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INTRODUCTION 

The purpose of this paper is to further quantify the results for the measurement of the 
AGS high field sextupole center as presented in AGS Studies Report No. 332 [l]. The 
sextupole center is defined as the "radius" (Le. circumference / 2.n) or beam frequency 
at which the betatron tune of the AGS is not influenced by changes in the current in the 
sextupole string arrays. In the aforementioned study note, both vertical and horizontal 
betatron tune data were obtained using the Tune Meter program for different values of 
the RF frequency on the AGS injection porch. A radial scan was performed for four 
different horizontal chromaticity settings* (+LO,  -0.5, -4.0, -2.6) obtained by varying the 
current in the sextupole arrays. Ideally, one would expect the four tune-frequency 
relationships obtained from the four chromaticity scans and analyzed using the Least- 
Squares fitting technique to intersect at one point that is then understood as the radius 
corresponding to the sextupole center. However, because of different factors such as 
measurement errors in the data, random fluctuations, and insufficient data, this single 
crossing point was not well-defined. This paper will explore how much deviation in the 
tune-frequency equations is necessary for these to intersect at one defined point with the 
constraints of the experimental errors in the data. Further, it will also investigate how 
the associated Chi-square ( x2 ) statistic is affected for each individual tune-frequency 
equation after imposing the constraint of a one point global fit. Such exercise will then 
yield a specific value for the sextupole center, as well as information about the 
dispersion of the data with respect to a experimentally constructed "ideal solution" for 
the AGS high field sextupole center. 

Procedure and Results 

The tune-frequency linear equations obtained in the previous work have been re-fitted 
taking into account errors in both the tune and frequency. The resulting fitted equations 
along with their associated standard deviations in slope and intercept, x2 values 
(measuring the agreement between data and model), and x2 probabilities 
(quantitative measure for the goodness of fit of the model) are : 

* The study did not treat the two sextupole strings @I&V) independently. 
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Horizontal Tune 1_ r2 312 Prob 

Qx = (21.201 f 0.801) fRF - ( 49.439 f 2.818) 

Qx = (-35.457 3Z 0.335) f,+(106.373 f 0.920) -4.0 16.5 3.6 x 

+1.0 53.5 8.6 x 10-9 

Qx = (-6.009 f 0.270) fw+ (25.405 f 0.745) -0.5 970.9 0.0 

Qx = (-48.245 f 0.584) fRF +(141.547 3Z 1.670) -2.6 42.2 9.8 x 10-7 

Vertical Tune 

Qy = (-38.536 3Z 1.041) fRF +(114.855 3Z2.818) +1.0 32.7 6.9 x 10-5 
Qy = (-19.064 42.515) fRF+ (61.317 3Z0.691) -4.0 185.5 7.3 x 10-36 
Qy = (-24.837 4 0.328) fRF + (77.189 f 0.902) -0.5 322.0 0.0 
Qy = (-8.532 C 0.336) fRp + (32.349 3Z 0.924) -2.6 21.8 5.4 x 10-3 

Here fRp denotes the RF frequency measured in MHz. It is important to note the 
magnitude of the x2 and x2 probability values obtained for the fits. In general, for a 
fairly good fit a typical value of x2 = v, where v =N - M, represents the number of 
degrees of freedom*[2J. For the data under study we would have expected x2 N 8 for 
each fit. Small x2 probabilities values (x2 < on the other hand, are generally 
understood as indication of either a statistically wrong model or an underestimation in 
measurement errors. For our results neither is the case. Apart from some small 
deviations from a linear model (except for E, = -0.5 which are large), the resulting large 
Chi-square, and thus small Chi-square probabilities values, can be attributed to the fact 
that in the process of fitting a straight line model y(x) = ax + b with standard 
deviations ox and cy, the Chi-square function takes the form [2] 

