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1. Overview 
Another of the quaint tribal customs at the AGS is the annual application of the 

MAD matching utilities to the BTA transfer line joining the Booster to the AGS. Over 
the years, numerous people have tried their hand with various talents, techniques, and 
programs. In general this work has not yielded particularly successful solutions, and so 
the subject is revisited here. This note reviews the MAD program's treatment of parame- 
ter matching, and gives a practical example of matching criteria, along with some folk- 
lore, and limitations. Given the amount of work that has gone into this problem by oth- 
ers, it has seemed appropriate to look for more convincing ways to present requirements 
to the program, to improve the program as needed, and to examine some of the conven- 
tional assumptions about inputs and outputs. Parts of the internal searching utilities have 
been rewritten to accommodate techniques that were either unavailable or not particu- 
larly satisfactory in previous versions of the program. 

0 

2. Matching 
Matching is a set of techniques for adjusting a set of variables to satisfy a set of con- 

ditions. Conditions, or constraints, are statements that at some point or points in a 
machine or beam line, one or more dependent variables should have a definite value, or 
lie within some limits. Such constrained variables are typically tunes, closed orbit coor- 
dinates, or the amplitude functions alfa and beta. The constraints are met by varying 
independent variables (parameters), such as magnet strengths, and computing orbits until 
some acceptable combination is identified. The mechanics of fitting usually involve 
some multi dimensional search over ranges of the parameters to minimize a penalty func- 
tion. In MAD, the penalty functions are weighted least squares differences between 
some present state and what is expected by each of the constraints, summed over the con- 
straints. In a well posed matching problem, the individual penalty contributions at each 
constraint are more or less parabolic functions of the independent variables, and ideally 
have minima near some common value for each variable. Conventional minimizing tech- 
niques presume that this approach to a minimum is quadratic. This ideal condition, that 
of similar, well defined minima, is indeed often reached, particularly in studies before a 
beam line is actually built. However, even if not ideal, minor items like beam transfer e 
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lines tend to be considered readily malleable, that is they can be fudged later after the pri- 
mary machines have been placed to someone else's tastes, and are often treated as stu- 
dent exercises. There are places that have paid dearly for discounting the proper design 
and matching flexibility of such transfer lines. 

Matching can become considerably more complicated in modern machines such as 
colliders, as designs must produce extremely small beams in local regions, without arous- 
ing all sorts of problems in other parts of the rings. Mismatches among feeder machines 
aggravate later problems in these larger machines. Accordingly the matching functions 
may acquire a number of conflicting minima as various criteria compete for attention, 
and fiequently a set of conditions does not optimize to a common set of parameter 
values. Furthermore, some ranges of variables do not all lead to stable orbits, and must 
be excluded, which can further confuse the functional landscapes. Weighting may be 
applied blindly, with little concern for its consequences. Different kinds of particles usu- 
ally require different beam line properties, but produced by the same sets of magnets. 
The presentation of the matching problem is thus very important. Various mathematical 
techniques have been developed to find %est" solutions based upon minima, and pro- 
grams try to offer some information about the relative merits of the fits obtained. Some- 
times these techniques will succeed even if the constraints are inconsistent, or correlated, 
or even if the various independent parameters may not be the most useful ones. More 
frequently the resulting minima will be broad or even missed, and a number of iterations 
may be needed to sharpen the definition of the matching problem with more realistic con- 
straints and more convincing parameters. Conventional matching programs may not be 
particularly helpful in sorting out causes for failures to match, and people have been 
known to plod along with the programs without questioning the results. Amidst all of this 
possible complication and perhaps a remaining lack of effective diagnostics, matching 
can become something of an occult art. 

3. The Booster to AGS Line 
The problem of matching the BTA beam optics to that of the source and target 

machines has often had much of the character of twiddling 15 magnet currents, given 
fixed source conditions, to avoid hitting the pipe and to obtain given exit conditions, give 
or take some play in the machines involved. This surely resembles the case in both the 
models and operations. While this approach usually get most of the beam through the 
pipe, it becomes increasingly dubious as rising beam currents have radiation conse- 
quences for losses in transit. Operationally, tuning is often abnormally delicate, and tran- 
sit losses can be appreciable. 

To help in understanding BTA matching mechanics and results, graphics displays 
were introduced to show the penalty functions of each parameter at each constraint. (The 
Showmatch command, and plotfile). While most of the individual constraint penalty 
contributions more or less resembled parabolas, seldom did their minima fall at the same 
value of any independent variable, and some didn't even fit on the same scale. As might 
be expected, with fifteen quad current variables and perhaps six exit constraints other 
than rough beam line aperture limits, fitting seldom gave unique answers, nor necessarily 
credible ones. Criteria for amplitude functions conflicted with criteria for dispersion 
functions, and usually neither won. The BTA lattice as built mainly transferred a given 
dispersion or amplitude function as given; it offered little useful adjustment of one kind 
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of function relative to the other, except perhaps for dispersion near the entrance to the 
AGS. The character of the line is such that improving amplitudes tended to ruin disper- 
sion, and conversely. 

