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1. Summary

These notes discuss simulation schemes for charged particle beam control based on features of
neural networks. These studies are carried out in the supporting software framework of the BNL MAD
Program environment, which provides a companion model of a working accelerator. Conventional
accelerator ideas of sensors, filters, controllers, and control elements readily map into correspt)/nding neural
elements. This mapping is particularly convenient when both the conventional and the neural elements are
viewed as objects in the MAD object oriented representation of an accelerator or other large connected sys-
temn.

2. Introduction

As accelerators evolve with ever more complicated beam requirements, beam position contrel logic
can become a very complicated and demanding art. The conditions which disturb lattice apparatus may be
changing locally, but effects on a beam are experienced throughout the machine. In ¢ircular machines,
ordinary beam positioning control schemes are often based upon harmonic analysis of beam displacements.
These schemes average perturbations over the whole machine, and can usually stabilize and otherwise
improve orbits considerably. However, such global techniques may not always respond well lecally to
changes in beam transport conditions. For example, when adjusting for a particular intersection of two col-
liding beams, the tuning for the other intersections is usually disturbed. Similar problems occur in synchro-
tron light sources, where the radiations to many beam lines have to be maintained in unison.

Neural network technology offers many desirable properties for control systems in general. In nature
neural processes are highly adaptive, relatively accurate, fast, and often capable of dealing with great com-
plexity. Neural approaches have been increasingly sucecessful in a variety of pattern recognition studies.
Accelerator beam control can be viewed as a kind of pattern recognition problem, in which the patterns of
orbit displacements are usually changing somewhat in time. The broader technical field of adaptive control
employs features that often closely resembie neural network ones. Signal processing and television
compression technologies increasingly apply neural network principles.

There are numerous observations and hints from biological systems which might be expected to
influence pattern recognition technology. The neural fields include a vast variety of studies over many spe-
cialized topics. Studies range from analyses of perception in the sensory systems of various creatures to
properties of individual neurons. In both living subjects and related analog and computer models, the role
of connectivity, how a pattern is stored and retdeved, and whatever gross optimizing principles may be-
involved, are examined.

In a relatively simple perceptory system, such as smell, there are only a handful of kinds of neurons,
there are many of them working together, and there are usually only a few steps in a cognition process.
While each individual neuron may be noisy, a neural system as a whole is relatively noise immune. Each
neuron has a series of features that may include threshold sensitivities, coincidence and correlation
mechanisms, and signal limiting. Connected together, neurons combine to deliver meaningful, in phase
response patterns. Somie sensory systems seem to be clocked - sensing is initiated by a common control



signal, which repeats at characteristic intervals. Response appears to happen in a series of steps, with the
result of each step being reviewed by successive analyses steps. Responses of natural systems do not usu-
ally overshoot, at least not in mechanical ones. There is a neural priming mechanism, in that response is
more pronounced as a stimulus is repeated. Neurons appear to be physically grouped in a series of thin
layers, over plane areas, corresponding to logical stages. Some experiments suggest that information
storage is related to patterns of activity in particular parts of these planes. In some experiments, the
number of neurcons responding to a given impulse appears to follow a power law, a property seen in self
organized critical systems. ‘The overall pattern stored in response to a kind of event itself may adapt in
time.

When viewed in more detail, the early logical steps in brains occur in planes of related neurons, a
few neurons thick, and a few millimeters in extent. Within a plane, neurons are closely coupled laterally,
so incoming stimuli are shared among neighbors, even in the initial sensory stages. Neural signals are typi-
cally of the order of a millisecond duration, and within a subsystem, may repeat at uniform intervals when
a stimulus is present. Connections radiate around neurcns that accept incoming signals, with a radial fall
off, a so called center surround layout. Some of these planar neurons react positively to signals on the
plane, others produce negative signals. The inhibitory fields have a larger radius than the excitory ones,
which leads to local groupings. Members of a local group are usually sensitive to some common feature of
a stimulus. The sizes and extents of these groups are related in some optimal way that balances redun-
dancy and the inherent variability among individual neurons. An incoming stimulus is spread over the
plane, the neurons of the plane react as a whole, synchronize themselves, and within a step er two, some
abstraction of the incoming stimulus is passed on to another stage, or further response is suppressed.
Numerous experiments have observed these abstraction processes, but without really understanding them,
Various response time constraints indicate that at most about twenty such stages can be involved in any
given response, given numbers of a few milliseconds per stage. However the stimuli may be digested by
the various stages, there is an evident progression downwards in layer size. For example, in the human
eye, about 100,000,000 sensory and processing neurons are involved, in the next stage about 1,000,000,
and about 100,000 in the visual cortex. With very imperfect parts, all of this works far better than any of
the artificial networks using perfect parts designed to date.

