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third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  



F .. 
2 

f 

Accelerator Division 
Alternating Gradient Synchrotron Department 

BROOKHAVEN NATIONAL LABORATORY 
Upton, New York 11973 

Accelerator Division 
Technical Note 

AGS/AD/Tech. Note No. 409 

BARRIER CAVITY LONGITUDINAL 
DYNAMICS 

M. Blaskiewicz 

January 13, 1995 

Introduction 
During the 1994 proton run a slow loss observed on the AGS injection porch 
severely limited the number of protons that could in principle be accelerated. 
This loss was drastically reduced when the RF was turned off and, to a lesser 
extent, when the bunch length was increased. During heavy ion operation 
the intensity per bunch was limited by devices upstream of the AGS. 

A barrier cavity system in the AGS might increase the intensity for both 
these situations. This Note serves as a general introduction to the subject 
with AGS specific examples. 

1 Definitions and General Considerations 
Before proceeding it will be useful to define some relevant coordinates. The 
azimuth 8 refers to longitudinal position with respect to the physical machine 
and increases by 2n each turn. For a coasting beam with no collective effects 
I assume 6 = w(E, B )  where the dot means time derivative and the angular 
frequency is a function only of particle energy, E,  and (dipolar) magnetic 
field, B. For the sake of simplicity I will assume that the RF field is limited 
to a negligibly narrow range around 8 = 0. The effect of several gaps will be 
similar as long as the time delays of the fields are correct. The RF system 
creates an electric field whose component along the beam velocity is given 
by V(t)8,(8)/R where V( t )  is the gap voltage as a function of time, R is the 
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machine radius and 

k=-m 

is the periodic delta function. I assume a constant magnetic field and an ideal 
energy Eo with corresponding angular frequency wo. A comoving coordinate 
is defined by the relative phase # = 8 - wot. Let #, and E, correspond to 
the relative phase and the total energy a particle has just after traversing the 
cavity for the nth time. To leading order and neglecting collective effects, 

2 v ( E ,  - Eo) 
P2E0 

#n+l- 4, = - 
En+l- E, = qV(nT0 - &+l/WO) (2 )  

where q is the charge of the particle, r] is the frequency slip factor, P = v/c 
and To is the revolution period. 

Though the final calculations will require the difference equations, it will 
be useful to consider their continuum limit. Let n 8/2n be the time-like 
variable. Equations (1) and ( 2 )  are exactly equivalent to 

(3) 

(4) 

- d# = -  2nrl(E-Eo) 
d n  P2E0 

dE - = q2nSp(2nn)V (nT0 - # / ~ o ) .  d n  

k=-m 

where the Fourier coefficients are given by 

Expanding the periodic delta function as a Fourier transform and extracting 
the diagonal terms in the double sum of Fourier coefficients gives, 
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The smoothed voltage P(t, 4)  is given by the Fourier series 

For a strictly periodic voltage with V( t )  = V(t+To) the Fourier coefficients do 
not depend on t and the smoothed voltage is given by P(t,  4) = V ( - ~ / W O ) .  
Equations (7) and (8) are generated by the Hamiltonian 

a* 

where 4 is the coordinate variable and E is its conjugate momentum. The 
potential is given by 

As long as U(t ,$ )  varies smoothly enough, the adiabatic invariant given 
by J = f Ed4, where the integral is over one period of the motion, will be 
nearly conserved. Additionally, the Hamiltonian approximation predicts that 
H(E,  4)  will be constant when the coefficients ~ ( t )  are independent of time. 
A system which has the capability of conserving the adiabatic invariant will 
allow greater control over the phase space evolution. 

Before proceeding to the general case where P(t,$) has explicit time 
dependence, consider the purely periodic case. As is well known, the stan- 

&sin4 always shows some chaos when evolved 
k the associated Hamiltonian system is in& 

tage is not smooth the dif- 
lati&s shows t he difference is usually n&: - 

ces but when th 
For example, consider the extreme case whGe., 

. 