With our newer Runtwiss graphics, orbits and orbit functions could be traced and 
adjusted visually, and consequently believable constraints could be posed more realisti- 
cally. Moreover, the graphics techniques suggested that there might be a range of input 
conditions better suited to the lattice geometry, which tended to be given as fixed. 
Perhaps some of the BTA troubles could be reduced by a different kind of orbit in the 
Booster before ejection, in particular by lowering the dispersion in the ejection region, a 
rather conventional approach. When initial values of the lattice functions were now 
treated as free parameters, the graphics indicated that there was a range of input values 
leading to reasonable trajectories with rather small envelopes in both betas and disper- 
sion. Manually searching through a 21 parameter space to meet competing dispersion 
and amplitude criteria (ie, magnet twiddling) soon grew frustrating, so the matching pro- 
gram was asked to take over this search. The graphics based studies did suggest alterna- 
tive ways to guide the search program, which this writer had found to be not particularly 
effective for the BTA in the past. 

4. One More Try at BTA Matching 
As noted, both the graphics and countless matching efforts of the past, including 

those of this writer, showed that the transfer line could not adequately handle both the 
dispersion and the amplitude functions as received from the source. Hence it appears 
worthwhile to learn what ranges of entry values of these functions could lead to better 
transfer line orbits, and then whether the Booster can accommodate these values as well. 
Graphics studies hinted that the BTA seemed to prefer low dispersion and somewhat 
larger initial amplitude functions for its inputs. Trial runs on a "typical" Booster lattice 
showed that one way to get negligible dispersion and adequately increased beta x in the 
F6 ejection region would be to increase foccussing by up to about 20% at the F2 quad in 
the Booster, granting the adequacy of the trial lattice. In fact, the region just following 
F3 has this combination of favorable exit conditions, whereas that after F6 is the worst of 
the entire ring. Other runs treating all Booster quads as free parameters, with a 5% 
swing, not the way they are wired in practice, could obtain similar results, with no effort 
made to optimize. These results are to be regarded merely as suggestions about possible 
feasibility. For our purposes here, such paper changes are considered upper limits, and 
are open for discussion among our Booster experts as to what may be more practical 
ways to adjust dispersion at F6. 

Next the BTA feasibility was explored by fitting entry values of the amplitude func- 
tions betax0, alphax0, betay0, and alphay0, and dispxO and disppx0, along with the first 
seven BTA quads to satisfy BTA constraints of both betas less than 20 and dispx less 
than 5 from the beginning through the shielding wall, with betax and betay < 15, and 
dispx < 1 at the entrance to QS. This trial produced sensible families of solutions, which 
were then continued through 412, and finally through Q15, all without major changes in 
the character of the previously fitted orbit entry parameters and the quad currents. The 
general idea here is to get the beam through the first part of the line with small dimen- 
sions and reasonably low dispersion. Then the tuning available in later quads can be 
used to match specific AGS requirements. Thus finally, these orbits were further 1) 
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matched to a small range of values about a particular entrance to the AGS favored by W. 
Glenn, again without disturbing the earlier sets of fitted parameters significantly. In 
effect, in only several runs, the BTA could be walked through a set of conditions placed 
upon amplitude and dispersion, ones somewhat tighter than applied in the past. Table 1 
shows the results of one of these fits, based upon the matching information supplied in 
the input file, presented in condensed form for Table 2. A representative BTA lattice 
circulating within the last year or so was used, with BTA quad currents held to a range of 
0. to 550. amps. 

The sensitivity of this tentative class of fit to beam entry parameters is easily 
checked with our graphics displays of orbits with iterated parameters. Figures 1 - 4 illus- 
trate the technique and some results for the six entry parameters. Solutions seem rather 
stable with respect to the amplitude and dispersion functions at BTA entry. This kind of 
study was continued to explore the range of orbit entry values for which the resulting 
orbits would satisfy our other boundary constraints. In particular, the initial fitted alphaxO 
was rather high (4.4) relative to that of the Booster trials, and could be reduced to more 
natural values of < 3.4. The first cut betayO was high and close to betaxO(21); betay0 
also could be reduced to a value consistent with a trial Booster result for modifying 
dispersion at F6 (< 11). The magnet changes among these amplitude function changes 
were modest, surely a necessary property of a meaningful solution. 

Without further laboring the details, this set of techniques appears to have identified 
a family of initial conditions which lead to satisfactory orbits in the BTA (on paper). The 
important point is that there is a rather wide range of entry values lying well outside of 
the conventional Booster ejection ones for which the BTA can be tuned to handle narrow 
orbits. With low dispersion at entry, the early BTA quads can be tuned to favor lower 
orbit amplitude functions without having to compromise markedly to keep dispersion 
manageable. Wider apertures in the BTA can still be traded for lower exit betayO in the 
Booster, and other tweaking is available. Relative to some of the older fitting arrange- 
ments, these newer ones appear to produce very clean solutions, with reasonable magnet 
currents and narrow orbit envelopes, and are rather insensitive to the selected entrance 
conditions. 

