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1 Introduction

One of the hallmarks of linear coupling is the resonant exchange of
oscillation amplitude between the horizontal and vertical planes when the
difference between the unperturbed tunes is close to an integer. The
standard derivation of this phenomenon (known as the difference
resonance) can be found, for example, in the classic papers of
Guignard [1, 2]. One starts with an uncoupled lattice and adds a linear
perturbation that couples the two planes. The equations of motion are
expressed in hamiltonian form. As the difference between the unperturbed
tunes approaches an integer, one finds that the perturbing terms in the
hamiltonian can be divided into terms that oscillate slowly and ones that
oscillate rapidly. The rapidly oscillating terms are discarded or transformed
to higher order with an appropriate canonical transformation. The
resulting approximate hamiltonian gives equations of motion that clearly
exhibit the exchange of oscillation amplitude between the two planes.

If, instead of the hamiltonian, one is given the four-by-four matrix for one
turn around a synchrotron, then one has the complete solution for the
turn-by-turn (TBT) motion. However, the conditions for the phenomenon
of amplitude exchange are not obvious from a casual inspection of the
matrix. These conditions and those that give rise to the related sum
resonance are identified in this report. The identification is made using the
well known formalism of Edwards and Teng [3, 4, 5] and, in particular, the
normalized coupling matrix of Sagan and Rubin [6]. The formulae obtained
are general in that no particular hamiltonian or coupling elements are
assumed. The only assumptions are that the one-turn matrix is symplectic
and that it has distinct eigenvalues on the unit circle in the complex plane.

Having identified the conditions of the one-turn matrix that give rise to
the resonances, we focus on the difference resonance and apply the
formulae to the evolution of the horizontal and vertical emittances of a
beam distribution upon passing through the resonance. Exact and
approximate expressions for the TBT evolution of the emittances are
derived and applied to a number of examples.
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2 The One-Turn Matrix

We write the four-by-four matrix T for one turn around a circular
accelerator as

T =

(
M n

m N

)
(1)

where M, N, m, and n are two-by-two matrices. The matrix T is
symplectic and, as shown by Brown and Servranckx [7], is specified by 10
independent parameters. It follows from the symplectic condition that if λ
is an eigenvalue then so is 1/λ [8, 9]. We shall assume that the four
eigenvalues of T are distinct and that none of them is equal to 1 or −1.
One then has λ1, 1/λ1, λ2 and 1/λ2 as the eigenvalues, with λ1 6= λ2.
Since the elements of T are real, the complex conjugate of an eigenvalue is
also an eigenvalue. We shall assume that the four distinct eigenvalues of T

lie on the unit circle in the complex plane. We then have

λ1 = eiψ1 , λ2 = eiψ2 (2)

where ψ1 and ψ2 are real and cosψ1 6= cosψ2. The tunes associated with
the eigenvalues are

Q1 =
ψ1

2π
, Q2 =

ψ2

2π
(3)

and, under our assumptions, neither Q1, 2Q1, Q2, 2Q2, Q1 +Q2 nor
Q1 −Q2 is equal to an integer.

Under these conditions it is possible to write [10]

T = WUW−1 (4)

where

U =

(
A 0

0 B

)
, 0 =

(
0 0
0 0

)
(5)

A =

(
cosψ1 sinψ1

− sinψ1 cosψ1

)
, B =

(
cosψ2 sinψ2

− sinψ2 cosψ2

)
(6)

and W is a four-by-four symplectic matrix.
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2.1 Edwards-Teng Parameterization

As shown by Edwards and Teng [3], Billing [4] and Roser [5], the matrix
W can be written in the form

W = RN (7)

where

R =

(
dI W

−W dI

)
, N =

(
F 0

0 G

)
(8)

I =

(
1 0
0 1

)
, W =

(
W11 W12

W21 W22

)
(9)

and

F =
1√
β1

(
β1 0

−α1 1

)
, G =

1√
β2

(
β2 0

−α2 1

)
. (10)

Here and throughout the text we use a bar to denote the symplectic
conjugate [8] of a two-by-two matrix. Thus

W =

(
W22 −W12

−W21 W11

)
(11)

and we have the properties

WW = WW = (W11W22 −W12W21)I = |W|I, (12)

W + W = (W11 +W22)I = (TrW)I. (13)

Since W and N are symplectic, R must be symplectic and it follows that

|W| = 1 − d2. (14)

The one-turn matrix T is therefore given in terms of the 10 independent
parameters α1, β1, ψ1, α2, β2, ψ2, W11, W12, W21 and W22.

To obtain the Edwards-Teng parameters in terms of the elements of T we
write

T = RUR−1 (15)

where

U = NUN−1 =

(
A 0

0 B

)
(16)
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and
A = FAF−1, B = GBG−1. (17)

Carrying out the matrix multiplications one finds

M = d2A + WBW, N = d2B + WAW, (18)

m = d(BW −WA), n = d(WB −AW). (19)

These equations can be inverted to obtain A, B, W and d in terms of M,
N, m and n. One finds

A = M− nW

d
, B = N +

Wn

d
,

W

d
= −m + n

d2U
(20)

where

d2 =
1

2
+

T

2U
, T = Tr(M −N) (21)

and
U = Tr(A −B) = ±

√
T 2 + 4|m + n|. (22)

Here, as discussed in [6], we choose the sign in front of the square root so
that U has the same sign as T . It then follows that d2 ≥ 1/2. For the case
T = 0 we take U > 0. We shall also always take d > 0. With these choices
the elements of A, B, and W are uniquely specified by those of M, N, m

and n. Note that if there are no magnetic elements that couple the
horizontal and vertical planes of oscillation, the matrix elements of m and
n are zero and |m + n| = 0. This gives U = T and d2 = 1.

2.2 The Normalized Coupling Matrix

Sagan and Rubin [6] have shown that it is useful to introduce the
normalized matrix

R̂ = N−1RN . (23)

Carrying out the matrix multiplications we find that

R̂ =

(
dI w

−w dI

)
(24)

where

w = G−1WF =

(
w11 w12

w21 w22

)
(25)
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and
ww = WW = (1 − d2)I. (26)

The matrix w is the normalized coupling matrix. It is now useful [6] to
define parameters A, B, ω, and ψ such that

2A cosω = w11 + w22, 2A sinω = w12 − w21 (27)

2B cosψ = w11 − w22, 2B sinψ = w12 + w21. (28)

This shows that w can always be written in the form

w = AΩ +BΨ (29)

where

Ω =

(
cosω sinω

− sinω cosω

)
, Ψ =

(
cosψ sinψ
sinψ − cosψ

)
. (30)

The matrix
W = RN = N R̂ (31)

is then specified by the 8 parameters α1, β1, α2, β2, A, B, ω and ψ.

The matrices Ω and Ψ have the properties

ΩΩ† = Ω†Ω = ΨΨ† = Ψ†Ψ = I (32)

and
Ω = Ω†, Ψ = −Ψ, Ψ† = Ψ (33)

where here and throughout the text we use a dagger to denote the
transpose of a matrix or vector. Thus

w† = AΩ† +BΨ, w = AΩ† −BΨ (34)

and we see that
w −w† = 0 (35)

if and only if B = 0. Similarly we have

w + w† = 0 (36)

if and only if A = 0. In Sections 3.4–3.7, the conditions (35) and (36) will
be seen to be associated with the linear coupling difference and sum
resonances respectively.
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The matrices Ω and Ψ have the additional commutation properties

ΨΩ† = ΩΨ, Ω†Ψ = ΨΩ (37)

which give
ww = (A2 −B2)I (38)

and therefore
|w| = |W| = 1 − d2 = A2 −B2. (39)

We also have
ΨΩ + ΩΨ = ΨΩ − Ω†Ψ = 0 (40)

and therefore
Tr(ΨΩ) = 0. (41)

3 The Linear Coupling Resonances

3.1 Single Particle Motion and Normalized Coordinates

Let

Z =

(
X

Y

)
, X =

(
X
X ′

)
, Y =

(
Y
Y ′

)
(42)

and

Z0 =

(
X0

Y0

)
, X0 =

(
X0

X ′
0

)
, Y0 =

(
Y0

Y ′
0

)
(43)

where X0, X
′
0, Y0, Y

′
0 are the initial positions and angles of a beam particle

and X, X ′, Y , Y ′ are the positions and angles after n turns around the
accelerator. Then

Z = TnZ0 = WUnW−1Z0 (44)

where T is given by (4). Here we see that it is natural to introduce
normalized coordinates [11]

Ẑ = W−1Z, Ẑ0 = W−1Z0 (45)

where

Ẑ =

(
X̂

Ŷ

)
, X̂ =

(
X̂

X̂ ′

)
, Ŷ =

(
Ŷ

Ŷ ′

)
(46)

and

Ẑ0 =

(
X̂0

Ŷ0

)
, X̂0 =

(
X̂0

X̂ ′
0

)
, Ŷ0 =

(
Ŷ0

Ŷ ′
0

)
. (47)
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We then have
Ẑ = UnẐ0 (48)

X̂ = AnX̂0, Ŷ = BnŶ0 (49)

and using the identities

(An)†An = I, (Bn)†Bn = I (50)

we have
X̂2 + X̂ ′ 2 = X̂†X̂ = X̂

†
0X̂0 = X̂2

0 + X̂ ′ 2
0 = ε1 (51)

and
Ŷ 2 + Ŷ ′ 2 = Ŷ†Ŷ = Ŷ

†
0Ŷ0 = Ŷ 2

0 + Ŷ ′ 2
0 = ε2. (52)

These equations define the normal mode emittances, ε1 and ε2, and show
that they are conserved quantities. They also show that there exist real
phases φ1 and φ2 such that

X̂0 =
√
ε1 cosφ1, X̂ ′

0 =
√
ε1 sinφ1 (53)

Ŷ0 =
√
ε2 cosφ2, Ŷ ′

0 =
√
ε2 sinφ2. (54)

The four parameters ε1, ε2, φ1 and φ2 are initial condition parameters
which either determine or are determined by X0, X

′
0, Y0 and Y ′

0 through
equations (45–47) and (51–54).