However disappointing our understanding of how the brain may work, imitating even the grossest of
these layout features may well lead to better performing technology. In particular, animals make extensive
use of feedback systems, with known components and characteristics. While we may not be in the busi-
ness of modeling cats, when a cat’s feedback systems work considerably better than some of our accelera-
tor ones, surely there is something to be learned. It does turn out that this relatively small collection of
neural features can be easily represented in computer models, and applied to feedback logic in particular,
Experiments can be performed with the models to see which features lead to improvements. In one form or
other, some of these features are familiar in accelerator and other technology. To avoid destructive
overshoots, power supplies are vsually programmed to move to a setting in a series of small steps. The
effect of each step is observed before proceeding. Gating techniques and signal threshold criteria are
applied to reduce exposure to noise.

The Stanford Linear Collider (SL.C) has a number of beam steering systems, of which the one at the
downstream end of the linac is a suitable example of the components and connections involved. The early
form of this feedback loop went through a rather painful development and debugging stage under severe
pressure. Given the luxury of reviewing these SLC approaches afterwards, it appears that they can quite
easily be recast into a much simpler neural network point of view. Basic SLC software features can be
expressed in more general modular forms resembling neural analogues. Moreover, reasons for very low
gain and relative instabilities are now easier to recognize when the rather complicated signal couplings are
separated from the original multiply indexed matrix software nightmare. The SLC feedback experience
accordingly has been generalized to more elaborate, interacting feedback systems, as an application of a
self contained neural module in the BNL version of the MAD Program. Perhaps some of these techniques
might also be of use for studying the more demanding beam steering expectations of the newer linear col-
lider proposals as well.

In the jargon of the software for the model explored here, each of the kinds of neuron is pictured as a
class of object in an object oriented data base. The connections to a neuron are simply noted by a list of



signal sources, such as the output cells of other neurons, together with such weights as may be wanted. At
each time step; a neuron combines its source signals according to some rules, and produces a correspond-
ing signal of its own. This output is typically delivered to a signal location in the neuron’s object data
structure. When viewed as data objects, neurons have rather similar attributes,zand differ among them-
selves mainly in the rules by which responses to input signals are formed. Natural nets seem to work effec-
tively using self clocked time steps, and signals clamped in amplitude. Computer based experiments can
be designed to try these very simple kinds of non-linear signal couplings. Additionally, the continuous
amplitudes normally seen in-conventional fitting and feedback techniques can be included for comparison.

3. Overview of the Model

We have built a general software supporting framework to explore such ideas by means of computer
simulations. Stimuli (signals) from measuring devices are passed among a number of interconnected, ele-
mentary processing modules, which produce output signals that respond to these measurements. The ele-
mentary modules, the neurons, are described by information that includes input signal connections and
weights, and keys to the possible ways that the inputs can be combined and processed along with necessary
parameters. Additionally there are instructions as to how the output signals are to be formed. Supporting
utilities of the framework gather the descriptive information, and make it available in a data base matched
to the problem. Configuration services connect the signal paths declared in the input information. Another
service operates a beam transit model, and collects measurements as needed. Ideally this collection of sup-
porting services is flexible enough so that the effects of various ideas, features, and operating parameters
can be studied.

The model itself is operated by a supervisor which advances a clock, and cycles a series of events,
each of which may include communication and execution delays. A sequence of events typically includes:

1. Run the beam(s).

2 Collect orbit data.

3. Transmit orbit data to a feedback controller.
4

Run controller, which operates layers of sensor, filter, adder, and motor neurons in a layered net-

work.
5. Transmit controller responses as signals to correctors.
6.  Setcorrectors.

Repeat.

In the operations mode, a feedback controller organizes the flow of input signals from the measuring
elements, through the analysis neurons of each layer, and into the corresponding correction elements. In
the training or calibration mode, depending upon the kind of neural model in use, signal weights may be
adjusted among the neurons of the layers so that the system responds properly to a known pattern of dis-
placements. Neurons belonging to the same logical stage comprise a layer, which is described in the pro-
gram by a simple list of the neurons involved. The collection of layers comprises a network. Likewise a
simple list of the names of the layers describes the network of a controller. Finally, a number of such feed-
back loops and their controllers may be operated together.