&, if 0 < q5< 40; 
V ( 4 )  = { 0, if 4 0  < 4 < 27r - 40; (12) 

-Vo if 2n- 4 0  < 4 < 2n; 

and the voltage is defined globally via periodic extension. For definiteness 
I take r )  < 0 and assume that qVo& > H ( E ,  4)  for energies of interest. In 
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Figure 1: Energy deviation versus relative phase plotted once per turn. The 
particle either jumps one energy level on a given turn or its energy remains 
unchanged. 

the Hamiltonian approximation H ( E ,  q5) is constant for a given particle as it 
bounces back and forth. Evolution using equations (1) and (2) is different. 
When a particle bounces off the side of the well it is kicked an integer number 
of times where each energy kick has magnitude qV0. As shown in Figure 1, 
the motion can be quite irregular even though the instantaneous synchrotron 
tune is fairly small. This result is due to the fact that the restoring voltage is 
discontinuous and the diagonal approximation used in obtaining the smooth 
Hamiltonian (lo), is not good. In a real machine it would probably be 
difficult to create a situation where the sort of dynamics shown in Figure 1 
would matter, though it seems prudent that voltage waveforms be studied 
numerically to be sure. 

2 Single Particle Barrier Dynamics 
In this-section the effect of changing the shape of the voltage waveform is 
studied. For simplicity it is assumed that the cavity voltage is a sum of the 
form 

where the parameters 
V( t )  = KG(t/To - TI) + &G(t/To - - r ~ )  (13) 

and r- vary (slowly) with time and 

v 

sinn(s - [s])/w, if O c 7r(s - [s])/w < 27r; 
otherwise. 
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Figure 2: Example waveform for equation (13). The parameters are TI = 
0.15, VI = 1, 72 = 0.7 and V, = 2. The revolution period was set to 1 and 
the half width to w = 0.1. 

where [SI denotes the integer part of s and the half width of the waveform, w 
is fixed. Figure 2 is a canonical plot of V ( t )  for a single revolution period. The 
model allows the centers and amplitudes to change for the next revolution. 
This model is quite general and a simpler version will be considered first. 

Setting V, 3 0 yields a model similar to the system used to create a gap 
in the coasting beam of the antiproton debuncher at Fermilab [l, 21. At 
Fermi the gap is used to accommodate the rise time of the kicker. In the 
AGS the gap must be long enough to accommodate the entire kicker pulse. 
The model dynamics as applied to the Booster and AGS are given by setting 
71 3 0 and varying VI in a saw-tooth pattern like that shown in Figure 3. 
The cavity is on during the first injection, and the bunch is injected into 
the zero voltage region. The second Booster cycle is injected into the gap 
created by the cavity and VI is quickly dropped to zero. The energy spread 
in the beam after the first and second transfers are thus AE1 = A& = AE, 
where AE, is the energy spread in the Booster. On subsequent transfers 
the value of V, rises from zero and a gap is formed in the coasting beam. 
The next booster cycle is injected into this gap and VI is brought quickly to 
zero. An estimate of the increase in energy spread due to this process may 
be obtained by mixing the adiabatic and fast approximations. As VI rises 
the longitudinal extent of the beam is decreased fractionally by an amount 
f N 1 - 2w, and the energy spread increases fractionally by l/f. The next 
Booster fill is injected into the gap and V, is quickly brought to zero. Hence, 
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Figure 3: Example time dependence of the VI amplitude. The time between 
transfers has been set to unity and the first transfer occurs at t = 0. 

the energy spread will increase exponentially. For f = 0.8 the energy spread 
in the AGS beam will be about 1.6AE, after 4 transfers. Simulation results 
for this process are shown in Figure 4 which shows d m  and d m '  
for a swarm of particles just before the third Booster transfer of Figure 3. 
The square roots were chosen so that the physical area on the plot was close 
to the conserved phase space area occupied by the particles. It was assumed 
that bunching in the Booster would allow a gap of only 20% in the AGS 
and the simulation used equations (1) and (2). The cavity voltage rose from 
zero to its peak value in 20ms and the initial energy spread of the beam 
was [ E  - Eo1 5 E0/500. The energy spread increased by a factor of 1.4, 
corresponding to f = 0.7 and an effective gap length of 0.3 in the adiabatic 
approximation, which appears quite reasonable. 