Figure 1, which displays the effect of a range of the BTA entry parameters betax0 
and betay0, indicates a more subtle property of this class of solutions. For these curves, 
magnet currents are held constant. For a rather wide range of entry values, the transfer 
amplitudes stay within narrow envelopes. Some of the fits themselves did show a fair 
amount of adjustment around magnet Q9 where one of the amplitude functions grows 
larger, approaching one of our limits. This appears to be something of an artifact of 
fitting, indicating an edge of range value, in the sense that for a particular step in the 
value of a parameter all constraints were satisfied. The curves show that the constraints 
may well be satisfied for further steps; for now the program is content with finding the 
first configuration that satisfies the constraints. These solutions are occurring rather early 
in the searches, usually for relatively large values of the magnet current steps, which is a 
further suggestion of the stability of these solutions. In principle, some of our imposed 
amplitude limits can also be tailored better to actual dimensions of the beam pipe. 

@ 

e 



5. Using Simplex 
These studies have used the Simplex method for locating minima, or preferably, full 

agreement with limit constraints. The alternative Migrad method was not very useful for 
this kind of constraint landscape. Rather than demanding exact values for the BTA exit 
constraints, which can artificially prejudice fitting, we posed these constraints in the form 
of limiting values, which were narrowed over time. Simplex searches invariably found 
magnet settings that produced orbits within the required range of values, usually quite 
early while step sizes were rather large. Perhaps this reliance on limits is a somewhat 
different way to present this kind of matching problem, as several bugs in the Simplex 
section of the program hindered or prevented its use. A solution that lies within all the 
boundary constraints achieves a zero penalty function, but is hardly likely to be unique. 
It is more likely a result of the particular iterating pattern of the search program. The 
program can certainly be improved to explore the width of these parameter ranges which 
satisfy the bounding form of constraints. Naturally the glitches have been fixed, but a 
few other related problems also surfaced. As an aside, the elderly MAD Simplex does 
not finish when it achieves a zero penalty result, and does not always deliver the proper 
final result for listing. 

Because of the chancy nature of the first zero penalty fit delivered, it is very useful 
to explore the nearby regions of parameter space, so the tentative first fits can be tailored 
for more practical input values or tighter exit limits. In the CERN / MAD adaptation of 
the Simplex kind of fit, the initial values of variables have to lie within the narrower 
ranges of succeeding searches. This restriction is inherent in the non - linear transforma- 
tion used to sample parameter space in the MAD and presumably other versions of Sim- 
plex. Yet it is probably better practice to begin further searches with a proved solution, 
whose fitted parameters may lie outside of the narrower limits, as Simplex searches can 
be influenced by the starting values of the parameters. This is one kind of problem that 
might be handled better by the matching program. 

A somewhat more technical problem can be encountered in exploring the range of 
plausible entry parameters when using a set of such parameters that have produced a zero 
penalty fit, perhaps achieved under more generous limits. These starting parameters will 
produce a zero penalty result, with which all further iterations will be compared. The 
searches are influenced at several early stages by these comparisons with the zero penalty 
result, possibly closing out some other promising search direction, and the zero penalty 
may not be reproduced within the changed set of limits. The printing of results can be 
confusing as well, as the original zero result is reported as best penalty, but the perhaps 
compromised result obtained within the present search limits may have some non-zero 
constraint contributions. 

Rather than modifying the familiar Simplex to deal with these cases, a simpler 
linear search version of Simplex was added as an option to aid in this kind of study. This 
alternate version will also serve as a basis for future schemes to map out the actual range 
of parameter values that can be accommodated within the zero penalty fits. The use of 
this "revised" Simplex is noted below. A detailed walk through of the MAD version of 
the Simplex method is given in the Appendix. 
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6. BNL MAD Program Matching Changes 

The major physics sections of MAD have been rebuilt at BNL to operate much fas- 
ter with considerably more capable internal data base services and graphics. The names 
of these "fast" version commands are formed by prefixing the letter F to the usual names 
given in the MAD manuals. These changes may have escaped the notice of readers still 
comfortable with the 1985 versions. While an older version based upon MAD 7 of 
about 1989 vintage is retained in the BNL distribution, all new features such as the fol- 
lowing only appear in the "fast" version. 

6.1. FSimplex 

bute added to the BNL MAD FSimplex command. 
Our reworked Simplex search procedure is enabled with the Revised logical attri- 

Fss FSimplex To1 = 1.e-7, Calls = 2000, Revised 

The default is the regular MAD Simplex, modified to exit if it should achieve a zero 
penalty function. 