Multiplying (45) by W from the left gives Z in terms of Ẑ. Then using
(31) we have

Z = WẐ = RN Ẑ = N R̂ Ẑ (55)

and
X = dFX̂ + WGŶ = F

{
dX̂ + wŶ

}
(56)

Y = −WFX̂ + dGŶ = G
{
dŶ −wX̂

}
. (57)

Here we see that use of the normalized coupling matrix and normalized
coordinates gives simple expressions when F is factored out of the
horizontal motion and G is factored out of the vertical motion.
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3.2 The Matched Ellipsoid

Consider now the matrix
E = WW†. (58)

Using (4) we have
TET† = WUU †W† (59)

and since UU † = I we have
TET† = E. (60)

By construction the matrix E is real, symmetric and positive definite. (A
real symmetric matrix E is positive definite if and only if the quadratic
form Z†EZ > 0 for every vector Z 6= 0.) It follows that the set of initial
positions and angles X0, X

′
0, Y0, Y

′
0 defined by

Z
†
0E

−1Z0 = ε (61)

is a four dimensional ellipsoid. After n turns around the machine we have

Z = TnZ0 (62)

and
Z†E−1Z = Z

†
0(T

†)nE−1 TnZ0. (63)

But TET† = E implies
T†E−1T = E−1 (64)

and therefore (by induction)

(T†)nE−1 Tn = E−1. (65)

Thus
Z†E−1Z = Z

†
0E

−1Z0 = ε (66)

and we see that the particle positions and angles lie on the same ellipsoid
after each turn. The ellipsoid is then said to be matched to the lattice.

3.3 Horizontal and Vertical Amplitudes

Partitioning the matched ellipsoid matrix into two-by-two matrices we have

E =

(
F C

C† G

)
. (67)

13



The projections of the matched ellipsoid onto the X, X ′ and Y , Y ′ planes
are then the regions defined by [7]

{
X†F−1X

}
≤ ε,

{
Y†G−1Y

}
≤ ε (68)

respectively. The borders of these regions are the ellipses defined by taking
the equal signs in equations (68). This suggests that we define horizontal
and vertical amplitudes

Jx = F−1
{
X†F−1X

}
= F

{
X† FX

}
(69)

and
Jy = G−1

{
Y†G−1Y

}
= G

{
Y† GY

}
(70)

respectively, where
F = |F|−1/2, G = |G|−1/2 (71)

and we have used the identities

F−1 = |F|−1F, G−1 = |G|−1G. (72)

Note that by construction the matrices FF and GG have unit determinant
and are symmetric and positive definite. Thus we can write

FF =

(
bx −ax

−ax gx

)
, GG =

(
by −ay

−ay gy

)
(73)

and we find that Jx and Jy have the familiar Courant-Snyder forms

Jx = gxX
2 + 2axXX

′ + bxX
′ 2 (74)

Jy = gyY
2 + 2ayY Y

′ + byY
′ 2 (75)

where
bxgx − a2

x = 1, bygy − a2
y = 1. (76)

Using (31) in (58) we have

E = WW† = N R̂R̂†N † (77)

and carrying out the matrix multiplications one finds

F = F
{
d2I + ww†

}
F† (78)
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G = G
{
d2I + ww†

}
G† (79)

and
C = dF

{
w −w†

}
G†. (80)

Thus we have
F = F†

{
d2I + w†w

}
F (81)

G = G†
{
d2I + w†w

}
G (82)

FF =
{
d2I + ww†

}{
d2I + w†w

}
(83)

GG =
{
d2I + ww†

}{
d2I + w†w

}
(84)

and
|F| = |G| = 1 − 2d2(1 − d2) + d2 Tr(ww†). (85)

Using (56–57) and (81–82) in (69–70) we then have

Jx = F
{
dX̂† + Ŷ†w†

}{
d2I + w†w

}{
dX̂ + wŶ

}
(86)

Jy = G
{
dŶ† − X̂†w†

}{
d2I + w†w

}{
dŶ −wX̂

}
(87)

where

F = G =
{
1 − 2d2(1 − d2) + d2 Tr(ww†)

}−1/2
. (88)

3.4 The Sum and Difference of Jx and Jy

Carrying out the multiplications in (86) and (87) we obtain

Jx = F
{
d4ε1 + (1 − d2)2ε2

}

+ F
{
2d3X̂†wŶ + 2d(1 − d2)X̂†w†Ŷ

}

+ F
{
d2Ŷ†w†wŶ + d2X̂†w†wX̂

}
(89)

Jy = F
{
d4ε2 + (1 − d2)2ε1

}

− F
{
2d3X̂†w†Ŷ + 2d(1 − d2)X̂†wŶ

}

+ F
{
d2Ŷ†w†wŶ + d2X̂†w†wX̂

}
(90)
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Jx + Jy = F
{
1 − 2d2(1 − d2)

}
(ε1 + ε2)

+ F
{
2d(2d2 − 1)X̂†(w −w†)Ŷ

}

+ 2F
{
d2Ŷ†w†wŶ + d2X̂†w†wX̂

}
(91)

and

Jx − Jy = F
{
2d2 − 1

}
(ε1 − ε2)

+ F
{
2dX̂†(w + w†)Ŷ

}
. (92)

Here we see that if
w = w† (93)

then
w†w = ww = (1 − d2)I (94)

w†w = ww = (1 − d2)I (95)

Tr(ww†) = Tr(w†w) = 2(1 − d2) (96)

F = 1 (97)

and we have
Jx + Jy = ε1 + ε2. (98)

This is just the result obtained in the perturbation treatment of the linear
coupling difference resonance.

Similarly, if
w = −w† (99)

then
w†w = −ww = (d2 − 1)I (100)

w†w = −ww = (d2 − 1)I (101)

Tr(ww†) = Tr(w†w) = 2(d2 − 1) (102)

F =
{
1 + 4d2(d2 − 1)

}−1/2
=
{
2d2 − 1

}−1
(103)

and we have
Jx − Jy = ε1 − ε2 (104)

which is just the result obtained in the perturbation treatment of the
linear coupling sum resonance.
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3.5 Further Algebraic Reduction of the Amplitudes

As shown in Section 2.2 we have

w = AΩ +BΨ, w† = AΩ† +BΨ (105)

w = AΩ† −BΨ, w† = AΩ −BΨ (106)

which give

X̂†wŶ = A
{
X̂†Ω†Ŷ

}
−B

{
X̂†ΨŶ

}
(107)

X̂†w†Ŷ = A
{
X̂†Ω†Ŷ

}
+B

{
X̂†ΨŶ

}
(108)

w†w = (AΩ −BΨ)(AΩ† −BΨ) (109)

w†w = (A2 +B2)I− 2ABΩΨ (110)

Ŷ†w†wŶ = (A2 +B2)ε2 − 2AB
{
Ŷ†ΩΨŶ

}
(111)

w†w = (AΩ† +BΨ)(AΩ +BΨ) (112)

w†w = (A2 +B2)I + 2ABΨΩ (113)

X̂†w†wX̂ = (A2 +B2)ε1 + 2AB
{
X̂†ΨΩX̂

}
(114)

and, using (41),

Tr(ww†) = Tr(w†w) = 2(A2 +B2). (115)

Using these results in (89), (90) and (88) we obtain

Jx = F
{
d4ε1 + (1 − d2)2ε2 + d2(A2 +B2)(ε1 + ε2)