Details of connectivity are free parameters of this system, so connection schemes that range from the
conventional controls theory calibration matrices to the more remarkable biological examples may be con-
sidered. A few basic kinds of neural model have been implemented in the rules of neurons to date. The
formal design is intended to accept other kinds readily without disturbing the options already in place.
Features of the major classes of artificial neural networks can also be accommodated, often by minor
changes in the input descriptions of neurons and the network. Noise can be introduced onto any signals or
processes, to test performance and stability. Foregoing for the present this wealth of interesting possibili-
ties, a relatively simple controller scheme of a few layers, each populated with a single kind of neuron, will
be developed in these notes.

In some of the simpler configurations, such as N comectors being driven by measurements from M

monitors, this neural representation at first sight may seem to be just another way of describing a feedback
system already well known to accelerator physics. However, the possibilities for non linear couplings



among the signal elements leads to a far more powerful and stable controller. Controllers are expected to
perform in an environment where both beams and measurements are noisy, and responses are subject to all
the inherent instabilities of the system. The generally non linear, dynamic neural approaches have direct
ways of dealing with system noise, which are not present in the traditional Micado and similar static orbit
adjustment techniques. Even small configurations show remarkable damping behavior. They are also
wonderfully flexible by comparison. For example, the familiar Micado algorithin is easily adapted to our
quite general ensemble of sensors, filters, and correctors with the various non linear couplings.

4. Kinds of Neurons

This section lists the elementary kinds (classes) of neuron implemented in this netwoik based con-
trols model. These neurons are the building blocks from which controller and feedback networks are
configured. Basic neurons can be configured for both circular and linear lattices.

4.1. Sensory Neurons

A sensory neuron delivers a reading on demand, typically directed by a command (gate signal) from
some supervisor or central clocking source. Readings, presumably originating in attached hardware (or
beam simulators), are expected to be subject to noise. All neurons have rules for forming and shaping out-
put levels or pulses. As represented in a computer, a sensory neuron data structure includes latch cells
from which its outputs may be taken. In this controls model, sensory attributes include a reference to the
primary source of a signal, a device such as a beam monitor, in a tracking program. Cther attfibutes define
rules to verify the input signal, to refine it, and to form the cutput.

Sensory neurons presumably are noisy, at some level. Various noise patterns can be supplied by a
noise generating service. Many kinds of real sensory neurons may deliver a chain of output pulses, a kind
of quantized amplitude to pulse train duration conversion, which has virtues in an extremely noisy environ-
ment. The use of pulse trains is rather extreme for our purposes, however.

Each of our neurons processes input signals, and delivers a resulting signal 1o an output stage. The
form given to output signals is described by attributes submitted on the definition statements of individual
neurons. Each of the kinds of neuron outlined here has the same choice of output options, which cover
most of the needs of the principal neural models. The response of the output stage is one of the following
functions of the amplitude of its input.

1. Signum

Output is a clamped positive value if a signal threshold is exceed. Simpler artificial neural networks
tend to use this form. This is basically a yes / no response to input signal amplitudes.

2. Sigmoid

The input versus output curve has an S shaped characteristic. Input values below a given cut off lead
to a lower fixed output. Values above a second limit lead to an upper fixed output, Response in the
middle region between these limits is about linear, but approaches either fixed output asymptotically.
This form resembles that for real neurons.

3.  Linear, Clamped

Output is linear with inputs between two limits, but takes hard clamped values for inputs above the
upper limit or below the lower limit. In our models, there is little difference in overall controller
behavior between this mode and the sigmoid.

4, Linear

Qutputs are proportional to inputs. The linear option is mainly for comparing with certain primitive
systems. Systems based on linear responses tend to be unstable, unless run at very low gains, espe-
cially relative to the non linear coupied ones presented here.

All output signal forms can have an effective gain given. Forms #2 and #3 have an adjustabie input /
output curve slope. The first three forms have adjustable limiting output levels. A dead zone, that is a
small part cut put of a central region of input signals, may be specified, so no output signal will result
unless the input level is beyond the dead zone. Dead zones are normally set at relatively low levels suitable
for filtering noise. They effectively dampen oscillations and ringing of the system, and permit higher gains.



Excessive dead zones and inadequate clamping cut offs can contribute to system response delays, but per-
formance is otherwise rather insensitive to these variables over a considerable range of values.

