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CATHODE ION BOMBARDMENT IN RF PHOTOGUNS

E. Pozdeyev,∗ D. Kayran, and V. Litvinenko
Brookhaven National Laboratory, Upton, NY 11973-5000

(Dated: September 3, 2008)

In this paper, we use the method of rapid oscillating field to solve the equation of ion motion
in an RF gun. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that
a significant portion of ions produced in the gun can reach the cathode if no special precautions
are taken. Also, the paper proposes a simple mitigation recipe that can reduce the rate of ion
bombardment.

PACS numbers: 29.25.Bx,85.60.Ha

I. INTRODUCTION

Radiofrequency (RF) photoguns with negative electron
affinity (NEA) GaAs cathodes have a potential to de-
liver high peak current, high quality, high average inten-
sity electron beams. Such beams are required for linac
and energy recovery linac (ERL) driven light sources, free
electron lasers, and nuclear and high energy physics ex-
periments. Additionally, nuclear and high energy physics
experiments require a high degree of polarization. NEA
GaAs cathodes stand out from other cathode options be-
cause of their ability to produce polarized beams. Also,
GaAs cathodes can have quantum efficiency (QE) as high
as 10% (unpolarized). Several efforts to explore feasibil-
ity of using GaAs cathodes in RF guns have been under-
taken (see, for example [1],[2],[3]).

GaAs cathodes are used extensively in static voltage
(DC) photoinjectors, polarized and not polarized. The
operational experience with DC guns has demonstrated
that ion backbombardment is the major cause of degra-
dation of QE of GaAs cathodes. Numerical simulations
described in [2],[4] have shown that ion bombardment can
happen in RF guns too, possibly limiting the lifetime of
cathodes. Although numerical simulations are useful for
a specific gun, they give little insight in the motion of
ions in general and are hard to extrapolate to other guns
if scaling laws are not known.

In this paper, we apply the method of rapidly oscillat-
ing field to analyze the motion of ions in RF guns. The
method was originally proposed by Kapitza in 1951 [5]
and applied by Gaponov and Miller to charged particles
in oscillating electro-magnetic field in 1958 [6]. We briefly
describe the method in section II, emphasizing the im-
portance of the initial conditions in section II B. Using
the method, we examine the ion motion in axially sym-
metric guns in section III and apply the method to the
BNL 1/2-cell SRF gun in section IV.

Note that electron backbombardment and multipack-
ting can affect the cathode life time in RF guns as well.
However, we will not discuss electron backbombardment
in this paper.

∗pozdeyev@bnl.gov

II. MOTION OF IONS IN RAPIDLY
OSCILLATING RF FIELD

A. Effective potential energy of an ion in RF field

The motion of an ion with the mass m and charge q
in an RF gun is described by the equation of motion (in
the centimeter-gram-second system of units):

mr̈ = qE +
q

c
v × B, (1)

where E and B are the electric and magnetic fields re-
spectively. c is the speed of light. An accurate analytical
solution of (1) is impossible in the general case. However,
equation (1) can be solved iteratively using the method
of rapidly oscillating field. According to the method, the
motion of the ion can be described as a superposition of
the fast oscillating term a and the term describing the ion
motion averaged over the fast oscillations x(t) = r(t):

r = x + a. (2)

The method is applicable if the amplitude of fast oscil-
lations, |a|, is small comparatively to the characteristic
size of inhomogenuity of the RF field, L:

|a|

L
� 1. (3)

This condition can be also written in the equivalent form:

|(a · ∇)E| � |E|. (4)

Substituting (2) into (1) and leaving only terms of the
first order in |a|/L , one obtains the following equation:

m(ẍ + ä) = qE + q(a · ∇)E +
q

c
v × B. (5)

The electric and magnetic fields on the right hand side
of (5) are taken at x. Note that the magnetic field term
v×B/c is of the order of |a|/L, same as (a · ∇)E, and is
much smaller than E:
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where λ is the RF wavelength divided by 2π.
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Equation (5) can be solved by iterations. The 0th-order
equation is obtained by using only the term qE on the
right-hand side and omitting the other terms. Because
qE is a fast oscillating term, the second derivative ẍ can
be also neglected. If the RF electric field has the following
form

E = E(r) cos(ωt+ ψ), (7)

where ωt+ψ is the RF phase, the equation for a is written
as

mä = qE cos(ωt+ ψ). (8)

A particular solution of (8) is

a = −λ2 qE cos(ωt+ ψ)

mc2
, ȧ = λc

qE sin(ωt+ ψ)

mc2
.