}

+ 2dAF
{
X̂†Ω†Ŷ

}
+ 2d(1 − 2d2)BF

{
X̂†ΨŶ

}

+ 2d2ABF
{
X̂†ΨΩX̂− Ŷ†ΩΨŶ

}
(116)

and

Jy = F
{
d4ε2 + (1 − d2)2ε1 + d2(A2 +B2)(ε1 + ε2)

}

− 2dAF
{
X̂†Ω†Ŷ

}
+ 2d(1 − 2d2)BF

{
X̂†ΨŶ

}

+ 2d2ABF
{
X̂†ΨΩX̂− Ŷ†ΩΨŶ

}
(117)

where

F =
{
1 − 2d2(1 − d2) + 2d2(A2 +B2)

}−1/2
. (118)
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To proceed further we compute

X̂†Ω†Ŷ = X̂
†
0(An)†Ω†BnŶ0 = X̂

†
0Ω

†(An)†BnŶ0 (119)

X̂†ΨŶ = X̂
†
0(An)†ΨBnŶ0 = X̂

†
0ΨAnBnŶ0 (120)

Ŷ†ΩΨŶ = Ŷ
†
0(Bn)†ΩΨBnŶ0 = Ŷ

†
0ΨΩ†B2nŶ0 (121)

X̂†ΨΩX̂ = X̂
†
0(An)†ΨΩAnX̂0 = X̂

†
0ΨΩA2nX̂0 (122)

where the components of X̂0 and Ŷ0 are given by (53–54). We then have

X̂†Ω†Ŷ =
√
ε1ε2 cos ξ− (123)

X̂†ΨŶ =
√
ε1ε2 cos ξ+ (124)

Ŷ†ΩΨŶ = ε2 cos ζ2 (125)

X̂†ΨΩX̂ = ε1 cos ζ1 (126)

where
ξ− = nψ1 − nψ2 + φ2 − φ1 + ω (127)

ξ+ = nψ1 + nψ2 − φ1 − φ2 + ψ (128)

ζ2 = 2nψ2 − 2φ2 + ψ − ω (129)

ζ1 = 2nψ1 − 2φ1 + ψ + ω (130)

and
ψ1 = 2πQ1, ψ2 = 2πQ2. (131)

Thus the horizontal and vertical amplitudes become

Jx = F
{
d4ε1 + (1 − d2)2ε2 + d2(A2 +B2)(ε1 + ε2)

}

+ 2dF
√
ε1ε2

{
A cos ξ− + (1 − 2d2)B cos ξ+

}

+ 2d2ABF {ε1 cos ζ1 − ε2 cos ζ2} (132)

and

Jy = F
{
d4ε2 + (1 − d2)2ε1 + d2(A2 +B2)(ε1 + ε2)

}

− 2dF
√
ε1ε2

{
A cos ξ− − (1 − 2d2)B cos ξ+

}

+ 2d2ABF {ε1 cos ζ1 − ε2 cos ζ2} (133)

where
1 − d2 = A2 −B2 (134)
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and

F =
{
1 − 2d2(1 − d2) + 2d2(A2 +B2)

}−1/2
. (135)

These expressions are exact. They give the amplitudes of oscillation in the
horizontal and vertical planes in terms of the initial condition parameters
ε1, ε2, φ1 and φ2, and the parameters d, A, B, ω, ψ, Q1 and Q2 of the
one-turn matrix. The simple appearance of the parameters A and B in the
expressions shows the utility of using the normalized coupling matrix.
Note that each amplitude contains frequencies Q1 −Q2, Q1 +Q2, 2Q1 and
2Q2. If B = 0, only frequency Q1 −Q2 appears, while if A = 0, only
frequency Q1 +Q2 appears. Note also that frequency Q1 −Q2 is absent
from the sum of the amplitudes and is the only frequency present in the
difference. In the next two subsections we show that the conditions B = 0
and A = 0 give rise to the difference and sum resonances respectively.

3.6 The Difference Resonance

For the case B = 0 we have

A2 = 1 − d2, F = 1 (136)

and equations (132) and (133) become

Jx = d2ε1 + (1 − d2)ε2 + 2
{
d2(1 − d2)ε1ε2

}1/2
cos ξ− (137)

and

Jy = d2ε2 + (1 − d2)ε1 − 2
{
d2(1 − d2)ε1ε2

}1/2
cos ξ− (138)

where
ξ− = 2πn(Q1 −Q2) + φ2 − φ1 + ω. (139)

Here we see that the only n dependence in the expressions for Jx and Jy is
in the terms containing cos ξ− which oscillate with frequency Q1 −Q2.
Moreover we have

Jx + Jy = ε1 + ε2. (140)

These are just the properties of the linear coupling difference resonance.

Now, it follows from (21) and (22) that

d2(1 − d2) =
U2 − T 2

4U2
=

|m + n|
T 2 + 4|m + n| (141)
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and since
1 − d2 = A2 −B2 = A2 > 0 (142)

we must have
|m + n| > 0. (143)

Thus we may define
K2 = |m + n| (144)

and we have
U2 = T 2 + 4K2 (145)

and

d2(1 − d2) =
K2

T 2 + 4K2
. (146)

Substituting (146) into (137) and (138) we see that the oscillations of Jx
and Jy are greatest when T = 0 and go to zero as K2 goes to zero. We also
have

d2 =
1

2
+

1

2

{
T 2

T 2 + 4K2

}1/2

(147)

which shows that d2 goes to 1/2 as T goes to zero and goes to one as K2

goes to zero. Note that the parameters T and K are analogous to the
unperturbed tune separation and the coupling parameter in the
perturbation treatment [1, 2] of the linear coupling resonance.

By specifying values for parameters A, B, Q1, Q2 we obtain values for d2,
U2, K2, and T 2. As an example of the difference resonance let us take

A = 0.6, B = 0.06, Q1 = 5.2364, Q2 = 4.2236. (148)

We then have
d2 = 1 +B2 −A2 = 0.6436 (149)

U = 2 cos(2πQ1) − 2 cos(2πQ2) = −0.1595 (150)

K2 = d2(1 − d2)U2 = 0.005838 (151)

and
T 2 = U2 − 4K2 = 0.002099. (152)

Figure 1 shows a plot of Jx, Jy andJx + Jy obtained with these values.
Here we have taken ε1 = ε2 = 1, φ1 = φ2 = 0 and ω = ψ = π/4. As
expected we see Jx and Jy oscillations characteristic of the difference
resonance. The small-amplitude high-frequency oscillations seen on all of
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the curves are due to the parameter B being small but nonzero. If we set
B = 0 and keep A, Q1, Q2 the same as before, we obtain the curves shown
in Figure 2. Here we see that the high-frequency oscillations are gone and
the sum Jx + Jy is constant.

3.7 The Sum Resonance

For the case A = 0 we have

B2 = d2 − 1, F =
{
2d2 − 1

}−1
(153)

and equations (132) and (133) become

Jx = d2ε1 + (d2 − 1)ε2 − 2
{
d2(d2 − 1)ε1ε2

}1/2
cos ξ+ (154)

and

Jy = d2ε2 + (d2 − 1)ε1 − 2
{
d2(d2 − 1)ε1ε2

}1/2
cos ξ+ (155)

where
ξ+ = 2πn(Q1 +Q2) − φ1 − φ2 + ψ. (156)

Here we see that the only n dependence in the expressions for Jx and Jy is
in the terms containing cos ξ+ which oscillate with frequency Q1 +Q2.
Moreover we have

Jx − Jy = ε1 − ε2. (157)

These are just the properties of the linear coupling sum resonance.

Now since
d2 − 1 = B2 −A2 = B2 > 0 (158)

it follows from (141) that we must have

|m + n| < 0. (159)

Thus we may define
K2 = −|m + n| (160)

and we have

d2(d2 − 1) =
K2

T 2 − 4K2
. (161)
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Substituting (161) into (154) and (155) we see in this case that the
oscillations of Jx and Jy increase without bound as T 2 approaches 4K2.
The motion is unstable for T 2 ≤ 4K2. We also have

d2 =
1

2
+

1

2

{
T 2

T 2 − 4K2

}1/2

(162)

which shows that d2 ≥ 1 and d2 goes to one as K2 goes to zero.

As an example of the sum resonance let us take

A = 0.05, B = 0.50, Q1 = 5.2124, Q2 = 4.7973. (163)

We then we have
d2 = 1 +B2 −A2 = 1.2475 (164)

U = 2 cos(2πQ1) − 2 cos(2πQ2) = −0.1176 (165)

K2 = d2(d2 − 1)U2 = 0.004268 (166)

and
T 2 = U2 − 4K2 = 0.03089. (167)

Figure 3 shows a plot of Jx, Jy and Jx − Jy obtained with these values.
Here we have taken ε1 = 1, ε2 = 0.5, φ1 = φ2 = 0 and ω = ψ = π/4. As
expected we see Jx and Jy oscillations characteristic of the sum resonance.
The small-amplitude high-frequency oscillations seen on all of the curves
are due to the parameter A being small but nonzero.