6.2. FEndmatch 
A minor nuisance in using boundary constraints over a large part of a lattice is the 

seemingly endless printing of constraints by FEndmatch at the end of a run. The Ver- 
bose logical attribute has been added to the FEndmatch command to deal with this 
printing. 

To list all constraints: 
FEndmatch Verbose 

To list only constraints with non-zero penalty: 
FEndmatch 

FEndmatch - Verbose 
Or 

A similar Verbose attribute is attached to the FSimplex and FMigrad commands to pro- 
duce a rather large amount of intermediate printing to help with debugging a matching 
run. 

6.3. FCell and FMatch 
Both the FMatch and FCell commands have been given two new attributes: 
Conlist The name of a list of names of constraint commands to be used in the 

fit. Optional 
Constraint commands can be offered from among the FConstr, FCou- 
ple, FDConstr, FXconstr, FRmatrix, FTmatrix, or Fweights classes. 

Varlist The name of a list of names of FVary commands to be used in the fit. 
Optional 

While these "list" features can be obtained by grouping constraint and vary state- 
ments within subroutines, they have been added to support a broader style of program 
use by which particular commands are selected from among a larger group archived in a 



,- 

- 7 -  

a command library. The idea is that selected library commands are activated by editing a 
list of their names, which is more convenient than editing entire commands in and out of 
matching command groupings. The list entries are initiated at the beginning of the fitting 
command (FMigrad or FSimplex). This is an "either or" feature; if a list name is used, 
loose constraint or vary statements within the Match group are decoded, but otherwise 
ignored. The protocol with FWeight statements is the same as before; each Fweight is in 
effect until the next Fweight is encountered, and only the weight fields actually given on 
the input statements are handled. If the list names are not given, the program will con- 
sider all constraints and varys lying between the starting FMatch or FCell command and 
the fitting command, as before. 
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Appendix. The Simplex Method 
The internal workings of the Simplex method may be of some interest. The quanti- 

ties to be varied in search of a suitable match to a penalty function derived by computing 
orbits and applying orbit constraints are called parameters here. We describe our recent 
revision, which uses the parameters as given, applies range limits directly, and avoids 
the somewhat complicated set of transforms supplied with the usual CERN / MAD ver- 
sion of Simplex. There are three main stages: 
1). Interpretation of starting parameter values, initial error assignments, and range lim- 

its from the given input data. 
2). Formation of the simplex, a figure formed by joining a set of points in parameter 

space clustered about a trial %est" point. 
3). Achieving a solution by reducing the simplex. 

The Simplex method itself was first described in J. A. Nelder and R. Mead, 1965, 
Computer Journal, vol 7, pp 388 - 313, and has a history of numerous adaptations and 
improvements. A description more generic than the one given below may be found in 
the Numerical Recipes book of W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. 
Hannery, 1993, pp 402 - 406 (Cambridge University Press). 

0 

Stage 1. Initial Values 
The starting values of the N free parameters are assigned according to the upper and 

lower range limits given in the Fvary input statements for the search. For the case of both 
upper and lower limits given, if the parameter lies within the limits, the starting value is 
the the initial parameter value, and the starting step is the step value given. If the initial 
value of the parameter lies outside of the limits, or is at a limit, the starting value is set at 
the nearest limit, and the direction of stepping adjusted up or down accordingly. If the e 
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upper or lower range limit(s) is (are) not given, the missing limit(s) is (are) set to a suit- 
able combination of whatever limit@) is (are) given and a small multiple of the step size. 

The starting set of N parameter values is treated as the coordinates of a point, Po, in 
an N dimensional parameter space. A %est" point P and a corresponding "best" penalty 
value are maintained throughout the process. Similarly the steps given for the N parame- 
ters are formed into a corresponding vector Perr of length N. Individual parameters are 
shifted about to look for a promising direction for improvement. In Stage 2, these shifts 
are based upon the steps of Perr. Steps are continually adjusted, being expanded first 
while searching for a promising region, and then being reduced as the fit succeeds. 

Stage 2. Building the Simplex 
Stage 2 is a rough search for a promising direction or region, moving each parame- 

ter in turn. At each pass through this stage, a matrix is formed from N + 1 trial points 
(vectors), each derived from the current %est" point P. When entering from Stage 1, P 
= Po, the initial set of parameters. When reentered from Stage 3 below, after an unsuc- 
cessful probe of a previous configuration, P = Plow, the %est" result so far. The pro- 
cedure iterates the j = 1, N parameters as follows: 
1. 

2. 

3. 

4. 

5. 

6. 