(9)
The first-order approximation is obtained by substitut-

ing (9) into (5) and averaging over the fast oscillations.
This yields the equation for the averaged motion:

ẍ = −
λ2c2

4

( q

mc2

)2

∇E
2. (10)

Equation (10) shows that the effect of the RF field
averaged over the fast oscillations can be described by
the effective potential energy

Ue =
mc2

4

(

λqE

mc2

)2

=
Z2

A

muc
2

4

(

λeE

muc2

)2

, (11)

where Z and A are the ion charge and mass states respec-
tively, e is the elementary charge, and muc

2 is the energy
equivalent of the atomic mass unit, 931.5 MeV. Note that
the effective potential energy is numerically equal to the
average kinetic energy of the fast oscillations:

Ue = m
ȧ2

2
. (12)

The Lagrange function of the averaged motion is

L =
m

2
ẋ

2 − Ue = Te − Ue, (13)

where we introduced the effective kinetic energy Te =
mẋ/2.

If the amplitude of the electric field does not depend
on time, the total effective energy is the integral of (10):

m

2
ẋ

2 + Ue = Te + Ue = const. (14)

B. Initial conditions and effective kinetic energy of
ions

In treating the ion motion, we will assume that ions
are produced only in collisions of the electron beam with

the residual gas and neglect other sources of ionization.
The initial velocity of an ion is given by

ṙ0 = ẋ0 + ȧ0 = ẋ0 + λc
qE sin(φ0)

mc2
, (15)

where φ0 is the RF phase at which ionization happens.
The energy transferred in the ionization process is mostly
absorbed by knocked out electrons [7]. This means that
the energy of ions is close to the average thermal energy,
which is approximately 0.04 eV at room temperature. It
will be demonstrated later in this paper that both the
kinetic energy of the fast oscillations and the kinetic en-
ergy of the averaged motion are typically much larger
than the thermal energy. Therefore, it can be assumed
that ions originate at rest. Assuming ṙ0 = 0, one finds
ẋ0:

ẋ0 = −λc
qE sin(φ0)

mc2
. (16)

The associated effective kinetic energy is given by:

Te0 = m
ẋ

2
0

2
=
Z2

A

muc
2

2

(

λeE

muc2

)2

sin2(φ0)

= 2Ue sin2(φ0). (17)

Both Ue and Te0 are quadratic functions of the charge
and, therefore, do not depend on the sign of the ion
charge. The initial velocity ẋ0 is a linear function of the
ion charge and has opposite signs for positive and nega-
tive ions. In this paper, we will consider only positively
charged ions, assuming that the number of negative ions
is small.

III. APPLICATION OF THE METHOD TO
AXIALLY SYMMETRIC GEOMETRY

Typically, an RF gun consist of one or more axially
symmetric cavities with the cathode situated in the up-
stream wall of the first cavity. The electron beam is pro-
duced at the cathode and is accelerated by the RF field
along the gun axis. Power and higher order couplers can
violate the gun symmetry and induce multipole fields.
The field of these multipoles is typically small close to the
gun axis and can be neglected. Therefore, we will assume
axial symmetry and choose the z-axis directed along the
gun axis with the coordinate z = 0 corresponding to the
cathode.

A. Motion of ions on the gun axis, 1D case

The axial symmetry of the problem requires the elec-
tric field have only the z-component and the magnetic
field be zero on the gun axis. Thus, the ion motion on
the gun axis is one-dimensional. If the potential energy
and the initial conditions are known, solving the one-
dimensional problem of the ion motion is trivial. The
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condition that the total energy has to be larger than
the potential energy defines areas where the ion motion
is possible. The detailed solution x(t) of (10) can be
obtained by trivial integration of the integral of motion
(14).