9 

As can be seen, the Chi-square function scales inversely proportional to the squares of 
the errors. For the data in question, the error in the betatron tune was arbitrarily set to 
10-3, which is the limit of accuracy posed by the Tune Meter program if the produced 
fast Fourier transform of the kicked beam yielded a well defmed sharp peak with a delta 
function like-nature [3]. In reality the problem is more complicated since we are 
attempting to determine the mean of a non-uniform spectral distribution of possible 
betatron tunes**. Thus, it is important to keep in mind that the betraton tune uncertainty 
could lie above or below this limit. 

measurements to - 10-6 MHz. Therefore, in the process of least square fitting eq.(l) 
with errors of such accuracy one finds that the value of x2 is overestimated, and 
therefore its value should be taken with caution. Inspection of the plots (Figures 1 and 
2), reveals that the data is reasonably well correlated with a linear model. As such, we 

The Frequency Meter, on the other hand, limited the accuracy of the frequency 

*N=# of data points, Le. for the data in question, N= IO; and M=# of parameters to be obtained in the fitting process, i.e. 2, 
slope and intercept. 
** This is a limitation present in the Tune Meter program. It would be of great importance to modified the code to yield 
an estimate of the significance (probability) of the maximum peak against the hypothesis of random noise. 

0 
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cannot rely on the Chi-square statistic as an "absolute" measure of how well the data fits 
the model. Rather, we will make use of it when comparing the results of the global fit, 
thereby measuring the amount of relative depreciation or improvement in ~2 that was 
required in order to obtain the intersection. 

Figures 1 and 2 show the data and the best fitted line for the horizontal and 
vertical betatron tunes respectively. Error bars were not displayed since these would not 
be observable in the corresponding scale. As one can conclude from the figures, there is 
not a single well defined crossing point corresponding to the sextupole center in either 
plane. In order to require the tune-frequency equations to intersect at a single point, the 
following algorithm is constructed. Given a possible crossing point (xo, yo), we can 
use the point-slope equation of a line a (xi - XO) - (yi - yo) = 0, to find the best tune- 
frequency equation (for each chromaticity setting) to allow for the global intersection. 
This operation is to be performed simultaneously for the four equations in each betatron 
tune plane. Thus, one can design the Chi-square global function xG2 

describing the sum of squares for each point slope equation [4], where, the ai 
correspond to the slope of each global fitted tune-frequency equation, and the xi and yi 
the RF frequency and betatron tune of the i th data point respectively. 

We can then utilize the least squares method and minimize the latter expression 
in order to obtain the values for the slopes (ai). Consequently, one can refer back to the 
point-slope equation of a line, which then coupled with knowledge of the crossing point 
(XO, yo), attains the equation of the line which yields the global fit. 

The best crossing point (xg, yo) is the one that, combined with the values for the 
ai, minimizes eq. (2) above. The search for this point requires the construction of a data 
grid in the region of interest, which will give eq.(2) the freedom to search for the best 
minimum in tune-frequency space. Figures 3 and 4 display the 20 x 20 data grids which 
were used in this search. For both the horizontal and vertical betatron tune cases, the 
tune was allowed to range from 8.80 I Qx7y I 8.93 with a resolution of 0.0068, and 
for the frequency 2.748 I f RpI 2.752, in steps of 0.0002 MHz. From here, we can 
then proceed to minimize eq. (2) using the steepest descent method, which searches for 
the minimum (at least a local minimum although not necessarily global) by following the 
path of steepest descent along the x2 surface. 

Figures 5 and 6 show the resultant global fit superimposed on the best fitted 
lines. The best crossing point in the horizontal grid corresponded to Qx = 8.8748, 
fRp = 2.7500 MHz, and in the vertical case to Qy = 8.8952 and fRp = 2.7496 MHz. 
Refer to Figures 7 and 8 for a closer examination of the global fit. Additionally, it is 
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also of interest to view each individual equation in a separate plot in order to get a 
pictorial idea of the amount of deviation that was necessary in order to intersect the 
lines. Figures 9-12 display the fits for each chromaticity setting of the horizontal tune 
case. Similarly, Figures 13-16 show the results for the vertical tune calculation. 

The resulting global-fitted equations with their respective xG2 values are 
displayed below. The x2 values from the fits to the data and dispersions from the global 
fit ( Ax? = xG2 - x2 ) are also included for purposes of comparison. 