4 Crossing the Difference Resonance

Having established that the condition B = 0 is associated with the
difference resonance, we use matrices that satisfy this condition to study
the TBT evolution of a distribution of beam particles under the influence
of the resonance.

4.1 The TBT One-Turn Matrix

Let us suppose that the one-turn matrix depends on the turn number n.
We use a subscript n to denote the dependence. The one-turn matrix after
n turns is then

Tn = WnUnW−1
n (168)
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where the matrix Un is specified by parameters

ψ1n = 2πQ1n, ψ2n = 2πQ2n (169)

and the matrix
Wn = RnNn = NnR̂n (170)

is specified by parameters α1n, β1n, α2n, β2n, An, Bn, ωn and ψn. We
consider one-turn matrices for which Bn = 0. We assume that the phase
ωn appearing in the matrix R̂n is independent of n and has value ω. We
assume further that the Courant-Snyder parameters α1n, β1n, α2n, β2n

appearing in the matrix Nn are independent of n and have values α1, β1,
α2, and β2 respectively. These simplifying assumptions allow for tractable
algebraic expressions while retaining the essential features of the TBT
evolution of the beam distribution. The only n dependence in the matrix
Wn is then through the parameter

en = An = ±
√

1 − d2
n. (171)

Thus we have
Tn = N R̂nUnR̂−1

n N−1 (172)

where

R̂n =

(
dnI enΩ

†

−enΩ dnI

)
, Un =

(
An 0

0 Bn

)
(173)

An =

(
cosψ1n sinψ1n

− sinψ1n cosψ1n

)
, Bn =

(
cosψ2n sinψ2n

− sinψ2n cosψ2n

)
(174)

N =

(
F 0

0 G

)
, Ω =

(
cosω sinω

− sinω cosω

)
(175)

and

F =
1√
β1

(
β1 0

−α1 1

)
, G =

1√
β2

(
β2 0

−α2 1

)
. (176)

Partitioning Tn into two-by-two matrices we then have

Tn =

(
Mn nn
mn Nn

)
(177)

where
Mn = F

{
d2
nAn + e2nBn

}
F−1 (178)

23



Nn = G
{
d2
nBn + e2nAn

}
G−1 (179)

mn = dnen G {BnΩ − ΩAn}F−1 (180)

nn = dnenF
{
Ω†Bn −AnΩ

†
}
G−1. (181)

Now let
Un = Tr(An − Bn) = 2 cos(2πQ1n) − 2 cos(2πQ2n) (182)

Tn = Tr(Mn −Nn) = (2d2
n − 1)Un (183)

and
K2
n = |mn + nn|. (184)

Then we have
U2
n = T 2

n + 4K2
n (185)

and

d2
n =

1

2
+

Tn
2Un

(186)

where the mode labeling (1 or 2) of the tunes is chosen so that Tn and Un
have the same sign. We shall specify Q1n, Q2n and Kn and then compute
Un, Tn, dn and en for each n. Resonance crossing occurs when Tn goes
through zero. Here Un must change sign and this means that An and Bn
must be interchanged in (178–181). Since

d2
n = e2n =

1

2
(187)

when Tn = 0, we see that the elements of Mn and Nn are unchanged by
the interchange of An and Bn, but those of mn and nn change sign unless
en changes sign. (Note that Ω and Ω† commute with An and Bn.) We shall
take en ≥ 0 for Tn ≤ 0 and en ≤ 0 for Tn > 0. This then guarantees that
the elements of Mn, Nn, mn, nn are continuous as Tn passes through zero.

4.2 The TBT Beam Ellipsoid and its Projections

Rather than track individual particles of a distribution we track the
parameters of the ellipsoid containing the distribution. We assume that the
initial beam distribution is contained inside the beam ellipsoid defined by

Z
†
0E

−1
0 Z0 = ε (188)
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where E0 is a four-by-four symmetric positive-definite matrix with unit
determinant. After n turns the beam distribution is contained inside the
ellipsoid

Z†
nE

−1
n Zn = ε (189)

where Zn and En are given by the recursion relations

Zn+1 = TnZn (190)

and
En+1 = TnEnT

†
n. (191)

Here we write

En =

(
Fn Cn

C†
n Gn

)
(192)

where Fn, Gn and Cn are two-by-two matrices. The projections of the
beam ellipsoid onto the X, X ′ and Y , Y ′ planes are then the regions
defined by [7] {

X†F−1
n X

}
≤ ε,

{
Y†G−1

n Y
}
≤ ε (193)

respectively. The areas of these regions are πεxn and πεyn where

εxn = ε|Fn|1/2, εyn = ε|Gn|1/2 (194)

are the TBT horizontal and vertical emittances.

We shall assume that the initial beam ellipsoid has no coupling between
the horizontal and vertical planes and that its projections onto these
planes are matched to those of the matched ellipsoid. Since w = w† for the
difference resonance, the two-by-two submatrices (78–80) of the matched
ellipsoid matrix become

F = FF †, G = GG†, C = 0 (195)

where F and G are given by (176). Thus we have

F0 = aFF †, G0 = bGG†, C0 = 0 (196)

where a and b are positive constants (so that E0 is positive definite) and
ab = 1 (so that |E0| = 1). The initial horizontal and vertical emittances
are then

εx0 = aε, εy0 = bε (197)

and the TBT evolution of the emittances (194) is given by iteration of
(191) with Tn given by (177–181) and with E0 given by (192) and (196).
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4.3 Normalized TBT Equations

Since the matrix N has been taken to be independent of n it is convenient
to introduce normalized matrices

Tn = N−1TnN = R̂nUnR̂−1
n (198)

and
En = N−1En(N−1)†. (199)

We then have

E0 =

(
aI 0

0 bI

)
(200)

and the recursion relation (191) becomes

En+1 = TnEnT †
n (201)

where

Tn =

(
Pn qn
pn Qn

)
(202)

and
Pn = F−1MnF = d2

nAn + e2nBn (203)

qn = F−1nnG = dnen
{
Ω†Bn −AnΩ

†
}

(204)

pn = G−1mnF = dnen {BnΩ − ΩAn} (205)

Qn = G−1NnG = d2
nBn + e2nAn. (206)

Partitioning En into two-by-two matrices we have

En =

(
Fn Cn
C†
n Gn

)
(207)

where
Fn = F−1Fn(F−1)†, Gn = G−1Gn(G−1)† (208)

and
Cn = F−1Cn(G−1)†. (209)

Defining
an = |Fn|1/2, bn = |Gn|1/2 (210)

we then have
εxn = ε|Fn|1/2 = ε|Fn|1/2 = εan (211)
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and
εyn = ε|Gn|1/2 = ε|Gn|1/2 = εbn. (212)

The recursion relation (201) along with the initial matrix E0 then gives the
TBT emittances. Defining the product

Pn = Tn · · · T1T0 (213)

we also have
En+1 = PnE0P†

n. (214)

4.4 Calculation of the TBT Emittances

It follows from (203–206) that the two-by-two matrices Pn, qn, pn, Qn

have the properties
Pn = P†

n, qn = q†
n (215)

pn = p†
n, Qn = Q†

n (216)

and are therefore of the form

P =

(
P11 P12

−P12 P11

)
. (217)

In Appendix A it is shown that if Tn is a symplectic matrix with
two-by-two submatrices that satisfy (215–216), and if En has the form

En =

(
anI Cn
C†
n bnI

)
(218)

where
Cn = C†

n (219)

then En+1 will be of the form

En+1 = TnEnT †
n =

(
an+1I Cn+1

C†
n+1 bn+1I

)
(220)

where
Cn+1 = C†

n+1 (221)

and
an+1 + bn+1 = an + bn. (222)
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Since

E0 =

(
aI 0

0 bI

)
(223)

it follows by induction that all of the matrices En are of the form (218) with

Cn =

(
cn hn

−hn cn

)
(224)

satisfying (221) and with

an + bn = a0 + b0 = a+ b. (225)

Thus the TBT sum of the horizontal and vertical emittances

εxn + εyn = ε {an + bn} = εx0 + εy0 (226)

is conserved. This is a special case of the general theorem proved by
Brown and Servranckx [7] which shows that one must have

εxn + εyn ≥ εx0 + εy0. (227)

Starting with the initial parameters a0 = a, b0 = b, c0 = 0 and h0 = 0, a
computer program can be set up to calculate an, bn, cn and hn recursively.
This then gives the TBT emittances. The formulae for doing this are given
in Appendix B.