Because we assumed that ions are produced only by the
beam, the ionization phase φ0 can expressed as a function
of z. For a given z, φ0(z) is equal to the RF phase at
which electron bunches pass z. The electric field E(r) and
the function φ0(z) uniquely define the initial conditions
and allow one to solve the 1D problem of the ion motion
as described in the previous paragraph.

Note that the dependence of the initial drift velocity
ẋ0 on the accelerating phase can be employed to sup-
press ion bombardment in a single-cell gun. If the elec-
tric field is given by (7), the force acting on electrons is
Facc = −eE(r) cos(ωt+ψ). Assuming that this force ac-
celerates the beam in the phase range from −π/2 to π/2,
one can easily see that ẋ0 points in the direction of accel-
eration if the phase φ0 is between 0 and π/2 and in the
opposite direction if φ0 is between −π/2 and 0. Thus, the
initial drift velocity ẋ0 of all ions will point out of the gun
if the RF phase changes between 0 and π/2 (plus an inte-
ger number of full RF cycles) during acceleration of elec-
tron bunches. Ions with the drift velocity pointing out
of the gun and the total effective energy greater than the
effective potential energy for all z greater than the ioniza-
tion coordinate will leave the gun. Only a small portion
of ions originating close to the cathode still will be able
to strike the cathode. Because a positively charged ion
is accelerated towards the cathode right after ionization,
it can reach the cathode during the first RF cycle after
the ionization. If the ion does not strike the cathode on
the first RF cycle, it will drift away from the cathode.
The distance from which the ion can reach the cathode
depends on the RF phase at which the beam is produced.
However, this distance cannot be larger than the double
amplitude of the fast oscillations near the cathode.

In the end, note that the accelerating phase range from
0 to π/2, that is, when the accelerating field strength
decreases, might not be optimal from the emittance and
energy spread point of view. Also, the suggested method
will not work in multi-cell guns because the accelerating
phase cannot be limited to the range between 0 and π/2.
In this case, however, cathode biasing can be used. As
shown later in Section IV, a bias voltage of a few hundred
volts might be sufficient to repel a large portion of ions
from the cathode.

B. Motion of ions off axis

The radial beam size and the cathode are typically
much smaller than λ in RF guns. Therefore, we will con-
sider only ion trajectories with a small radial deviation
from the gun axis comparatively to λ. The electric field
off the gun axis can be expressed via the electric field on
the gun axis and its derivatives with respect to z. Using

the notation

Ea(z) = Ez(z, r = 0), (18)

we can write the electric field E(z, r) to the second order
in r as

Ez(z, r) = Ea −
1

4

(

E ′′

a +
Ea

λ2

)

r2 + . . . (19a)

Er(z, r) = −
E ′

a

2
r + . . . , (19b)

where ′ stands for d/dz.
According to (11), the effective potential energy of the

RF field is proportional to the amplitude of the electric
field squared. E

2 can be written off axis as:

E
2 = E2

z + E2
r = (Ea + δEz)

2 + E2
r

≈ E2
a + 2EaδEz + E2

r . (20)

Equations (19a-20) and (11) yield the effective potential
energy to the second order in r as

Ue =
Z2

A

muc
2

4

(

λe

muc2

)2

×

(

E2
a −

Ea

2

(

E ′′

a +
Ea

λ2

)

r2 +
(E ′

a)2

4
r2

)

. (21)

The radial motion of an ion averaged over fast oscilla-
tions is described by the Lagrange equation

d

dt

∂L

∂ṙ
=
∂L

∂r
, (22)

with the Lagrangian L given by (13). Under the assump-
tion that ions originate at rest, the angular component of
the ion velocity and the corresponding angular momen-
tum can be neglected and the equation for the average
ion radius can be written as

mr̈ = −
∂Ue

∂r
= Fr, (23)

with Fr given by

Fr =
Z2

A

muc
2

4

(

λe

muc2

)2

×

(

Ea

(

E ′′

a +
Ea

λ2

)

−
(E ′

a)2

2

)

r. (24)

Equation (23) has to be solved simultaneously with
the Lagrange equation for z. However, because we are
interested only in ion trajectories with a small deviation
from the gun axis, we can neglect the effect of the radial
motion on the axial motion. That is, we can solve (23)
assuming that the axial motion does not depend on r and
use the value of ẋz on the gun axis.