While a factor of two increase in energy spread is not too much of a 
problem for four transfers it is clear that the momentum aperture will quickly 
fill up if more than four transfers are used. Additionally, the peak value of V, 
will need to increase as more transfers are added, giving another limit. These 
problems can be partially overcome by using the second voltage component. 

For case of two voltage components, the fast change in the voltage am- 
plitude becomes unnecessary and preliminary results indicate that the longi- 
tudinal emittance can be nearly conserved. 

Figure 5 shows simulation results for a possible scenario. To make the 
connection with adiabatic invariants more visible JW and Jm' 
are shown. Figure 5a shows four Booster cycles worth of particles outside 
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Figure 4: Simulation results for 2000 test particles with f M 0.7. 

the barrier bucket and another Booster cycle has just been injected. In 
Figure 5b the injected particles have been squeezed yielding a similar energy 
distribution for particles inside an outside the bucket. In Figure 5c the 
second voltage component has collapsed. In 5d this component has returned 
in phase with the first. In Figures 5e and f the voltage components separate 
and grow making room for the next Booster cycle. In plot units, the initial 
peak momentum is 4 while the final peak momentum is 5 and the number of 
particles outside the barrier increases in the same ratio. There is very little 
emittance dilution during the process. 

3 Collective Effects 
For proton operation the main purpose of installing a barrier cavity would be 
to reduce the slow losses which seriously limit the amount of beam surviving 
to be accelerated. It has been observed that these losses are drastically 
reduced when the RF is turned off. More generally, reducing the peak current 
via longitudinal dilution reduces the slow loss. A barrier cavity system is a 
natural extension of this process and, ostensibly, will reduce the slow losses 
even further since the bunching factor will be increased to I a v g / l p e a k  N 0.7. 

However, new effects arise because the particles now have a distribution 
of synchrotron tunes going from zero up to a maximum value that is roughly 
proportional to  the energy spread in the beam. The simplest approximation 
is to neglect the walls of the barrier altogether and consider a coasting beam 
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Figure 5: Simulation results for 5,000 test particles with two voltage com- 
ponents. The time interval between plots was 22 ms for the first 5 while the 
interval between plots e and f was 44 ms. Note that ,/m and d m  
are plotted and that the axes for each subplot are the same. 
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with the same energy spread and peak current. The coasting beam stability 
formulas are standard [3]. For no longitudinal instability the criterion is 

where A E  is the full width at half maximum energy spread. For transverse 
instabilities the system will be stable if 

and the inequality needs to be satisfied for n > Q. Note that a negative 
(positive) chromaticity helps damp the system below (above) transition as 
in the bunched beam case. 

To apply equations (14) and (15) to the AGS several parameters are 
needed. For a working set assume protons with: 
1) 7 = -0.13 
2) J = -0.5 
3) Q = 8.8 

5) AE/& = 0.01 
4) Ipeak = 3 A 

Using equations (14) and (15) the impedance limits are given by,lZll/nl =S 
12 kQ and 1211 5 17 MR/m. For the RF system currently in the AGS the 
undamped impedance of the fundamental is 8 kQ but this is reduced to - 1kQ using feedback. The longitudinal space charge impedance is of order 
100Q and the broad band impedance is even smaller. The transverse space 
charge impedance is of order 100 MQ/m, so transverse instabilities might 
occur. Note that theory also predicts a strong transverse instability on the 
AGS porch for the current injection scheme. Using f 1 0  synchrotron modes I 
find a growth rate- 70 s-l for a chromaticity of -0.5 and 40 Tp in the AGS. 
This is just the low frequency resistive wall instability and there is no reason 
to expect that the situation will be worsened by a barrier cavity system. 
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