular quadrupole
	Magnet Name	Magnet Model
	ELQ12.2CV	6QTV12

23	PS_ELQ13.1CH	Regular quadrupole
	Magnet Name ELQ13.1CH	Magnet Model 6QTH12
24	PS_ELQ13.2CV	Regular quadrupole
	Magnet Name ELQ13.2CV	Magnet Model 6QTV12
25	PS_ELQ14.2CV	Regular quadrupole
	Magnet Name ELQ14.2CV	Magnet Model 6QTV12
26	PS_ELQ14.3CH	Regular quadrupole
	Magnet Name ELQ14.3CH	Magnet Model 6QTH12
27	PS_ELQ6.2CV	Regular quadrupole
	Magnet Name ELQ6.2CV	Magnet Model 6QTV12
28	PS_ELQ7.1CH	Regular quadrupole
	Magnet Name ELQ7.1CH	Magnet Model 6QTH12
29	PS_ELQ7.2CV	Regular quadrupole
	Magnet Name $E L Q 7.2 C V$	Magnet Model 6QTV12
30	PS_ELQ8.2CV	Regular quadrupole
	Magnet Name ELQ8.2CV	Magnet Model 6QTV12
31	PS_ELQ8.3CH	Regular quadrupole
	Magnet Name ELQ8.3CH	Magnet Model 6QTH12
32	PS_ELQ9.2CV	Regular quadrupole
	Magnet Name ELQ9.2CV	Magnet Model 6QTV12

BOP 50-20GL, Kерсо

1. PS_ELD5.1-3	1st Extraction dipole
Magnet Name	Magnet Model
ELD5.1	6D20
ELD5.2	6D40
ELD5.3	6D20
2 . PS_ELS16.1-4	Driving to Beam Dump Solenoid
Magnet Name	Magnet Model
ELS16.1	10S10
ELS16.2	10S10
ELS16.3	10S10
ELS16.4	10S10
3. PS_ELS4.1-2	Injection line solenoid
Magnet Name	Magnet Model
ELS4.1	11S10
ELS4.2	11S10
4. PS_ELS4.3-4	Extraction line solenoid
Magnet Name	Magnet Model
ELS4.3	11 S10
ELS4.4	11S10
5. PS_ELS5.1-2	Solenoid after the chicane
Magnet Name	Magnet Model
ELS5.1	$11 \mathrm{S10}$
ELS5.2	$11 \mathrm{S10}$

Appendix C

AC Power Requirements for Magnet Power Supplies

1. Main Dipole PS - Qty 1 - IE Power

Output power $=320 \mathrm{~A} \times 35 \mathrm{~V}=11.2 \mathrm{KW}$
Input voltage $=480$ VAC, 3 ph
Input current $=20 \mathrm{~A} / \mathrm{ph}$
Input power $=16.5 \mathrm{KVA}$

This is the only 480 V load. All other supplies operate using 120 / 208 VAC, 3 phase power.
2. Solenoid PS - Qty 5 - Kepco

Output power $=20 \mathrm{~A} \times 50 \mathrm{~V}=1.0 \mathrm{~kW}$
Input voltage $=208 \mathrm{VAC}, 1 \mathrm{ph}$
Input current $=8.4 \mathrm{~A}$
Input power $=1.75 \mathrm{KVA}$
Distributed equally, three units will cause a line current to be drawn which is the vector sum of the two currents. We have almost two sets of three with the five units.
$\mathrm{I}_{2}=14.6 \mathrm{~A} \times 2=29.2 \mathrm{~A} /$ phase
3. Main Quad PS - Qty 6 crates (36 regulators) - Danfysik

Output power $=(10 \mathrm{~A} \times 15 \mathrm{~V}) \times 6$ regulators $=900 \mathrm{~W} /$ crate
Input voltage 208 VAC, 3 ph.
Input current $=3 \mathrm{~A} / \mathrm{ph} /$ crate
Input power $=1.1 \mathrm{KVA} /$ crate
$I_{3}=3 \mathrm{~A} \times 6$ crates $=18.0 \mathrm{~A} /$ phase
4. Corrector PS - Qty 3 crates - BiRa

The power here is computed in three parts:
a) Genesys bulk supply

Output power $=30 \mathrm{~A} \times 50 \mathrm{~V}=1.5 \mathrm{~kW}$
Input voltage = 120 VAC, 1 ph
Input current $=19 \mathrm{~A}$
Input power $=2.3 \mathrm{KVA}$
These three supplies could also be run at 208 VAC. If we did that, after connecting one unit on each of the line voltages, the 208 VAC line currents would be the same as the 120 VAC configuration.
b) Housekeeping power supply $(+/-15,+5)$ for crate.

Input power $=2 \mathrm{~A}$ at $120 \mathrm{VAC}=240 \mathrm{KVA}$
c) Crate coolers

Input power $=2 \mathrm{~A}$ at $120 \mathrm{VAC}=240 \mathrm{KVA}$
Each of these three crates hangs on one phase and draws:

$$
I_{4}=19 A+2 A+2 A=23 A
$$

With all power supplies using 208 VAC operating at full output power, we'd need:
$I_{\text {TOT }}=I_{2}+I_{3}+I_{4}=29.2 \mathrm{~A}+18.0 \mathrm{~A}+23.0 \mathrm{~A}=70.2 \mathrm{Amps} /$ phase
Of course we're not running full out. I'd say a nice conservative estimate would be 80% of max or 56.2 Amps / phase. The corresponding power is:
$P_{\text {TOT }}=208 \times \mathrm{e} 3 \times 70.2=25.3 \mathrm{KVA}$
(120 / 208 VAC, 3 phase)
In a similar fashion, if we estimate the actual 480 VAC load at 80% of the maximum, we'd require:

$$
\mathrm{P}_{\mathrm{TOT}}=0.8 \times 16.5=13.2 \mathrm{KVA} \quad \text { (480 VAC, } 3 \text { phase) }
$$

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

