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I. Summary

1. Semi-empirical formulae for electron impact capture and ionization
cross sections are given, based on the survey of theoretical and ex-
perimental results.

2. For Aud't Booster injection, the capture loss is dominated.

3. For Au!*t Booster injection, the ionization loss would happen.

II. Introduction

For the electron impact capture cross section, the semi-empirical formula
proposed in [1] is adopted. The comparison of this formulation is made with
respect to the Bohr-Lindhard equation (2,3].

For the electron impact ionization cross section, the Lotz formula [4] is
adopted.

Gold beam loss mechanism at the Booster injection is then discussed.
It is found that for Au?'t, the capture loss is dominated. The situation is
different for Au'*t Booster injection, where the ionization loss would happen.

In this article, the capture and ionization cross sections are given under
the condition of electron impact. There are two reasons to use the cross
section of electron impact. Firstly, the abundant electron impact experiments
data can be directly used for verification. Secondly, it is straightforward
to use these results to estimate the cross sections for different residual gas
components, within a reasonable range of accuracy.

III. Electron impact capture cross section

In [1], a semi-empirical formula for electron impact capture cross section
is proposed as,
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where ¢ is the projectile charge state, and Fj is the kinetic energy of projectile

in unit of KeV/u. The unit of the capture cross section o is 107'® em®. Let
us call (1) as KMJ model.
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The experiments in agreement with this formula include the follows,

1. Electron capture of Li** in a range of 100 eV/u to 200 KeV/u, and
C%* in a range of 100 eV/u to 200 KeV/u [5].

2. Ne'® in a range of 20 KeV/u to 200 KeV/u, and Si'** in a range of
20 KeV/u to 1 MeV/u [6].

3. H*, He**, Li*t, B5, €% and Fe®™ in a range of 20 KeV/u to 4
MeV/u [7].

4. Ti** and T%** in a range of 1 KeV/u to 100 KeV/u [8].

5. Het, L3+, BY, B5, €% N7 O%and Fe®® in a range of < 100
KeV/iu 9]

6. Ti2+, VB+and Fe®t in a range of 400 KeV/u to 900 KeV/u [10].

In [1], capture cross sections of T% ion from ¢ = 4 to 11, Cr ion from
g = 4 to 15, Fe ion from ¢ = 4 to 26, and Ni ion from g = 4 to 17 have been
calculated in agreement with (1).

Furthermore, it was found that in a scaling of the projectile energy by
dividing +/g, and the cross section by dividing g, unified cross sections can
be obtained. This is shown in Fig.la [1]. In Fig 15, o, calculated by (1) is
shown for comparison.

IV. Comparison with Bohr-Lindhard equation

In the Bohr-Lindhard equation [2,3], the capture cross section is described
as,

2m 2 v ¢
o, = Ty Ly (’UO) (2)

where ag = 5.3 x 107° ¢m is the Bohr radius, Zr is the atomic number of
residual gas. The Bohr velocity vy = 2.19 x 10® em/s (8 = 0.0073) is the
orbital velocity of the valence electrons of atoms in the target. The index £
is about 6, and m < 1.

This formulation gives clear dependance of the cross section on v and
q. Unfortunately, large discrepancies in the dependance is not resolved. For
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instance, the index £ referred can be in a range from 3 to 12. This makes the
Bohr-Lindhard equation difficult to use.

In Fig.2, the comparison of (1) and (2) is given, where we take £ = €
for Bohr-Lindhard equation. Some discrepancies can be observed. At the
Booster injection energy, which corresponds to 3 = 0.044, the diflerence is
large.

At the low energy, the difference of KM.J model and Bohr-Lindhard model
is large. This can be observed in Fig.2, for 8 < 0.02. 'We note that most
experiments reported in [6-10] are in agreement with the KMJ model, rather
than the Bohr-Lindhard model.