The current value of the step j, Perru], is added to the value of parameter j of the 
%est" point, Pu], yielding a new point Pj, for which a penalty function Fu] is com- 
puted. Each new Pj differs from P by an increment j to the single parameter j. 
If the penalty function for Pj is less than the present %est" value, the step Perru] is 
increased, added again to parameter j of Pju], and the penalty recomputed. This 
stepping is continued until the penalty function rises, the parameter hits a range 
limit, or a small count is exceeded. 
If the penalty function for Pj from operation 1. is greater than the current minimum, 
the step for parameter j is decreased to 40%, and the step sign is reversed. The step 
is again added to Pju], and the penalty recomputed. This sequence may be repeated 
once more if the penalty remains larger. If there is no improvement, the present 
"best" value of the parameter is restored. 
The point Pj for which the jth parameter has just been stepped in search of an 
improved penalty is stored as column j in the point matrix. The penalty Fu] 
corresponding to this improved (or unchanged) point j is also recorded. 
The original value of Plj] is restored, and operations 1 - 5 are repeated, cycling for 
each of the N parameters. The full iteration effectively explores the parameter 
space in the neighborhood of the current "best" point P for a better penalty function. 
After this set of iterations, the point P at entry is stored as column j = N + 1 in the 
point matrix, with penalty F[N + 11. The column jhigh with the worst penalty 
Fljhigh] and the column jlow with the best (lowest) penalty Fljlow] are noted. 
This matrix of N parameters * N + 1 trial points will be fed to Stage 3 below. 
The N dimensional figure formed by joining the N + 1 points derived above is 

called a simplex. For the case of N = 3, the figure is a tetrahedron. By stepping outward 
from the initial point, the lines joining the resulting points or vertices do not cross each 
other, and a simple "volume" is obtained. 
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Considered in terms of the mechanics of this stage, these iterations produce a matrix 
S[N, N+l] with N + 1 columns that are copies of the original point P, except for the diag- 
onal elements Su, j] of the S[N, N] submatrix, which are modified as just noted. The 
matrix notation is much less helpful while describing the reduction of the simplex, which 
is more a matter of points and shapes than matrix properties. 

Stage 3. Reduction of the Simplex. 
The Simplex method attempts to reduce the volume of the simplex figure by apply- 

ing several operations to the set of parameter space points assembled above. These 
operations include reJection about an average point, PBar, expansion of the simplex 
figure in a promising direction, and eventual contraction of the figure as a solution is 
approached. These operations are applied to the simplex point with the largest penalty. 
The mechanics of these operations in MAD and BNL MAD are: 
1. 

2. 

3. 

4. 

5. 

6.  

An average point, PBar, is found by summing each of the j coordinates of N of the 
N + 1 points, excluding the point Phigh with the worst penalty. 
An offset vector Poff is computed as the vector difference (residual) between the 
coordinates of the presently worst point Phigh and the average point PBar. A trial 
point Pnew is formed by adding PBar and the negative of Poff, reflecting the worst 
vector across the average one: 
Pnew = Pbar - Poff 
The components of Poff now serve in effect as the previously used steps of Perr. 
This scheme insures that the "volume" and shape of the revised simplex is 
preserved, preventing crossings of surfaces at this first stage of reduction. 
If the penalty of operation 2. is lower than the current "best", the offset is increased, 
added to Pnew, and the penalty for Pnew computed again. That trial point leading 
to the lowest penalty of these two trials replaces the current worst point Phigh in the 
point matrix. The simplex is said to be expanded in the direction of the better 
penalty. 
If the penalty for Pnew in operation 2. is higher than for the "best" point P but is 
still better than that of the worst point, Phigh, the reflected point Pnew replaces 
Phigh in the matrix. The step sizes of Perr are recomputed for each parameter as 
the spread between the components of the best and worst points of the simplex. 
Perr is now the length of the line joining the two points Plow and Phigh. 
If after operations 2. and 4. Phigh remains the worst point, another trial point Pnew 
is formed as the average point Pbar plus half of Poff, which lies inside of the 
current simplex. This operation contracts the simplex, as its reduces a principal 
dimension. 
If the penalty resulting from operation 5. is better, Pnew is stored in place of Phigh, 
and the steps Perr are recomputed. This stage then repeats at operation 1. until an 
acceptable fit or other condition for finishing is achieved. As the simplex is 
reduced, Perr = Phigh - Plow contains the largest dimension of the figure, so its 
size is compared with the requested tolerance of the fit as a condition for finishing 
the iterations. The contents of Perr are printed at the end of the fit as a measure of 
the residual errors. 
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7. If the penalty result of operation 5. is worse than that with the worst point, control 
branches back to Stage 2, using the currently achieved %est" point P = Plow as 
input. This branch usually succeeds in avoiding local minima. 0 

Documents 

Unix Typesetter Format - nroff / psroff Files. 

Host rapt.ags.bnl.gov 

BTA Lattice Matching /usr/disc2/jn/Docum+/Match.notes 

FMatch /usr/disc2/jn/Docum+/Fmatch.man 

Showmatch /usr/disc2/jn/Docum+/Showmatch.man 

Runtwiss /usr/disc2/jn/Docum+/Runtwiss.man 

To Print from rapt: (To Room 21 8 AGS 2nd Floor) 

alias it. 'cat * I psroff -t -ms > ppp; lp ppp' 

it. MmualName 
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Figure 1. BTA Sensitivity to Entry Beta 

For the fit shown in Table 1, 
incoming beta X and beta Y are varied between limits of: 

15. < BxO < 22. stepped by .5 

6.  < By0 < 11. stepped by .5 

Magnet values are held at nominal fit values. 
There is no coupling between X and Y. 