4.5 Approximate Expression for the TBT Emittances

Using (198) in the product

Pn = Tn · · · T1T0 (228)

we have

Pn =
{
R̂nUnR̂−1

n

}{
R̂n−1Un−1R̂

−1
n−1

}
· · ·
{
R̂0U0R̂

−1
0

}
. (229)

Here between each Uk+1 and Uk we have the factor

R̂−1
k+1R̂k =

(
dk+1I −ek+1Ω

†

ek+1Ω dk+1I

)(
dkI ekΩ

†

−ekΩ dkI

)
(230)
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which we can write as

R̂−1
k+1R̂k = I cos(ηk+1 − ηk) + H sin(ηk+1 − ηk) (231)

where
cos ηj = dj , sin ηj = ej (232)

and

H =

(
0 −Ω†

Ω 0

)
. (233)

Thus
R̂−1
k+1R̂k = I + (ηk+1 − ηk)H + · · · (234)

and if ηk+1 − ηk is sufficiently small we may take

R̂−1
k+1R̂k = I. (235)

This gives the approximate expression

Pn = R̂nVnR̂−1
0 (236)

where

Vn = Un · · · U1U0 =

(
Kn 0

0 Ln

)
(237)

Kn = An · · · A1A0 =

(
cos Ψ1n sinΨ1n

− sinΨ1n cos Ψ1n

)
(238)

Ln = Bn · · · B1B0 =

(
cos Ψ2n sinΨ2n

− sinΨ2n cos Ψ2n

)
(239)

Ψ1n = ψ1n + ψ1(n−1) + · · · + ψ1(1) + ψ1(0) (240)

and
Ψ2n = ψ2n + ψ2(n−1) + · · · + ψ2(1) + ψ2(0). (241)

Using

R̂n =

(
dnI enΩ

†

−enΩ dnI

)
, R̂−1

0 =

(
d0I −e0Ω†

e0Ω d0I

)
(242)

we then have

Pn =

(
Pn qn
pn Qn

)
(243)
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where
Pn = d0dnKn + e0enLn (244)

qn = d0enΩ
†Ln − e0dnKnΩ

† (245)

pn = e0dnLnΩ − d0enΩKn (246)

Qn = d0dnLn + e0enKn. (247)

Here we see that the two-by-two submatrices again satisfy the conditions

Pn = P†
n, qn = q†

n (248)

pn = p†
n, Qn = Q†

n (249)

and we therefore have

En+1 = PnE0P†
n =

(
an+1I Cn+1

C†
n+1 bn+1I

)
(250)

where
Cn+1 = C†

n+1 (251)

and
an+1 + bn+1 = a+ b. (252)

In Appendix C it is shown that

an+1 = F (n) − 2(b− a)d0e0dnen cos(Ψ1n − Ψ2n) (253)

bn+1 = G(n) + 2(b− a)d0e0dnen cos(Ψ1n − Ψ2n) (254)

where
F (n) = a+ (b− a)

{
d2
0e

2
n + e20d

2
n

}
(255)

and
G(n) = b− (b− a)

{
d2
0e

2
n + e20d

2
n

}
. (256)

Although approximate, these equations are non-recursive and give the
horizontal and vertical TBT emittances (εxn = εan, εyn = εbn) in terms of
the known parameters a, b, d0, e0, dn, en, Ψ1n and Ψ2n.

Note that for the case in which the matrices Tk are all equal to T0 we have

Pn = T n+1
0 = R̂0 Un+1

0 R̂−1
0 . (257)

One then has
an+1 = a+ 2(b − a)d2

0e
2
0 {1 − cosΨn} (258)
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and
bn+1 = b− 2(b− a)d2

0e
2
0 {1 − cos Ψn} (259)

and in this case the equations are exact. Here

Ψn = (n+ 1)(ψ10 − ψ20) (260)

and

d2
0e

2
0 = d2

0(1 − d2
0) =

K2
0

T 2
0 + 4K2

0

(261)

as shown in Section 3.6. Thus in this case the horizontal and vertical
emittances oscillate with frequency Q10 −Q20 and their sum remains
constant. These equations are in agreement with equations (1) and (2) of
Ref. [12].

4.6 Comparison with Other Formulae

For comparison of the approximate formulae (253–256) with those of
Ref. [12] we note that

d2
j =

1

2
+

|Tj|
2|Uj |

=
1

2

{
U2
j − T 2

j

U2
j − |TjUj|

}
(262)

e2j =
1

2
− |Tj |

2|Uj |
=

1

2

{
U2
j − T 2

j

U2
j + |TjUj |

}
(263)

and
Uj = ±

√
T 2
j + 4K2

j (264)

which give

d2
n =

1

2

{
4K2

n

T 2
n + 4K2

n − |Tn|
√
T 2
n + 4K2

n

}
(265)

and

e2n =
1

2

{
4K2

n

T 2
n + 4K2

n + |Tn|
√
T 2
n + 4K2

n

}
. (266)

For the case in which the initial matrix T0 is far from resonance we have

d2
0 ≈ 1, e20 ≈ 0 (267)

and equations (255) and (256) become

F (n) = a+
1

2
(b− a)

{
4K2

n

T 2
n + 4K2

n + |Tn|
√
T 2
n + 4K2

n

}
(268)
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and

G(n) = b− 1

2
(b− a)

{
4K2

n

T 2
n + 4K2

n + |Tn|
√
T 2
n + 4K2

n

}
. (269)

These equations are of the same form as equations (5) and (6) of Ref. [12].

4.7 TBT Emittance Examples

For 0 ≤ n ≤ N let the TBT tunes be given by

Q1n = Q+
1

2
∆Qn, Q2n = Q− 1

2
∆Qn (270)

where
∆Qn =

√
∆2
n + (∆Qmin)2 (271)

and

∆2
n =

(
n−N

N

)2 {
(∆Qmax)

2 − (∆Qmin)
2
}
. (272)

The average of Q1n and Q2n is then constant while the difference
Q1n −Q2n varies from ∆Qmax at n = 0 to ∆Qmin at n = N . We assume
here that Q1n, Q2n and Q are all between 0 and 0.5.

For N + 1 ≤ N + k ≤ 2N we let

∆QN+k = ∆QN−k (273)

which gives
Q1(N+k) = Q1(N−k), Q2(N+k) = Q2(N−k). (274)

Having specified the values of Q1n and Q2n we can calculate

Un = 2 cos(2πQ1n) − 2 cos(2πQ2n) (275)

and
T 2
n = U2

n − 4K2
n. (276)

Here we shall assume that Kn is independent of n with

4K2
n = U2

N (277)

for all n. This gives
T 2
n = U2

n − U2
N (278)

32



and
T 2
N = 0. (279)

We then have

d2
n =

1

2
+

Tn
2Un

(280)

and

e2n =
1

2
− Tn

2Un
(281)

where Tn is taken to have the same sign as Un and dn is taken to be
positive. We also take en ≥ 0 for Tn ≤ 0 and en ≤ 0 for Tn > 0 as discussed
in Section 4.1. It then follows from (273–281) that

UN+k = UN−k, TN+k = TN−k (282)

and
dN+k = dN−k, eN+k = eN−k. (283)

Taking 2N = 4000 turns, Q = 0.25, ∆Qmax = 0.05 and ∆Qmin = 0.005 we
obtain the values of Q1n and Q2n plotted in Figure 4. The corresponding
values of Tn, Un, dn and en are plotted in Figure 5. Here we see that Tn
increases monotonically until it reaches reaches zero at n = N = 2000.
Rather than passing through zero it then decreases monotonically until it
reaches the value T0 at n = 2N = 4000. Note that since Tn ≤ 0 for all n,
we have en ≥ 0 for all n.

The exact TBT horizontal and vertical emittances εxn and εyn obtained
under these conditions (and with parameter ω = π/4) are plotted in
Figure 6. Here the emittances were obtained by iteration of equation
(201) with starting parameters εx0 = 0.7, εy0 = 0.3, c0 = 0 and h0 = 0.
Note that the emittances are not exchanged in this case. In the next
section we will see that exchange becomes possible if Tn passes through
zero. The corresponding elements cn and hn of normalized beam ellipsoid
matrix En are plotted in Figure 7.

The approximate horizontal and vertical emittances obtained from
equations (253–256) are plotted in Figure 8. These are overlayed on the
exact emittances in Figure 9. Here we see that there is good agreement
up to turn 2000. This is also seen in Figure 10 where the differences
(approximate minus exact) are plotted. Note that for both the exact and
approximate emittances the sum of the horizontal and vertical emittances
is rigorously conserved as shown in Sections 4.4 and 4.5.
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The condition for good agreement between the exact and approximate
emittances is that the parameter ηn defined by equations (232) vary
sufficiently slowly. A possible criterion for slow variation is suggested by
the condition for adiabatic invariance [13]. One may expect that if the
change in ηn over one period of oscillation at the difference frequency
Q1 −Q2 is small compared to ηn, then the difference between the
approximate and exact emittances will remain small. Let us define
adiabatic parameter

ξn = τn

{
ηn+1 − ηn

|ηn|

}
(284)

where
τn = |1/∆Qn| (285)

is the period of oscillation at the difference frequency. The criterion for
sufficiently slow variation of ηn then becomes

ξn � 1. (286)

The parameter ξn is plotted in Figure 5. Here we see that the condition
(286) is satisfied except in the region near n = 2000. The agreement
between exact and approximate emittances is actually good up to
n = 2000 but then becomes poor on subsequent turns. In order to improve
the agreement we can reduce ηn+1 − ηn by reducing ∆Qmax from 0.05 to
0.025. We then obtain the parameters Tn, Un, dn, en and ξn plotted in
Figure 11. Here we see that ξn is reduced by a factor of 2. The
corresponding exact and approximate emittances and their differences are
plotted in Figures 12, 13 and 14. Comparing with Figures 9 and 10 we
see that the difference between exact and approximate emittances is also
reduced by a factor of 2.