4.2, Filter Neurons .

A filter neuron combines one or more connected Input signals, applies rules for filtering the com-
bined signal, and supplies an output signal accordingly. The forms encoded here are based on SLC prac-
tice about 1989. Filters are intended to reduce the effects of short term noise and transients on the com-
bined input, which is typically derived from one or more sensory neurons. Filtering rules include averag-
ing over recent history, some criteria for enthusiasm in responding, and threshold criteria. Selection,
median, and exponential behaviors are included. Ideally filters can also have some adaptive characteristics.
Filters also can be told to include a response based upon predicting the signal expected a cycle or two
ahead, using most recent denivatives of the filtered signal.

Filters introduce a delay in system response to changing sensory signals, and typically are set for
about two or three cycles for the median, and at least one for the exponential. Together with signal clamp-
ing, properly adjusted filters effectively eliminate overshoots.

Filter attributes include a list of input signals, along with weights, averaging and history criteria, and
output pulse forming information.

4.3. Mixing Neurons

-

Mixing or adder neurons combine a set of connected input signals according to weights, and supply
an output signal. A typical rule for firing might be based upon the weighted adding of all inputs. Other
choices might be to add the absolute values, or the squares of inputs, as in finding the analogue of a penalty
function. Mixers differ from filter neurons mainly in that they do not try to smooth input noise. A main
application is building a corrector signal from a collection of filtered input signals. In one simple kind of
system, the input weights would correspond to the coefficients of a calibration matrix linking filtered sensor
inputs to correction outputs. Ideally, these weights should be adjusted according to the tracking experience
of the system. Both exciting and inhibiting inputs are accommodated. Mixers are suitable for position con-
trollers in single pass lattices, such as linacs and beam lines.

Mixer neurons resemble the basic middle neurons of most artificial neural nets. In our model they
may also be given various roles in calibrating their own input weights. Overall system gain might be
specified at this stage. For stability, system gains should be set less than the inverse of the mean filter
delay.

Mixer attributes include a list of input signals and weights, and output pulse forming information.

A neural based controller with the set of simple properties given here has been used to model the
SLC beam steering feedback at Stanford with considerable success. Using plain linear coupling, and typi-
cal SLC signal characteristics, observed stability, gain, and timing can be matched quite well. Using non
linear couplings, the model version of the feedback can be operated at much higher gain and hence betier
response time to transients. Filter properties could be somewhat improved over those originally used, and
were conveniently optimized in the program. Similar changes were indeed introduced into later feedback
improvements on the actual linac.

4.4. Micado Based Controller

For circular machines, the simpler mixer schemes can need a lot of work to operate reliably without
additional constraints. There are a number of complications that can lead to instabilities such as opposing
correctors running off scale if not properly damped and constrained. The orbit has to be well sampled,
which leads to relatively large networks, which in turn tend to need further guidance beyond simple mixing
of weighted signals. As an alternative, the conventional Micado correction technique has been adapted to
serve as a controller, functioning as a complete mixer layer. It receives beam position signals from a front
end filter layer, computes a single iteration, and feeds the resulting error signals into output pulse handlers,
and then to the correctors. These steps repeat for each beam transit or measurement cycle. This scheme
appears very stable under BNL AGS and RHIC based simulations. Corrector strengths can be constrained.
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The inner workings of the Micado resemble somewhat those of our mixer layer. Micado makes use
of a matrix correlating monitor readings with corrector settings, The coefficients of the inverse of this
matrix correspond to the mixer weights for the case of a centered orbit. Micado forms a penalty function
from among these weights and current monitor readings, and then selects the corrector with the most effect
on this function. The corrector is adjusted to maximize its effects by means of a Householder transforma-
tion. This procedure is iterated among the correctors.

4.5, Motor Neurons

In a simple system, motor (relay) neurons carry the network response as computed from the incom-
ing sensory signals back to the device hardware. For example, a motor neuron might attach to a corrector
driver, delivering signals to adjust a kicker magnet one step up or down. This kind of neuron can provide
an added layer of non linear coupling between the controller and its correctors, giving further noise
suppression. We have found that the Micado kind of controller works quite well without this additional
layer. In another case, a motor neuron might accept an inhibit feedback pulse if the corrector is at the end
of its adjustment range. Qutput noise and delays in transmitting the signal to the device might be included.