- ~ - -=_ _- . 
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Figure 2. BTA Sensitivity to Entry Alpha. 

Incoming alpha X and alpha Y are varied between limits of: 

2. < Ax0 < 4. stepped by .25 

-1. < AyO 1. stepped by .25 

Magnet values are held at nominal fit values. 
There is no coupling between X and Y. 
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Figure 3. BTA Sensitivity to Entry Disp X. 

Incoming disp X is varied between limits of: 

-1. < Dx < 1. stepped by .2 

Magnet values are held at nominal fit values. 



Figure 4. BTA Sensitivity to Entry Disp PX. 

Incoming disp Px is varied between limits of: 

.2 < Dpx < .7 stepped by .05 

Magnet values are held at nominal fit values. 
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Table 1. BTA Matching 

Summary of a Fit with Zero Penalty. 

Simplex. March 7, 1996 

PENALTY FCT. CALL 
0.000000E+00 73 

PARAMETER NAME 
BETAXO 1 
BETAY 011 
ALFAXO-1 
ALFAY 0-1 

IQVl 
IQH2 
IQV3 
IQH4 
IQV5 
IQH6 
IQV7 
IQH8 
IQV9 
IQHlO 
IQVll 
IQH12 
IQVl3 
IQH14 0 IQVl5 

PAR. VALUE 
1.85652534-01 
8.43516934-00 
2.98586134-00 
-2.4677643-01 
1.7819353-01 
4.6256803-01 
2.35354434-02 
1.76424934-02 
2.30749534-02 
2.06857334-02 
4.37405734-02 
5.48244334-02 
4.93141834-02 
2.80892034-02 
4.95055134-02 
3.28106334-02 
2.04348534-02 
2.25931934-02 
3.34479334-02 
3.53286834-02 
9.26563734-01 

PAR. ERROR 
3.800000E-01 
5.000000E-01 
2.4139003-02 
1.000000E-02 
1.000000E-02 
7.6000003-02 
3.800000E+01 
3.800000E+01 
3.800000E+01 
3.800000E+01 
3.800000E+01 
1.85570034-00 
3.800000E+01 
3.800000E+01 
3.800000E+01 
3.800000E+01 
3.8000003+01 
3.800000E+01 
3.800000E+01 
3.800000E+01 
3.800000E+01 

Orbit Functions at End Of L6, S = 60.14m. 

BETX 
ALFX 
MUX 
BETY 
ALFY 
MUY 
X 
PX 
Y 
PY 
DX 
DPX 
DY 
DPY 

Fitted Result 
1.0927193+01 
-6.109313E-01 
1.0590063+00 
1.98640234-01 
1.2289553+00 
1.105312E4-00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
-3.9181363-01 
-2.0924453-01 
0.000000E+00 
0.000000E+00 

Constraint: 
Lower Upper Expected 
10. 11. 10.44 

- -68 - -58 - -63 

19.8 20.8 20.27 
1.15 1.25 1.20 

- .45 - .35 - -4085 
- .235 - .135 - .1845 
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Table 2. Example Input Data for BTA Matching. 

1 Command Library for BTA Runs e March 7, 1996 

1 File = .usr/disc2/jn/BTA+/Wruns. bta" 

! Starting Simplex S'Fitll through Ql5. Narrow Limits after Ql5. 
BETAXO 1 
BETAY 0-1 
ALFAXO:~ 
ALFAYO 1 
DX 0 1- 
DPX 5-1 

IQH2 
IQV3 
IQH4 
IQV5 
IQH6 
IQV7 
IQH8 
IQV9 
IQHlO 
IQVll 
IQHl2 
IQVl3 
IQH14 

IQVi 

e IQVl5 
Store 

1 Varys 
Vvvpd 

VIql 
VIq2 
VIq3 
VIq4 
VIq5 
VIq6 
VIq7 
VIq8 
VIq9 
VIqlO 
VIqll 
VIq12 
VIQl3 
VIql4 
VIql5 

Param = 1.8565253+01 
Param = 8.4351693+00 
Param = 2.9858613+00 
Param = -2.4677643-01 
Param = 1.7819353-01 
Param = 4.6256803-01 
Param = 2.3535443+02 
Param = 1.7642493+02 
Param = 2.3074953+02 
Param = 2.0685733+02 
Param = 4.3740573+02 
Param = 5.4824433+02 
Param = 4.9314183+02 
Param = 2.8089203+02 
Param = 4.9505513+02 
Param = 3.2810633+02 
Param = 2.0434853+02 
Param = 2.2593193+02 
Param = 3.3447933+02 
Param = 3.5328683+02 
Param = 9.2656373+01 

for BTA Fitting. 
FVary Pdelta, Step = ,0025, 

.020, Upper = .02001 Lower = -  
Fvary, IQVL, STEP = 50. LOWER =O. UPPER = 550.1 

Fvary, IQV3, STEP = 50. LOWER =O. UPPER = 550.1 
Fvary, IQh4, STEP = 50. LOWER =O. UPPER = 550.1 
Fvary, IQV5, STEP = 50. LOWER =O. UPPER = 550.1 
Fvary, IQh6, STEP = 50. LOWER =O. UPPER = 550.1 