Equation (23) has to be solved numerically in the gen-
eral case. A solution of (23) can be also found by itera-
tions. If the trajectory radius changes little, we can limit
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the solution to the first iteration. That is, we write the
ion trajectory radius as r = r0+r1, where r0 is the initial
radius, and the equation for the first iteration r1 as

mr̈1 = Fr(r0). (25)

The standard method of variation of constants yields
the solution of (25)

r1(t) =

∫ t

0

Fr

m
(t− τ)dτ + ẋr0t, (26)

where ẋr0 is the r-projection of ẋ0. It is convenient to
change the independent variable from t to z according to

t =

∫ z

z0

dξ

ẋz(ξ)
, (27)

where ẋz is the z-projection of ẋ and z0 denotes the ion-
ization coordinate. Note that ẋz depends on z0 as a pa-
rameter. The time differential is given by dt = dz/ẋz.
Thus, r1(z) can be written as

r1(z) =

∫ z0

z

Fr(ξ
′)dξ′

mẋz(ξ′)

∫ ξ′

z

dξ′′

ẋz(ξ′′)

−

(

dr

dz

)

0

∫ z0

z

ẋz0dξ

ẋz(ξ)
. (28)

Using equations (14), (16-17), (24), and (28) and tak-
ing into account ẋr � ẋz , one obtains the radial devi-
ation of the ion trajectory at the cathode, r1c = r1(0),
normalized to r0:

r1c

r0
=

∫ z0

0

(

Ea

(

E ′′
a + Ea

λ2

)

−
E
′2

a

2

)

dξ′

2
√

E2
a0(1 + 2 sin2(φ(z0))) − E2

a(ξ′)

×

∫ ξ′

0

dξ′′
√

E2
a0(1 + 2 sin2(φ(z0))) − E2

a(ξ′′)

+
E ′

a0

2Ea0

∫ z0

0

√

2E2
a0 sin2(φ(z0))

E2
a0(1 + 2 sin2(φ(z0))) − E2

a(ξ)
dξ (29)

where Ea0 denotes Ea(z0). Equation (29) is valid only if
the inequality r1(z)/r0 � 1 is satisfied for all z.

C. Effect of the electron beam on the ion motion

1. Effect on the axial motion

The axial beam field is induced by features that break
the continuous transitional symmetry along the gun axis,
including the cathode, variation of the beam velocity,
variation of the beam size, and the transition from the
gun cavity to the transfer beam line. The effect of the
electron beam on the axial motion of ions is hard to calcu-
late accurately. First, neither non-relativistic nor ultra-
relativistic limit can be applied to simplify calculation of

the beam field because the beam energy changes from
almost zero to a few MeV’s during acceleration. Second,
calculation of the field of image charges is complicated
because of non-trivial geometry of the boundaries. How-
ever, we can crudely estimate each of these effects and
compare the induced potential difference to the effective
kinetic energy of the averaged motion.

The potential difference induced by the beam size vari-
ation and the transition from the gun to the transfer line
can be crudely estimated as [7]

δUb =
2I

c
ln

(

a1b2
a2b1

)

, (30)

where a1,2 and b1,2 are respectively the beam size and
the vacuum pipe radius at two different locations. Ne-
glecting the beam size variation and assuming that the
vacuum pipe radius is five times smaller than the gun
cavity radius (b1/b2 ∼ 5), we obtain |δUb| = 0.08 V/mA.
This number should be approximately the same for all
RF guns because of the logarithmic dependence on the
pipe radius .

To crudely estimate the effect of image charges at the
cathode and the effect of variation of the beam velocity
one can assume that the beam is nonrelativistic and use
a static field solver such as Poisson [8] or similar. The
CW beam has to be represented by a DC beam with the
same current and the charge density given by

ρ(z) =
I

v(z)S
, (31)

where v is the beam velocity and S is the beam cross sec-
tion area. Simulations of the beam field in the BNL 1/2-
cell SRF gun presented in Section IV yielded the voltage
|δUc| ≈ 0.2 V/mA.