Motor neuron attributes include a list of signals such as mixer neuron outputs, weights, and output
signal descriptors.

4.6. Others

While an example controller using the above collection of parts already offers a big i;nprovement
over an elementary linear feedback system, there are further ideas to be tried. Most other feedback features
and functions that come to mind can either be added as rules in one or more members of the above set, or if
too specialized, can be expressed in another kind of neuron. One major problem is that calibration schemes
in artificial nets seldom even barely resemble the learning process in living systems. Some learning algo-
rithms need excessive amounts of computation, and tend to forget when another kind of event is command-
ing attention. Some kind of artificial logic has to decide whether a previous step leads to a better or a
worse orbit situation. In overdetermined cases, this decision might be based on rules using a traditional
penalty function or some weighted comparison of before and after displacements. There are unexplored
trade offs between rigid learning schemes and more adaptable ones.

The neural paradigm in principle should be able to provide logic for handling misbehavior of various
automated or even manual systems. Situations that come to mind are dynamic reconfiguring when moni-
tors or correctors drop in and out of service, and smoothing operations that avoid excessive power in
correctors. Two or more nearby correctors should not be pushing against each other to cure a small beam
displacement. Recasting the Micado algorithm aleng more neural lines could be helpful for steering orbits
which are deliberately not centered in their machines.

Another kind of neurcn, perhaps related, on a longer term averaging basis, could be concerned with
adjusting weights among the mixing and filter neurons, essentially implementing second order feedback in
the network. A wider choice of training and response rules might be helpful here, including the by now
classical ones. (Back propagation, feed forward, etc.)

5. Device Drivers

Device drivers are classes of logical control system elements that attach directly to hardware. They
are distinguished in this model framework from the neurons of the controller networks. Purely hardware
related duties, such as conversions, calibrations, response time features, and the like, are treated in these
drivers, so these tasks do not spill out into parts of the controllers. For configuration purposes, these
drivers are considered as the external layers of the network. However, their duties are performed as
separate steps under the control of the accelerator model supervisor. '

The simulation framework provides a communications model so devices and neurons can be
configured among a number of controllers, possibly located in different servers. A crude slotted buffer
scheme is supplied which is adequate for exploring timing effects. In accelerator control systems, devices
are usually distributed along the machine, conceivably complicating event timing because of network
delays. Those signals which must be shared among neurons in different servers are assigned network slots,
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which look logically like cells in a buffer which is repeatedly copied to each active node. An initial
configuration process handles the details of linking the signal paths among the neurons and devices. In
practice most complications caused by signal delays appear to be handled readily by reducing system gain.
5.1. Beam Position Menitors

Monitor drivers simulate the gathering of signals from beam monitor hardware registers. They apply
conversions and calibrations, and supply refined coordinate values to local buffers and optionally to net-
work buffers. In a real machine, registers are filled by hardware processing analog signals from beam tran-
sits. During the monitor reading step in a beam transit model, an event supervisor sends messages to a util-
ity that gathers readings at requested lattice positions saved during the last transit{s). Optionally the super-
visor can reformat this data to values that resemble those produced by hardware, and puts it into assigned
registers. Then instrurnental noise and least count effects can be introduced as appropriate to the real mon-
itor hardware. The supervisor commands the device monitors to process their raw readings, and distributes
these readings to other parts of the control system. Thus at regular intervals register values are converted
to beam position data, noise is included, and the data may be passed to the controllers.

5.2. Corrector Drivers

Corrector drivers accept signals from motor neurons, perform any necessary conversions, do validity
checks, and operate the necessary hardware, real or pretended. In the models, a simple linear delayed
corrector magnet response mechanism is also included so simulated corrector readings will ‘better reflect
the way magnets respond to new settings. Long term signal and setting averaging is performed, which can
be used for dynamic weight updating. Corrector drivers have an option for the gain applied to their pro-
cessed input signals, and system gain as a whole can be adjusted by applying a common value o all correc-
tor gains.

6. Calibration

Calibration procedures find the weights which link input signals to the kinds of response expected of
the controller. In effect they train the controller. Ideally these efforts achieve trustworthy controller
behavior in a relatively short training period. The major kinds of neural networks differ strongly in the
way that they train, and these differences tend to require specialized controller sections to implement for
modeling. In our model, the various calibration schemes outlined here are applied to a network which uses
mixers for the middle layer.