Fvary, IQh2, STEP = 50. LOWER =O. UPPER = 550.1 

Fvary, IQv7, STEP = 50. LOWER =O. UPPER = 550.1 
Fvary, IQh8, STEP = 50. LOWER =O. UPPER = 550.1 
Fvary, IQV9, STEP = 50. LOWER =O. UPPER = 550.1 
Fvary, IQhlO, STEP = 50. LOWER =O. UPPER = 550.1 
Fvary, IQV11, STEP = 50. LOWER =O. UPPER = 550.1 

Fvary, IQV13, STEP = 50. LOWER =O. UPPER = 550.1 
Fvary, IQhl4, STEP = 50. LOWER =O. UPPER = 550.1 

Fvary, IQh12, STEP = 50. LOWER =O. UPPER = 550.1 

Fvary, IQv15, STEP = 50. LOWER =O. UPPER = 550.1 

1 Match Command for Varying Input Optics. 
FMA-3 Fmatch, deltap = pdelta, Second, 

Varlist = FV list3, Conlist = FC list3, 
BETX = BeFaxO-1, ALFX = AlTaxO-1, 
BETY = BetayO 1, ALFY = AlfayO-1, 
DX 

BETX = BetaxO - 1, ALFX = AlfaxO-1, 

= DX 0 1, DPX = DPx 0-1 - -  FTW-3 Ftwiss, deltap = pdeita, 
* 
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BETY = BetayO-1, ALFY 
DX = Dx-0-1, DPX 

End st or e 

Constraint Limits for BTA Matching. 4 Bmax Param = 25. 
Dmax Param = 4.5 
Dmin Param = - 4.5 
Store 

I 

c - LO 

c-L1 

C-L2A 

C - L2B 

c-L 3 

c-L4 

c - L4S 

Q-L5 

C-L5A 

C - L5B 

C-L6 

t 

Constraint List for BTA. 
Fconstraint, LO, 

Fconstraint, L1, 

Fconstraint, L2A, 

Fconstraint, L2B, 

Fconstraint, L3, 

Fconstraint, L4, 

Fconstraint, L4S, 

Fconstraint, L5, 

Fconstraint, L5A, 

Fconstraint, L5B, 

Fconstraint, L6, 

W Glenn, Feb 22.96. 

BETX > .5, 
BETY > .5, 
DX > Dmin, 
BETX > .5, 
BETY > .5, 
DX > Dmin, 
BETX > .5, 
BETY > .5, 
DX > Dmin, 
BETX > .5, 
BETY > .5, 
DX > Dmin, 
BETX > .5, 
BETY > .5, 
DX > Dmin, 
BETX > .5, 
BETY > .5, 
DX > Dmin, 
BETX > .5, 
BETY > .5, 
DX > Dmin, 
BETX > .5, 
BETY > .5, 
DX > Dmin, 
BETX > .5, 
BETY > .5, 
DX > Dmin, 
BETX > .5, 
BETY > .5, 
DX > Dmin, 
BETX > .5, 
BETY > .5, 
DX > Dmin, 

= AlfayO-1, 

BETX 
BETY 
DX 
BETX 
BETY 
DX 
BETX 
BETY 
Dx 
BETX 
BETY 
DX 
BETX 
BETY 
DX 
BETX 
BETY 
DX 
BETX 
BETY 
DX 
BETX 
BETY 
DX 
BETX 
BETY 
DX 
BETX 
BETY 
DX 
BETX 
BETY 
DX 

< Bmax, 
< Bmax, 
< Dmax 
< Bmax, 
< Bmax, 
< Dmax 
< Bmax, 
< Bmax, 
< Dmax 
< Bmax, 
< Bmax, 
< Dmax 
< Bmax, 
< Bmax, 
< Dmax 
< Bmax, 
< Bmax, 
< Dmax 
< Bmax, 
< Bmax, 
< Dmax 
< Bmax, 
< Bmax, 
< Dmax 
< Bmax, 
< Bmax, 
< Dmax 
< Bmax, 
< Bmax, 
< Dmax 
< Bmax, 
< Bmax, 
< Dmax 

Entrance to AGS. Narrow Limits. 
I Nominal : 
I BX = 10.44, AX = - .63, DX = -.4085, DPx = - -1845 
1 By = 20.27, Ay = 1.20 
C-L6enda Fconstraint, #E, 

Betx > 10.0, Betx < 11.0, 

Bety > 19.8, Bety < 20.8, 
Alfy > 1.15, Alfy < 1.25, 

AlfX > - .68, ALEX < -.58, 

DX > - -45, DX < - -35, 
DPx > - .235, DPX < -.135 

.-"' Fconstraint 

Endstore 

L7 , BETX > .5, BETX < Bmax, 
BETY > .5, BETY < Bmax, 
DX > Dmin, DX < Dmax 
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!!** Ianore 
Match4Section f o r  BTA. Vary Input Optics, from Booster. 