The estimated potential energy difference has to be
compared to the typical value of the effective kinetic en-
ergy of the averaged motion. If they are comparable, the
beam induced potential has to be simulated accurately
and added to the potential energy Ue given by (11). If
the estimated potential drop is small comparatively to
Te for most of ions, the beam effect on the axial motion
of ions can be neglected. Later in Section IV, we will
demonstrate that the beam effect on the axial motion is
small in the BNL SRF gun up to a beam current of a few
hundred milliamperes.

2. Effect on the radial motion

According to the standard approach described else-
where (for example, [7]), the transverse motion of ions
in the CW beam is equivalent to the motion in a fo-
cusing channel composed of focusing lenses and drifts.
Treatment of such motion involves the standard matrix
analysis and is straight forward.

If the beam is the only source of transverse focusing,
the periodic oscillatory motion of ions can be character-
ized by a phase advance per ion-bunch collision. For a
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round relativistic beam, the phase advance is

µ = arccos

(

1 −
ZNerpcTb

Aa2

)

, (32)

where Ne is the number of electrons per bunch, Tb is the
time interval between electron bunches, rp is the classical
proton radius, a is the beam radius. If the phase advance
exceeds π, the ion motion becomes unstable. The current
at which ions become unstable is given by

Ith =
2Aa2e

Zrpc
f2

b , (33)

where fb is the bunch repetition rate 1/Tb. If the ion mo-
tion is unstable, the amplitude of ion oscillations grows
exponentially with the number of collision until it ex-
ceeds the beam size. If the beam current is smaller than
the threshold current, the ions are confined transversely
within the beam.

In principle, one can calculate ion trajectories to al-
most any degree of accuracy considering individual col-
lisions with electron bunches and solving (23) between
the collisions. However, we would like to emphasize that
in order to estimate the rate of cathode ion bombard-
ment it is sufficient to find out which ions can reach the
cathode without knowing exact details of their trajecto-
ries. Below the threshold current (33), the beam focuses
ions towards the gun axis and brings more ions to the
cathode. Thus, one can estimate the rate of cathode ion
bombardment without the beam and use this number as
the lower boundary estimate for the ion bombardment
with the beam. Above the stability threshold, a simi-
lar approach can be applied to ions whose amplitude of
oscillations does not grow substantially.

IV. BNL 1/2-CELL SRF GUN

Brookhaven National Laboratory and Advanced En-
ergy Systems, Inc. are jointly developing a 1/2-cell su-
perconducting radio-frequency (SRF) photogun [9]. The
gun will serve as an injector for the BNL R&D ERL [10]
and a test bed for different types of photocathodes. Fig-
ure 1 shows the SuperFish [8] model of the gun. Table I
lists main gun parameters. Figure 2 shows the accelerat-
ing electric field on the gun axis calculated by SuperFish.

The operational residual gas pressure in the gun is ex-
pected to be of the order of 10−11 Torr or lower. At this
pressure, the residual gas will mostly consist of hydrogen.
Using (9) and the gun parameters listed in Table I, one
can easily estimate that the amplitude of oscillations of
H+

2 ions in the gun is smaller than 60 µm. This is much
smaller than the characteristic spatial scale of field inho-
mogenuity. Thus, the method of rapid oscillating field
can be applied to the BNL gun.

0

4

8

12

16

0

4

8

12

16

0 5 10 15 20 25

FIG. 1: SuperFish model of the BNL 1/2-cell SRF gun. The
horizontal axis corresponds to the gun axis. The vertical axis
is the radius. All dimensions are in centimeters. The cathode
is at the low left corner of the figure.

TABLE I: Parameters of the BNL 1/2-cell SRF Gun. Nominal
values are shown. Also, these numbers are used in the paper.
The numbers in parentheses show values after a possible laser
upgrade.