Horizontal Tune 
Qx = 14.138 fRp - 30.005 
Qx = -38.988 fRp + 116.091 

Qx = -4.994 fRp + 22.607 
Qx = -48.819 fW + 143.129 

Vertical Tune 

Q,, = -37.849 fRp + 112.967 
Qy = -17.636 fm + 57.564 
Qy = -24.247 fRp -I- 75.564 
Qy = -10.140 fRp -I- 36.776 

L q$ 312, 
+1 .o 610.9 53.5 
-4.0 3 17.5 i6.5 
-0.5 1286.5 970.9 
-2.6 44.1 42.2 

+1.0 33.4 32.7 
-4.0 265.9 185.5 
-0.5 335.0 322.0 

' -2.6 50.6 21.8 

4 
557.4 
301.0 

315.6 
1.9 

0.7 
80.4 
13.0 
28.8 

Discussion and Conclusion 

As can be observed from the ab,ove results, constraining the tune equations to 
intersect at one point did not severely affect the quality of the fits, except for 
settings E, = +1.0, E, = -4.0 (Figure 9 and 10 respectively), and E, = - 0.5 (Figure 11) in 
the horizontal tune plane, which reflect considerable subsequent depreciation in ~ 2 .  

The large Ax? dispersion for E, = +1.0, E, = -4.0 is surprising, since the best 
fitted data is clearly linear but it properties are such that it does not intersect at the same 
point. This serves to indicate that the model is wrong. The reason for this incompability 
is not clearly understood and this will be investigated in future work. 

between the best fit and the global fitted data is however anticipated since the behavior 
of the data departs largely from a linear model, without a clear explanation of what is 
responsible for this phenomena. Additional data for this drill, as well as subsequent sets 
of data would be essential for a clearer interpretation of the observed shape. 

Further examination of the results obtained above shows that the global fit 
yielded values for the slope and intercept in the equations, which, except for E, = -2.6 
in horizontal string and E, = +1.0 in vertical string, did not fall within the ( la  : 68% 
confidence level) standard deviations for the fitted equations to the data. This can be 
attributed to the small error bars in the data, the size of the data grid and the resolution 
used. Since for each different crossing point (XO, yo), there will be a correspondingly 
different numerical value for the slope (ai) and intercept, the size of the data grid and/or 
the more (XO, yo) points that are sampled ( same data-grid area but increasing 

For 5 = -0.5 : horizontal tune (Figure ll), the obtained large disagreement 
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resolution), the more likely xG2 would converge to a minimum with values of slope 
and intercept approaching or deviating from those obtained in the best-fitted equations. 

Given the values for the center frequency (corresponding to %, the equilibrium 
orbit radius) at which the intersection occurs, we can conclude that the center for the 
horizontal and vertical string array differ by 400 Hz (- 2mm). One might question this 
difference, having expected the centers to be equal for both sextupole strings. However, 
this is not a requisite. Further, as mentioned above, this difference could be attributed 
to lack of resolution in the data grid used. Nevertheless, this is a considerable 
difference, and taking into account the uncertainty in the frequency measurements 
(- 10-6 MHz), the resulting standard deviations for the sextupole centers 
(- 0.05 mm) do not allow the central values to overlap. 

horizontal data was fRF = 2.7501MHz, with an uncertainty of 0. lKHz, which then, 
considering the errors, is in agreement with the results presented here (fRF = 2.7500 

In the previous work, the obtained crossing frequency extracted from the 

We are now also able to calculate the relative position ("zero") of the AGS Orbit 
system. Using the obtained equation from the previous work relating RF frequency with 
radial average, namely 

and noting the calibration for the AGS Orbit program (where 1 "cm" radial shift 
corresponds to 1.86 cm), we can determine the zero for the horizontal and vertical string 
to be 10.138 mm and 12.131 mm respectively, and to the of outside of &. 
This result differs slightly with the estimate obtained in the studies note for the central 
value of the horizontal string, where the latter was found to be 9.6 mm. However, as 
mentioned above, this figure is in agreement when the uncertainties are included. 
Accordingly, these results stress the existing disagreement with what is believed to 
correspond to the "Beam Code Axis" for the AGS orbit system (- 4mm outside of %), 
therefore supporting the speculation raised in the studies note, whereby such 
inconsistency is to be expected if the radial offsets in the Orbit program have not been 
corrected to follow the centering of the PUE plates in the vaccum chambers of the AGS. 