Two similar calibration schemes for a feed forward layered geometry are considered here. In both,
mixer layer signal weights are adjusted by measuring the effects of a series of corrector settings on the
beams. Purely linear output signals are considered, so weights can be compared with the results from lat-
tice optics. Other elements can be exchanged easily in techniques that look for improperly measured moni-
tor locations.

Case 1. With the controller off, a corrector is set to deflect the beams, and correspending monitor
measurements made. The weights of each adder are adjusted so that the resulting adder sig-
nals match the corrector values, using the Adaline rule of Widrow [ ]. A pattern of corrector
changes is iterated, "randomly”, through a few cycles, until the weight changes settle down.
Trials on a linac example show good convergence to reasonable values, from sets of starting
weights within an order of magnitude or so of the results. The weights and cenditions are also
effective for tracking, leading to reasonable response without ringing. While there is no gen-
eral guarantee of convergence for this technique, the model can readily be operated to explore
plausible ranges of critical parameters.

Case 2. This case matches the original SLC scheme, and so allows the behavior of real and simulated
systems to be compared. Correctors are suitably varied in turn, and averages of dX / dC
among correctors and filtered X signals are obtained. These responses are gathered into a cali-
bration matrix, which is inverted. Each row of the resulting matrix corresponds to the weights
of an adder.



This method delivers reasonable fits when the rank of the system matches the number of
degrees of freedom. Given the involvement of the inversion step, it misbehaves for overdeter-
mined configurations.

The Micado option currently uses computed phase advances among the menitor - corrector ensemble
for a somewhat equivalent internal weighting scheme.

7. Linac Example

Having been strongly influenced by an early SLC beam steering feedback problem, naturally our
feedback controller modeling software was applied to that particular system. By joining a controller to a
model of the SLC, the feedback strategies were evaluated and parameters adjusted, comparing with the
behavior of the original system when helpful. These remarks refer to SLC operation during late 1989,

Buring each SLC cycle, a pulse of positrons was accelerated. A pulse of electrons closely followed,
using the same beam optics, and spaced in time so the two bunches met at a collision point in the arcs,
These cycles repeated at 60 or 120 hertz. Because most beam disturbing conditions change slowly, an ele-
mentary system of sensors feeding back to local beam steering correctors proved adequate to guide the
Linac beams into the SLC Arcs. In each transverse plane four sensors recorded beam positions for a posi-
tive and for a negative beam transit. These beam position signals were routed into four filters, which com-
bined pairs of readings with previous filtered ones and applied certain rules to avoid grossly bad readings.
These filter signals were then passed into a signal mixer, which combined them into a set of corrector set-
tings, using a previously prepared calibration table (Case 2 above). The computed changes in output values
were reduced to some small fractions, the gains, and passed on as signals to the corrector hardware con-
trollers. Finally, corrector settings moved to the requested values, subject to appropriate rules about limits,
etc. When a beam drift was detected, its effect made its way through the filters, and a partial correction
signal was applied to succeeding pulses.

Originally, the SLC feedback system was run at very low gain to avoid instabilities, and had no
overall optimizing criteria other than reducing individual beam displacements. The low gain led to an
effective response time of the order of a second. Judicious placement of monitors and correctors in princi-
ple allowed separate two monitors by two correctors circuits to control the two beams independently. In
practice there was substantial cross talk between these two circuits, which this model has shown. Including
the otherwise neglected correlations in four by four configured models improved (ransient response
significantly and further reduced overshoots.

In a more general scheme other feedback systems may be working at different places along a beam,
so the coupling among the systems has to be considered. One simple strategy is to emphasize one such
local feedback system at a time, progressing along the machine. An upstream controller gates off, or
reduces the gain of the ones below it off until the first one has resolved its own problem. Then the
emphasis shifts to the next controller. Invariably there are tradeoffs among response time and average sys-
tem performance, and simulations can help with the needed tuning among the various controllers.

8. Environment

Beam controller studies and implementations are practical on modern workstations, which have
effective compilers, impressive computing speed, and few memory constraints. The slowest part of models
is still the simulating of particle tracking, even with factor of ten improvements in the BNL MAD versions
used here. Attached to an accelerator, the correction schemes seem capable of millisecond scale sampling
cycles. The schemes have been easily incorporated into the MAD language and BNL data base servers.
The nastier parts of the object definitions and structures are readily handled by the structure generating
tools and file management techniques developed for the MAD Program at BNL. Hardware costs of
minimal workstations are low enough for them to be used as dedicated controllers.