Parameter Value

Beam Energy (MeV) 2.0

Emax (MeV/m) 29

FRF (MHz) 703.75

Fbunch (MHz) 9.38 (352)

qbunch (nC) 0.7-5

Ibeam (mA) 7-50 (500)

A. Motion of ions on the gun axis

The electric field calculated by SuperFish (Fig. 2) and
equation (11) yield the effective potential energy. The
program Parmela [11] was used to calculate the RF phase
at which electron bunches pass a given coordinate z. It
was assumed that bunches were short and the ionization
phase corresponded to the middle of the bunch. Figure
3 shows the ionization phase φ0 as a function of z. The
initial beam phase in this simulation was chosen to mini-
mize the beam emittance. Equation (17) and φ0(z) yield
the initial effective kinetic energy Te0 as a function of the
ionization coordinate.

Figure 4 shows the effective potential energy of H+
2

ions on the gun axis. Also, Figure 4 shows the total
effective energy of H+

2 ions as a function of the ionization
coordinate. The total energy curve is divided into two
branches shown by different colors: ions whose velocity
ẋ0 points towards the cathode belong to the green branch
(z < 4.5 cm) while ions whose velocity points out of the
gun belong to the blue branch (z > 4.5 cm). At z ≈ 4.5
cm, the total effective energy is equal to the potential
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FIG. 2: Longitudinal electric field on the gun axis.
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FIG. 3: RF phase at which electron bunches pass a given
coordinate z.

energy that corresponds to ẋ0 = 0.
The total effective energy of ions originating at z < 3.4

cm is larger than the effective potential energy at the
cathode. Also, the velocity ẋ0 of these ions is directed
towards the cathode. Thus, ions originating at z < 3.4
cm will reach the cathode. The effective kinetic energy Te

of ions bombarding the cathode is smaller than 700 eV.
All other ions produced at z ≥ 3.4 cm will be expelled
from the gun.

As discussed in Section III C 1, interaction of the beam
field with the beam enclosure, image charges on the cath-
ode, and the variation of the beam velocity can induce
the longitudinal electric field on the gun axis.

Equation (30) gives an estimate of the potential drop
caused by the transition from the gun cavity to the trans-
fer line. The ratio of the gun cavity diameter to the
transfer line diameter is approximately five to one. With
this number, equation (30) yields a potential difference
of 0.08 V/mA.

0 5 10 15
0

500

1000

1500

z (cm)

U
,E

to
t (

eV
)

U
e

E
e,tot

, Vz<0
E

e,tot
,Vz>0

IONS
REACHING
CATHODE 

FIG. 4: The effective potential energy (red curve) and total
effective energy (green and blue curves) of H+

2 ions in the BNL
1/2-cell SRF Gun. The green and blue curves show the total
energy of ions with the effective velocity ẋ0 pointing towards
the cathode and from the cathode respectively. Ions whose
initial velocity is directed towards the cathode and total en-
ergy is higher than the maximum potential energy will reach
the cathode.

To calculate the potential produced by image charges
at the cathode we used the code Poisson [8] and the gun
model shown in Fig. 1. The beam was modeled by a
number of uniformly charged cylinders with the radius
equal to the local beam radius. The radius of the beam
was linearly changing from 2.5 mm at the cathode to
approx 3.5 mm at z = 10 cm. The charge density of each
cylinder was given by (31). The simulated potential well
had a minimum located at z ≈ 2 cm. The depth of the
well was approximately equal to 0.2 V/mA.

Considering that the effective kinetic energy of most of
ions that can reach the cathode is above 100 eV, we can
neglect the effect of the beam field on the ion axial motion
up to a beam current of a few hundred milliamperes that
is much higher than the nominal beam current at 9.38
MHz bunch repetition rate (Table I).

At the end, we demonstrate that ions meet only a few
bunches on their way to the cathode. The number of
ion-bunch collisions is given by

nc =
1

2πhλ

∫ z0

0

√

Amuc2

2Te(ξ)
dξ, (34)

where h is the harmonic number. Figure 5 shows the
number of ion-bunch collisions for the 9.38 MHz opera-
tional mode (h=75) as a function of the ionization coor-
dinate z0. (The collision of an ion with the bunch which
produces the ion is not included.) According to the re-
sult, ions originating between 0 and 1.5 cm do not collide
with the beam and, thus, are not affected by the beam.