4.8 Approximate Equations for Emittance Exchange

In the previous section we found that the horizontal and vertical
emittances are not exchanged even though Tn goes to zero. Here we show
that exchange can occur if Tn passes through zero.

For 0 ≤ n ≤ N we let the TBT tunes be given by (270–272) as before, but
now for

N + 1 ≤ N + k ≤ 2N (287)

we take
Q1(N+k) = Q2(N−k), Q2(N+k) = Q1(N−k). (288)
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Thus the tunes Q1n and Q2n are “flipped” for n > N and we have

UN+k = 2 cos
{
2πQ2(N−k)

}
− 2 cos

{
2πQ1(N−k)

}
= −UN−k. (289)

It then follows that
TN+k = −TN−k (290)

and
dN+k = dN−k, eN+k = −eN−k. (291)

(Here as before we take en ≥ 0 for Tn ≤ 0 and en ≤ 0 for Tn > 0.)

For m = N + k we have

Em+1 =

(
am+1I Cm+1

C†
m+1 bm+1I

)
= QkPNE0P†

NQ
†
k (292)

where
Qk = TN+k · · · TN+2TN+1 (293)

and
PN = TN · · · T1T0. (294)

Here
TN+k = R̂N+kUN+kR̂

−1
N+k (295)

R̂N+k =

(
dN−kI −eN−kΩ

†

eN−kΩ dN−kI

)
= R̂−1

N−k (296)

and

UN+k =

(
BN−k 0

0 AN−k

)
= JUN−kJ

−1 (297)

where

J =

(
0 I

I 0

)
, J−1 = J. (298)

We then have the approximate equations

Qk = R̂−1
N−k {JUN−kJ} · · · {JUN−1J} R̂N−1 (299)

and
QkPN =

{
R̂−1
N−kJMk JR̂N−1

}{
R̂NVNR̂−1

0

}
(300)
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where

Mk = UN−1 · · · UN−k =

(
Kk 0

0 Lk

)
(301)

Kk = AN−1 · · · AN−k =

(
cosΦ1k sinΦ1k

− sinΦ1k cos Φ1k

)
(302)

Lk = BN−1 · · · BN−k =

(
cos Φ2k sinΦ2k

− sinΦ2k cos Φ2k

)
(303)

Φ1k = ψ1(N−1) + · · · + ψ1(N−k) (304)

Φ2k = ψ2(N−1) + · · · + ψ2(N−k) (305)

and VN is given by (237–241) with n = N .

Note that because en changes sign as Tn passes through zero, the
approximation

R̂−1
j+1R̂j = I (306)

is not valid for j = N . Instead, using (296) we have

R̂−1
N+1R̂N = R̂N−1R̂N . (307)

Thus using the valid approximation

R̂−1
N R̂N−1 = I (308)

we have
R̂N−1 = R̂NR̂−1

N R̂N−1 = R̂N (309)

R̂−1
N+1R̂N = R̂N−1R̂N = R̂2

N (310)

and
QkPN = R̂−1

N−k {JMk J} R̂2
NVNR̂−1

0 (311)

where

R̂2
N =

(
(2d2

N − 1)I 2dNeNΩ†

−2dNeNΩ (2d2
N − 1)I

)
. (312)

Here

dN = eN =
1√
2

(313)

which gives

R̂2
N =

(
0 Ω†

−Ω 0

)
(314)
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and

{JMk J} R̂2
NVN =

(
0 LΩ†

−KΩ 0

)
(315)

where
K = KkKN , L = LkLN . (316)

Using

R−1
0 =

(
d0I −e0Ω†

e0Ω d0I

)
(317)

and

R−1
N−k =

(
dN−kI −eN−kΩ

†

eN−kΩ dN−kI

)
(318)

we then have

{JMk J} R̂2
NVNR−1

0 =

(
0 LΩ†

−KΩ 0

)(
d0I −e0Ω†

e0Ω d0I

)
(319)

{JMk J} R̂2
NVNR−1

0 =

(
e0L d0LΩ†

−d0KΩ e0K

)
(320)

and

QkPN = R−1
N−k {JMk J} R̂2

NVNR−1
0 =

(
P q

p Q

)
(321)

where
(

P q

p Q

)
=

(
dN−kI −eN−kΩ

†

eN−kΩ dN−kI

)(
e0L d0LΩ†

−d0KΩ e0K

)
. (322)

Thus
P = e0dN−kL + d0eN−kK (323)

q = d0dN−kLΩ† − e0eN−kΩ
†K (324)

p = e0eN−kΩL− d0dN−kKΩ (325)

Q = d0eN−kL + e0dN−kK (326)

and we see that again we have

P = P†, q = q† (327)

p = p†, Q = Q†. (328)
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As shown in Appendix C we then have

am+1 = G(N − k) − 2(b− a)d0e0dN−keN−k cos(θ1 − θ2) (329)

bm+1 = F (N − k) + 2(b− a)d0e0dN−keN−k cos(θ1 − θ2) (330)

where m = N + k,

θ1 = ψ1(N−1) + ψ1(N−2) + · · · + ψ1(N−k) + Ψ1N (331)

θ2 = ψ2(N−1) + ψ2(N−2) + · · · + ψ2(N−k) + Ψ2N (332)

and
F (n) = a+ (b− a)

{
d2
0e

2
n + e20d

2
n

}
(333)

G(n) = b− (b− a)
{
d2
0e

2
n + e20d

2
n

}
. (334)

(The phases Ψ1N and Ψ2N are given by (240–241) with n = N .) Here
again we have equations that, although approximate, are non-recursive and
give the horizontal and vertical TBT emittances in terms of the known
parameters a, b, d0, e0, dn, en, θ1 and θ2.

Note that since
dN+k = dN−k, eN+k = −eN−k (335)

we have
G(N − k) = G(N + k) = G(m) (336)

F (N − k) = F (N + k) = F (m) (337)

and equations (329–330) can be written as

am+1 = G(m) + 2(b− a)d0e0dmem cos(θ1 − θ2) (338)

bm+1 = F (m) − 2(b− a)d0e0dmem cos(θ1 − θ2) (339)

where
N + 1 ≤ m ≤ 2N. (340)
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4.9 Demonstration of Emittance Exchange

Now taking m = N + k = 2N we have

a2N+1 = G(0) − 2(b− a)d2
0e

2
0 cos(θ1 − θ2) (341)

b2N+1 = F (0) + 2(b− a)d2
0e

2
0 cos(θ1 − θ2) (342)

where
θ1 = 2Ψ1N − ψ1N , θ2 = 2Ψ2N − ψ2N (343)

and
G(0) = b− 2(b− a)d2

0e
2
0 (344)

F (0) = a+ 2(b− a)d2
0e

2
0. (345)

Thus
a2N+1 = b− 2(b− a)d2

0(1 − d2
0) {1 + cos(θ1 − θ2)} (346)

and
b2N+1 = a+ 2(b− a)d2

0(1 − d2
0) {1 + cos(θ1 − θ2)} (347)

where

d2
0(1 − d2

0) =
K2

0

T 2
0 + 4K2

0

. (348)

Here we see that if K0 is small or if T0 is large then d2
0(1 − d2

0) ≈ 0 and
equations (346–347) become

a2N+1 ≈ b, b2N+1 ≈ a. (349)

Since a0 = a and b0 = b, we see that the TBT emittances (εxn = εan,
εyn = εbn) are exchanged after 2N turns.

4.10 Emittance Exchange Examples

Taking 2N = 4000 turns, Q = 0.25, ∆Qmax = 0.05 and ∆Qmin = 0.005 in
equations (270–272) and (287–288) we obtain the values of Q1n and Q2n

plotted in Figure 15. Note that in this case the tunes “flip” at
n = N = 2000. The corresponding values of Tn, Un, dn, en and ξn are
plotted in Figure 16. Here we see that Tn is monotonically increasing and
passes through zero at n = N = 2000. For n ≤ N we have Tn ≤ 0 and
en > 0, while for n > N we have Tn > 0 and en < 0.