To improve upon the study as conducted thus far, the following points should be 
addressed: (i) The horizontal and vertical sextupole strings should be treated 
independently. (ii) Would the change in the equilibrium orbit due to the change in 
chromaticity, meet the rciquirernent of the basic assumption of the model definition of 
the sextupole center? (iii) In the interest to further explore the validity of our model , 
how significant is the second order effect of a 9th harmonic component (since the AGS 
betatron tune runs close to a 9th integer) in producing the observed intersection offset in 
the tune-frequency equations for both sextupole strings? Future work is needed in order 
to further probe and gain understanding on the nature of this problem. 

discussions regarding this work. I 

0 

I thank k i f  Ahrens and Mike Blaskiewicz for many stimulating and beneficial 
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Figure 1 : Horizontal tune data and best fitted equations for the four horizontal 
chromaticity settings (+ 1 .O,-0.5, -4.0, -2.6). * 
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Figure 2 : Vertical tune data and best fitted equations for the four horizontal 
chromaticity settings (+ 1 .O,-0.5,-4.0,-2.6). 
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Figure 3 : 20 x 20 data grid used in search.for best crossing point (center) in the 
horizontal sextupole string. 
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Figure 4 : 20 x 20 data grid used in search for best crossing point (center) in the 
vertical sextupole string. 
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Figure 5 : Global fit for horizontal string displaying the intersection point 
( fRF, QJ = (2.7500, 8.8748) reslalting from the minimization of eq.(2). 
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Figure 6 : Global fit for vertical string displaying the intersection point 
( fm, Qy) = (2.7496, 8.8952) resulting from the minimization of eq.(2). 
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Figure 7 : Enlargement of Figure 5 
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Figure 8 : Enlargement of Figure 6 .- - 
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Figure 9 : Individual plot for best-fitted and global fitted equations for horizontal 
tune and = +1.0. The dispersion between global fit and best-fitted equations 
corresponds to Ax$ = 557.4 
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Figure 10 : Individual plot for best-fitted and global fitted equations for horizontal 
tune and 5 = -4.0. The dispersion between global fit and best-fitted equations 
corresponds to Ax$ = 301.0 



Figure 11 : Individual plot for best-fitted and global fitted equations for horizontal 
tune and 5 = -0.5. The dispersion hetween global fit and best-fitted equations 
corresponds to Ax? = 315.6 
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Figure 12 : Individual plot for best-fitted and global fitted equations for horizontal 
tune and 5 = -2.6. The dispersion between global fit and best-fitted-equations 
corresponds to Ax? = 1.9 
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Figure 13 : Individual plot for best-fitted and global fitted equations for vertical 
tune and E, = +1.0. The dispersion between global fit and best-fitted equations 
corresponds to Ax? = 0.7 

9 

---- Best Ltre pit 
GlobalFit 

k 1 88.5: 

4 g 8.8. 

875 - 

8.7 . 

2748 275 2752 2754 

~ F s s u e n c y  WHZ) 
Figure 14 : Individual plot for best-fitted and global fitted equations for horizontal 
tune and 5 = -4.0. The dispersion between global fit and best-fitted equations 
corresponds to Ax," = 80.4 
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Figure 15 : Individual plot for best-fitted and global fitted equations for horizontal 
tune and E, = -0.5. The dispersion between global fit and best-fitted equations 
corresponds to Ax: = 13.0 
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Figure 16 : Individual plot for best-fitted and global fitted equations for horizontal 
tune and E, = -2.6. The dispersion between global fit and best-fitted equations 
corresponds to Ax? = 28.8 