7

0 1 2 3 4
0

2

4

6

8

10

z (cm)

n c

FIG. 5: Number of ion-bunch collisions as a function of
the ionization coordinate. Ions originating beyond the point
z=3.4 cm do not reach the cathode.

B. Motion of ions off axis

To calculate the radial displacement of ion trajecto-
ries at the cathode, we numerically solved equation (23).
The beam field was not included in these calculations. To
solve equation (23) we wrote a short C++ code using the
1st order Euler method. Higher order integration meth-
ods were not needed in this case because ion trajectories
were smooth and the curvature of the trajectories was
small. The equation of motion was integrated with the
time step equal to 6◦ of the RF phase. The red curve in
Figure 6 shows the deviation of ion trajectories from the
initial radius calculated at the cathode and normalized
to the initial radius vs. the ionization coordinate. Ac-
cording to the result, the radius of ion trajectories at the
cathode does not exceed the initial radius by more than
17% for almost all ions that originate between 0 and 3.4
cm.

Also, Figure 6 shows the deviation of ion trajectories
at the cathode given by analytical expression (29). The
mathematical package Mathcad [12] and the field on the
gun axis (Fig. 2) were used to calculate the integrals in
(29). This result is in a good agreement with the numer-
ical solution of (23) described in previous paragraph up
to z ≈ 3 cm. Equation (29) predicts a large orbit dis-
placement for z > 3 and, therefore, cannot be used for
ions originating in that region.

The effect of the beam field on the transverse motion
depends on the beam current. A pulsed electron beam
with a bunch radius of 2 mm and a bunch rep rate of
9.38 MHz will have a net focusing effect on H+

2 ions if
the beam current is below 500 mA. As the maximum
beam current will not exceed 50 mA in the 9.38 MHz
operational mode, it is safe to assume that almost all
ions originating between 0 and 3.4 cm along the gun axis
will strike the cathode.

0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

z (cm)

δ 
r/

r0

Eq. 23, numeric solution
Eq. 29, analytic, 1st iteration
tracking (Eq. 35), r0=1 mm
tracking (Eq. 35), r0=2 mm

FIG. 6: Normalized deviation of ion trajectories from the
initial radius at the cathode as a function of the ionization
coordinate. Tracking results for r0 = 1 mm and r0 = 2 mm
practically coincide with each other that confirms linearity of
the ion motion close to the gun axis.

C. Validation by tracking

To test the results described above a short C++ track-
ing code was developed. The code calculated ion trajec-
tories in two-dimensional RF field maps generated by Su-
perFish. The field of the electron beam was not included
in these simulations. Using the classical 4th order Runge-
Kutta integration method, the code solved the following
system of equations:

dz

dφ
= p̃z (35a)

dp̃z

dφ
=

ZeEz

Amuc2
λ2 (35b)

dr

dφ
= p̃r (35c)

dp̃z

dφ
=

Ze

Amuc2
(Erλ− p̃zBφ)λ (35d)

where φ is the RF phase used as the independent variable.
p̃r,z is related to the particle momentum pr,z as

p̃r,z =
pr,z

mω
, (36)

where ω is the RF angular frequency. Note that the mag-
netic field term cannot be neglected in (35d) as its effect
on the averaged radial motion of ions is comparable to the
effect of inhomogenuity of the electric field (see (6)). Al-
though it seemingly contradicts equation (10), it is trivial
to show that the term ∇E

2 in (10) includes the magnetic
force.

In simulating the beam dynamics in the BNL gun, test
particles were launched from nodes of a rectangular r−z
mesh. The starting points were uniformly distributed
over the interval z = 0.5 − 10 cm with a step of 5 mm.
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Radially, the nodes were located at r = 0, 1 and 2 mm.
The simulated axial motion agreed very well with pre-
dictions of the 1D model described in Section III A: Ions
originating between the cathode and z ≈ 3.4 cm reached
the cathode while ions originating at z > 3.4 cm left the
gun. The result of simulation of the radial dynamics is
shown in Figure 6. The figure shows the simulated ra-
dial deviation of ion trajectories from the initial radius
at the cathode normalized to the initial radius. The ini-
tial radius of trajectories r0 was equal to 1 mm and 2
mm. As expected, the tracking result is in a very good
agreement with the numerical solution of (23). Also, the
tracking result agrees well with (29) for z ≤ 3 cm. As
mentioned earlier, equation (29) fails to describe the ion
motion correctly if ions originate in the region z > 3 cm
that explains the discrepancy between the simulation and
analytical results in that region. Also, note that trajecto-
ries corresponding to different initial radii normalized to
the initial radius yield almost the same result that proves
linearity of the radial ion motion.