The exact TBT horizontal and vertical emittances εxn and εyn obtained
under these conditions (and with parameter ω = π/4) are plotted in
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Figure 17. Here the emittances were obtained by iteration of equations
(201) and (292) with starting parameters εx0 = 0.7, εy0 = 0.3, c0 = 0 and
h0 = 0. Note that the emittances are indeed exchanged in this case. The
corresponding elements cn and hn of the normalized beam ellipsoid matrix
En are plotted in Figure 18.

The approximate horizontal and vertical emittances obtained from
equations (253–254) and (338–339) are plotted in Figure 19. These are
overlayed on the exact emittances in Figure 20. Here we see that there is
good agreement over the whole range of 4000 turns. This is also seen in
Figure 21 where the differences (approximate minus exact) are plotted.
In this case there is good agreement even though the parameter ξn plotted
in Figure 16 does not satisfy the adiabatic condition (286) in the region
near n = 2000.

Let us now take 2N = 500 turns but keep the other parameters (Q,
∆Qmax, ∆Qmin, εx0, εy0, c0, h0 and ω) the same as in the previous
example. The resonance is then traversed 4000/500 = 8 times faster than
before. This means that the adiabatic parameter ξn will be 8 times larger.
The exact TBT horizontal and vertical emittances εxn and εyn obtained
under these conditions are plotted in Figure 22. Here we see that there is
partial exchange of emittances with large oscillations after turn 250. In
Figure 23 the approximate emittances are overlayed on top of the exact
emittances. The differences (approximate minus exact) are plotted in
Figure 24. As expected the agreement between the approximate and
exact emittances is poor starting around turn 250.

5 Summary

We have shown that the Edwards-Teng parameterization along with the
normalized coupling matrix allows for classification of the one-turn matirx
in terms of parameters A and B. For A� B the one-turn matrix gives
TBT amplitudes in horizontal and vertical planes that are characteristic of
the difference resonance while for B � A the amplitudes are characteristic
of the sum resonance. The conditions B = 0 and A = 0 give one-turn
matrices of the same form as those obtained in the hamiltonian treatment
of the difference and sum resonances respectively. Taking B = 0 gives
horizontal and vertical amplitudes that contain only the frequency
Q1 −Q2, while A = 0 gives amplitudes that contain only the frequency
Q1 +Q2. This is equivalent to discarding the high-frequency terms in the
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hamiltonian treatment of the resonances. The connection between the
hamiltonian and matrix treatments is discussed further in Ref. [14].

Having established that the condition B = 0 is associated with the
difference resonance, we use matrices that satisfy this condition to study
the TBT evolution of a distribution of beam particles under the influence
of the resonance. Rather than track individual particles we track the
parameters of the beam ellipsoid containing the distribution. In particular
we track the parameters of the beam ellipsoid projections onto the
horizontal and vertical planes; these give the horizontal and vertical
emittances. Tracking the ellipsoid parameters amounts to iteration of the
equation

En+1 = TnEnT
†
n (350)

as described in the text. It is assumed that the Courant-Snyder
parameters appearing in the matrices Tn are independent of n. This
simplification leads to the normalized equation

En+1 = TnEnT †
n (351)

which paves the way for a set of approximate non-recursive equations
giving the TBT emittances. These equations are of the same form as those
of Ref. [12]. The approximate emittances agree well with the “exact” ones
obtained iteratively provided the “adiabatic” condition described in the
text is satisfied. For both the approximate and exact emittances, the TBT
sum of the horizontal and vertical emittances is rigorously conserved. Both
the exact and approximate equations demonstrate that the exchange of
horizontal and vertical emittances can occur when the matrix parameter
Tn passes through zero.

6 Appendix A

Let

T =

(
P q

p Q

)
(352)

be a four-by-four symplectic matrix where P, q, p, and Q are two-by-two
matrices that satisfy

P = P†, q = q† (353)

p = p†, Q = Q†. (354)
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And let

E0 =

(
a0I C0

C†
0 b0I

)
(355)

where a0 and b0 are numbers and C0 is a two-by-two matrix that satisfies

C0 = C†
0. (356)

Writing

E1 = T E0T † =

(
F1 C1

C†
1 G1

)
(357)

we want to show that
F1 = a1I, G1 = b1I (358)

and
C1 = C†

1 (359)

where a1 and b1 are numbers and

a1 + b1 = a0 + b0. (360)

Carrying out the matrix multiplications in (357) and using (353–354) we
find that

F1 = a0PP + b0qq + q C0P + PC0q (361)

G1 = a0pp + b0QQ + Q C0p + p C0Q (362)

and
C1 = a0Pp + b0qQ + q C0p + PC0Q. (363)

Then using symplectic conjugate properties (12) and (13) we have

F1 = a1I, G1 = b1I (364)

where
a1 = a0|P| + b0|q| + Tr(q C0P) (365)

and
b1 = a0|p| + b0|Q| + Tr(Q C0p). (366)

This proves (358). Using (353–354) we also have

C†
1 = a0pP + b0Qq + p C0q + Q C0P = C1 (367)

which proves (359).
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Now since the matrix T is symplectic, its two-by-two submatrices must
satisfy

|P| + |p| = 1, |Q| + |q| = 1 (368)

|P| = |Q|, |p| = |q| (369)

and
Pq + pQ = 0, Pp + qQ = 0 (370)

as shown by Brown and Servranckx [7]. We therefore have

a1 + b1 = a0 + b0 + Tr(q C0P) + Tr(Q C0p) (371)

and
Tr(q C0P) + Tr(Q C0p) = Tr

{
C0(Pq + pQ)

}
= 0 (372)

which proves (360).

The sum of the projected horizontal and vertical emittances is therefore
conserved under the assumed conditions. Moreover, if another transfer
matrix T1 having the same properties as T is applied to form E2 = T1E1T †

1 ,
the sum of the emittances will again be conserved. Thus, if we proceed in
a series of steps with transfer matrices Tn all having the same properties as
T , the sum of the projected horizontal and vertical emittances will remain
constant.

7 Appendix B

Here we work out the details of the computation of a1, b1 and C1.

Equations (368) and (369) give

|q| = 1 − |P| (373)

so the expression for a1 becomes

a1 = a0|P| + b0 {1 − |P|} + Tr(q C0P)

= a0 + (b0 − a0) {1 − |P|} + Tr(q C0P). (374)

Then since the sum (360) is conserved we have

b1 = a0 + b0 − a1. (375)

So to obtain a1 and b1 we need to compute |P| and Tr(q C0P).
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Now it follows from equations (353–354) and (356) that matrices P, q, p,
Q and C0 are of the form

P =

(
P11 P12

−P12 P11

)
, q =

(
q11 q12

−q12 q11

)
(376)

p =

(
p11 p12

−p12 p11

)
, Q =

(
Q11 Q12

−Q12 Q11

)
(377)

and

C0 =

(
c0 h0

−h0 c0

)
. (378)

Thus
|P| = P 2

11 + P 2
12 (379)

q C0P =

(
q11 q12

−q12 q11

)(
c0 −h0

h0 c0

)(
P11 −P12

P12 P11

)
(380)

q C0P =

(
q11c0 + q12h0 q12c0 − q11h0

q11h0 − q12c0 q11c0 + q12h0

)(
P11 −P12

P12 P11

)
(381)

and

Tr(q C0P) = 2 {(q11c0 + q12h0)P11 + (q12c0 − q11h0)P12} . (382)

For the computation of

C1 =

(
c1 h1

−h1 c1

)
(383)

we have

c1 = a0(Pp)11 + b0(qQ)11 + (q C0p)11 + (PC0Q)11 (384)

and
h1 = a0(Pp)12 + b0(qQ)12 + (q C0p)12 + (PC0Q)12 (385)

where

Pp =

(
P11 P12

−P12 P11

)(
p11 −p12

p12 p11

)
(386)

qQ =

(
q11 q12

−q12 q11

)(
Q11 −Q12

Q12 Q11

)
(387)
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(Pp)11 = P11p11 + P12p12, (Pp)12 = P12p11 − P11p12 (388)

(qQ)11 = q11Q11 + q12Q12, (qQ)12 = q12Q11 − q11Q12 (389)

q C0p =

(
q11 q12

−q12 q11

)(
c0 −h0

h0 c0

)(
p11 −p12

p12 p11

)
(390)

q C0p =

(
q11c0 + q12h0 q12c0 − q11h0

q11h0 − q12c0 q11c0 + q12h0

)(
p11 −p12

p12 p11

)
(391)

(q C0p)11 = (q11c0 + q12h0)p11 + (q12c0 − q11h0)p12 (392)

(q C0p)12 = (q12c0 − q11h0)p11 − (q11c0 + q12h0)p12 (393)