- 5 ,  
Lower = 5.000, Upper = 2 1 . 0 1  

- 6 Vv - be tx  FVary BetaxO-1, S t ep  - 

Vv - bety  FVary BetayO - 1, 
Lower  = 5.000, 

Vv - a l f x  FVary A l f a x O - 1 ,  
Lower = -0 .0 ,  

V v  - a l f y  FVary A l f a y O  - 1, 
Lower  = - 1 . 0 ,  
Dx 0 1, 
Lower  = - 2 . 0 ,  
Dpx 0 1, 
Lower = -1., 

Vv-DxO Fvary - -  

Vv - DpxO Fvary - -  

Step  
Upper 
S t e p  
Upper 
S t e p  
Upper 
S t e p  
Upper 
S t e p  
upper 

05, 
= 9 . 0 1  
- - . 2 0 ,  
= 3 . 4 1  
- - . l o ,  
= 2 . 0 1  

-1, 
= 2 . 0 1  

0 1 ,  

= 1 . 0 1  

- - 

- - 

- - 

& 

& 

& 

& 

& 

& 

I Match S e c t i o n  f o r  BTA 3 .  A c t i v e  Constraint  and Vary L i s t s .  
I Nominally t o  End of L 6 ,  Q 1  - 915. Match t o  W. Glenn IIMatrixl' f o r  A g s .  

U s e  BTA-3 

FC l i s t 3  Xmenu = c LO, C-L1, C L2A, C-L2B, C L 3 ,  & 

C I L 4 ,  C-L5A, CrL5B, C-L6, - 
FV l i s t 3  B l i s t  = Vv Be tx ,  V v  Be ty ,  & 

Vv-alfx, Vv-alfy , & 
Vv-dxO , VvDpxO , & 
V I S 1  , V I G 2  , V I q 3  & 
v1q4 , VIq5 I V I q 6  V I q 7  I & 
V I q S  I V I q 9  I V I q l O  , V I q l l  , & 

- 
C-L 6 enda 

- 

V I q l 2  , V I q l 3  , V I q l 4  , VIql5 
FMA 3 
Fweight Dx = 2 . ,  DPX = 5. , A L f x  = 5. , A l f y  = 5. 

0 
FMI Fsimplex, C a l l s  = 2000,  Toleranc = l .E-5, Grid 

Fendmatch -Verbose 

P r i n t  BTA - 3 
Ftw .5 

Ignore 
! Twissdriver  Rundata and Sample Vary of P d e l t a .  - - 

!! Graphics Setup f o r  BTA. 
vvvbetx FVary BetaxO-1 , 

vvvbety FVary BetayO-1 , 

Vvvalfx FVary AlfaxO-1 , 

Vvvalfy FVary AlfayO-1 , 

VvvDxO Fvary - -  

VvvDpxO Fvary Dpx-O-1 I 

Lower = 15.000, 

Lower = 6 .000 ,  

L o w e r  = 2 . 0 ,  

Lower  = - 1 . 0 ,  
Dx 0 1, 
L o w e r  = -1 .0 ,  

- 2 ,  L o w e r  - - 

!! Runtwiss Sec t ion .  
Vvv - l i s t  B l i s t  = Vvvpd, 

Vvvalfx, 

S t e p  
Upper 
S t e p  
Upper 
S t e p  
upper 
S t e p  
Upper 
S tep  
Upper 
S tep  
upper 

.50 , 
= 2 2 . 0 1  

.50 , 
= 1 1 . 0 1  

.25 , 
= 4 . 0 1  

.25 , 
= 1 . 0 1  

- 2 ,  
= 1 . 0 1  

.05 , 

. 7 1  

- - 

- - 

- - 

- - 

- - 

- - 
- - 

VvvBetx, VvvBety , 
Vvvalfy, 



Use BTA-3 a 
Rdtw Rundata Model = MAD, Machine = BTA, 

Vlist = Vvv-list, 
Draws = DrawC5, T. schema, 

Ftwiss = Ftw.5, Ftw-1, Ftw - 2, 
Commands = S.tww1, S.tww2, 
Sliders = SL-Pdelt 

TL.orbx, T2.orbx, 

Rtww Runtwiss Menu, Plotdef = l1Pdef.axl1, Tempv = C5 - vals 
End ignore 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

return 

STOP 