D. Rate of ion bombardment. Comparison to a DC
gun.

The number of ions bombarding the cathode normal-
ized to the extracted charge is given by

dN

dQ
=
ni

e

∫ D

0

σ(E(z))dz, (37)

where ni is the particle density of the residual gas, σ is
the ionization cross section, and D is the distance from
which ions can reach the cathode. Figure 7 shows the H2

ionization cross section as a function of the electron beam
energy [13]. For the BNL gun, we assumed a residual
hydrogen pressure of 5 · 10−12 Torr and the distance D
equal to 3.4 cm. The beam energy as a function of z was
calculated by Parmela. For these parameters, equation
(37) yielded

(

dN

dQ

)

BNL SRF

= 1.7 · 106 ions/C. (38)

According to Sections IVA and IVB, almost all these
ions will strike the cathode.

This number can be compared to the number of ions
produced in a high voltage (HV) DC gun. For this exam-
ple, we have chosen the following parameters: the beam
energy was 650 keV, the accelerating gap was 5 cm, and
the residual gas pressure was the same as that in the
BNL gun example, 5 · 10−12 Torr. For these parameters,
equation (37) yielded

(

dN

dQ

)

HV DC

= 2.4 · 106 ions/C. (39)

In principle, ions produced in a transfer line can be
trapped in the beam and travel towards a gun as de-
scribed in [14]. It is obvious that low energy trapped
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FIG. 7: H2 ionization cross section as a function of the elec-
tron beam energy.

ions cannot reach the cathode in the BNL gun because
of the effective potential barrier produced by the accel-
erating RF field. In a DC gun, the flux of trapped ions
can be eliminated by means of biasing the anode to a
positive potential of a few hundred or thousand Volts as
proposed in [14].

Results (38) and (39) predict similar rates of ion bom-
bardment in the BNL gun and in the DC example, in-
dicating that ion bombardment can affect the cathode
lifetime in the BNL gun. However, it is difficult to make
an accurate cross-comparison of the cathode lifetime be-
tween DC and RF guns based on the over-all rate of
cathode bombardment. First, the ion energy spectra in
RF and DC guns are substantially different. Second, DC
guns are frequently operated with the laser spot shifted
from the cathode center that causes a fraction of high
energy ions to miss the laser spot. Therefore, detailed
knowledge of ion spectra along with QE damage effi-
ciency as a function of the ion energy are required to
predict the cathode lifetime with a reasonable accuracy.

In the end, we would like to point out that a large
portion of ions are produced within a distance of a few
millimeters from the cathode. Figure 8 shows the fraction
of ions produced within the interval between 0 and z as
a function of z for the BNL gun and the HV DC example
described above. According to this result, approximately
a half of all ions that can reach the cathode come from a
distance of 2-3 mm. Because of this, improving vacuum
is the only currently available efficient way of suppressing
ion bombardment in DC guns. In RF guns, in addition
to vacuum improvement, cathode bombardment can be
suppressed by a proper choice of the accelerating phase
as described in Section III A. For the BNL gun, this
technique can reduce the rate of cathode bombardment
by an additional factor of 5 or so.
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FIG. 8: Fraction of ions reaching the cathode as a function of
z.

V. CONCLUSIONS

The method of rapidly oscillating field provides insight
into the motion of ions in RF guns without employing
tracking. Using the method, one can find the rate of
cathode bombardment and the impact energy of ions as
functions of the RF frequency, accelerating gradient, and
accelerating phase. With this information, one can de-
velop mitigation techniques similar to those described in
the paper in order to reduce the rate of ion backbom-
bardment.
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