PC0Q =

(
P11 P12

−P12 P11

)(
c0 h0

−h0 c0

)(
Q11 −Q12

Q12 Q11

)
(394)

PC0Q =

(
P11c0 − P12h0 P11h0 + P12c0
−P12c0 − P11h0 P11c0 − P12h0

)(
Q11 −Q12

Q12 Q11

)
(395)

(PC0Q)11 = (P11c0 − P12h0)Q11 + (P11h0 + P12c0)Q12 (396)

and

(PC0Q)12 = (P11h0 + P12c0)Q11 − (P11c0 − P12h0)Q12. (397)

8 Appendix C

Consider the case in which

P = d0dA + e0eB (398)

and
C0 = 0 (399)
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where

A =

(
cosψ1 sinψ1

− sinψ1 cosψ1

)
, B =

(
cosψ2 sinψ2

− sinψ2 cosψ2

)
(400)

and
d2
0 + e20 = 1, d2 + e2 = 1. (401)

As shown in Appendix A we then have

a1 = a0 + (b0 − a0) {1 − |P|} (402)

and
b1 = b0 − (b0 − a0) {1 − |P|} . (403)

Here
|P| = P 2

11 + P 2
12 (404)

where
P11 = d0d cosψ1 + e0e cosψ2 (405)

and
P12 = d0d sinψ1 + e0e sinψ2. (406)

Thus

|P| = d2
0d

2 + e20e
2 + 2d0e0de {cosψ1 cosψ2 + sinψ1 sinψ2} (407)

and using
cosψ1 cosψ2 + sinψ1 sinψ2 = cos(ψ1 − ψ2) (408)

d2
0d

2 + e20e
2 = d2

0(1 − e2) + e20(1 − d2) (409)

d2
0d

2 + e20e
2 = 1 −

{
d2
0e

2 + e20d
2
}

(410)

we have
|P| = 1 −

{
d2
0e

2 + e20d
2
}

+ 2d0e0de cos(ψ1 − ψ2) (411)

and
1 − |P| = d2

0e
2 + e20d

2 − 2d0e0de cos(ψ1 − ψ2). (412)

Using this in (402) and (403) then gives

a1 = F − 2(b0 − a0)d0e0de cos(ψ1 − ψ2) (413)

and
b1 = G+ 2(b0 − a0)d0e0de cos(ψ1 − ψ2) (414)
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where
F = a0 + (b0 − a0)

{
d2
0e

2 + e20d
2
}

(415)

G = b0 − (b0 − a0)
{
d2
0e

2 + e20d
2
}
. (416)

Consider now the case in which

P = d0eA + e0dB (417)

and
C0 = 0. (418)

We then have
a1 = a0 + (b0 − a0) {1 − |P|} (419)

b1 = b0 − (b0 − a0) {1 − |P|} (420)

P11 = d0e cosψ1 + e0d cosψ2 (421)

P12 = d0e sinψ1 + e0d sinψ2 (422)

|P| = d2
0e

2 + e20d
2 + 2d0e0de {cosψ1 cosψ2 + sinψ1 sinψ2} (423)

and
1 − |P| = 1 −

{
d2
0e

2 + e20d
2
}
− 2d0e0de cos(ψ1 − ψ2). (424)

Thus
a1 = G− 2(b0 − a0)d0e0de cos(ψ1 − ψ2) (425)

and
b1 = F + 2(b0 − a0)d0e0de cos(ψ1 − ψ2) (426)

where
G = b0 − (b0 − a0)

{
d2
0e

2 + e20d
2
}

(427)

F = a0 + (b0 − a0)
{
d2
0e

2 + e20d
2
}
. (428)
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Figure 1: Horizontal and vertical amplitudes Jx and Jy and their sum versus
turn plotted in black, red and blue respectively. Here normalized coupling
matrix parameters A = 0.6 and B = 0.06. The small-amplitude high-
frequency oscillations seen on all of the curves are due to the parameter B
being small but nonzero.
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Figure 2: Amplitudes Jx and Jy and their sum obtained with normalized
coupling matrix parameters A = 0.6 and B = 0. Here the high-frequency
oscillations are gone and the sum is constant.
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Figure 3: Amplitudes Jx and Jy and their difference plotted in black, red and
green respectively. Here normalized coupling matrix parameters A = 0.05
and B = 0.5. The small-amplitude high-frequency oscillations seen on all of
the curves are due to the parameter A being small but nonzero.
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Figure 4: Normal-mode tunes Q1 and Q2 versus turn number n. Here the
black curve is Q1n and the red curve is Q2n. These tunes are given by
equations (270–274) with Q = 0.25, ∆Qmax = 0.05, ∆Qmin = 0.005 and
2N = 4000.
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Figure 5: Parameters Un, Tn, dn, en and ξn plotted in black, red, blue,
green and violet, respectively, for the tunes shown in Figure 4. Note that
Tn reaches zero at n = N = 2000 but does not pass through zero.
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Figure 6: Exact horizontal and vertical emittances εxn and εyn plotted in
black and red, respectively, for the tunes and parameters of Figures 4 and 5.
These were obtained by iteration of equation (201) with starting parameters
εx0 = 0.7, εy0 = 0.3, c0 = 0 and h0 = 0. The emittances are not exchanged
in this case.
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Figure 7: Elements cn and hn of normalized beam ellipsoid matrix En plotted
in green and blue, respectively, for the tunes and parameters of Figures 4
and 5.
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Figure 8: Approximate emittances εxn and εyn plotted in black and red,
respectively, for the tunes and parameters of Figures 4 and 5. These were
obtained from equations (253–256).
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Figure 9: Overlay of approximate on exact emittances from Figures 6 and
8. The approximate emittances are shown in gold and blue. Note that there
is good agreement up to turn 2000.
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Figure 10: Difference between exact and approximate emittances from Fig-
ure 9. The horizontal and vertical differences (approximate minus exact)
are shown in black and red respectively.

53



0 500 1000 1500 2000 2500 3000 3500 4000
−0.5

−0.25

0

0.25

0.5

0.75

1

Figure 11: Parameters Un, Tn, dn, en and ξn plotted in black, red, blue,
green and violet, respectively, for the case in which Qmax is reduced from
0.05 to 0.025. Comparing with Figure 5 we see that the adiabatic parameter
ξn is reduced by a factor of 2.
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Figure 12: Exact emittances εxn and εyn plotted in black and red, respec-
tively, for the case in which Qmax is reduced from 0.05 to 0.025.
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Figure 13: Overlay of approximate on exact emittances for the case in which
Qmax is reduced from 0.05 to 0.025. The approximate emittances are shown
in gold and blue. Note the improved agreement between approximate and
exact emittances.
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Figure 14: Difference between exact and approximate emittances for the case
in which Qmax is reduced from 0.05 to 0.025. Comparing with Figure 10 we
see that the differences have been reduced by a factor of 2.
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Figure 15: Normal-mode tunes Q1n and Q2n plotted in black and red respec-
tively. These tunes are given by equations (270–272) and (287–288) with
Q = 0.25, ∆Qmax = 0.05, ∆Qmin = 0.005 and 2N = 4000.
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Figure 16: Parameters Un, Tn, dn, en and ξn plotted in black, red, blue,
green and violet, respectively, for the tunes shown in Figure 15. Note that
Tn is monotonically increasing and passes through zero at n = N = 2000.
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Figure 17: Exact horizontal and vertical emittances εxn and εyn plotted in
black and red, respectively, for the tunes and parameters of Figures 15 and
16. These were obtained by iteration of equations (201) and (292) with
starting parameters εx0 = 0.7, εy0 = 0.3, c0 = 0 and h0 = 0. The emittances
are exchanged in this case.
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Figure 18: Elements cn and hn of normalized beam ellipsoid matrix En
plotted in green and blue, respectively, for the tunes and parameters of
Figures 15 and 16.
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Figure 19: Approximate emittances εxn and εyn plotted in black and red,
respectively, for the tunes and parameters of Figures 15 and 16. These were
obtained from equations (253–256) and (338–339).
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Figure 20: Overlay of approximate on exact emittances from Figures 17 and
19. The approximate emittances are shown in gold and blue. Note that
there is good agreement over the whole range of 4000 turns.
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Figure 21: Difference between exact and approximate emittances from Fig-
ure 20. The horizontal and vertical differences (approximate minus exact)
are shown in black and red respectively.
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Figure 22: Exact horizontal and vertical emittances εxn and εyn plotted
in black and red, respectively, for the same parameters as before but with
2N = 500 turns.
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Figure 23: Overlay of approximate on exact emittances from Figure 22. The
approximate emittances are shown in gold and blue. Note that there is good
agreement up to about 200 turns; afterward the agreement is poor.
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Figure 24: Difference between exact and approximate emittances from Fig-
ure 23. The horizontal and vertical differences (approximate minus exact)
are shown in black and red respectively.
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