Also, using Bohr-Lindhard model, the small capture loss in electron cool-
ing [11] cannot be explained, since the capture cross section would be ex-
tremely large in that case according to (2). Meanwhile, since the beam loss
is also proportional to 3, therefore, the flattened capture cross section at the
low energy of KMJ model in fact implies that the loss in electron cooling
would be small.

Therefore, we adopt the KMJ model for electron impact capture cross
section calculation.

V. Electron impact ionization cross section

It is believed that the Lotz formulation [4] for electron impact ionization
cross section is often within 20% of more accurate quantal calculations for
direct ionization [12]. Therefore, we simply adopt this formulation,

log(Eer/ ;)
Eek-P'i (3)

where E_;, is the kinetic energy of the incident electron in eV, F; is the binding
energy of electrons in the ith subshell in eV, ¢; is the number of equivalent
electrons in the ith subshell.

We note that the velocity of projectile with respect to the target is repre-
sented by E.; of the incident electron in eV, since the ionization is identical
in frame of moving impact electrons (ion as target) or in frame of moving
jons {electron as target), where the latter is relevant to our case.

The binding energy of electrons of all states of jonization are available,
for instance see [13], therefore, these data are directly used in calculating (3).

N
Tion, = 4.5 X 1()#142(].5
i=1
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Various experiment data in agreement with this formulation can be found in
[14].

The electron impact ionization cross sections for gold ions, relevant to
gold beam Booster injection, are shown in Fig.3.

The comparison of capture and ionization cross sections of gold ions
within the relevant range of Booster injection is shown in Fig.4.

VI. Auv¥'tand Au'** Booster injection

Using the equation (1) and (3), the gold beam Booster injection with
Au3tand Au' is shown in Fig.5. The cross sections are larger if the par-
ticles are other than electrons. For instance, the nitrogen equivalent (Ny)
residual gas capture and ionization cross sections are roughly as large as 14
times the electron impact cross sections.

We have the following comments,

1. For Au'* Booster injection, the dominant beam loss mechanism is
the capturing. Therefore, if the injection energy can be elevated, the
beam injection efficiency can be improved. In specific, if the beam
injected at 3 = 0.0484, and 0.055, i.e. increase 10% and 25% from § =
0.044, the electron capture cross section becomes g, = 6.63 X 1018, and
2.06 x 1018 cm?, i.e., reduced by 58% and 87% from o, = 1.573x 1077,
respectively.

2. For Aul** Booster injection, both capture and ionization will happen.
However, shortly after the energy ramped up, the ionization becomes
dominant.

3. The beam life time is proportional to the product of cross section and
the beam velocity, 3. If the capture is dominant, then the beam life
time improves as the beam energy ramping up, due to the fast reduction
of capture cross section. If jonization is dominant, then the beam life
time improvement is less significant, since the ionization cross section
reduction is roughly in an order of 7%, multiplying 3, the loss becomes
irrelevant with the beam energy.

4. The absolute cross sections shown in this article are somehow larger
than it was believed early on, in connection to the Booster injection.



VII. Acknowledgment

The author would like to thank L.A. Ahrens, E. Beebe, and H.C. Hseuh
for valuable discussions.



References

1K. Katsonis, G. Maynard and R.K. Janev, Physica Scripta, T-37, 80
(1991).

2H.D. Betz, Rev. Modern Phy. 44, 465 (1972).

3H.C. Hseuh, Booster Tech. Note, No.116, Apr. (1988).

W. Lotz, 7. Phys. 206, 205 (1967).

SH. Ryufuku and T. Watanabe, Phys. Rev. A-19, 1538 (1979).
6H. Ryufuku and T. Watanabe, Phys. Rev. A-20, 1828 (1979).
7]. Eichler, Phys. Rev. A-23, 498 (1981).

8W. Fritsch, Physica Scripta, T-37, 75 (1991).

9N. Toshima, Phys. Rev. A-50, 3940 (1994).

10M. Das et. al. Phys. Rev. A-52, 4616 (1995).

117 Bosser, CERN 95-06, 673 (1995).

127§, Thompson and D.C. Gregory, Phys. Rev. A-50, 1377 (1994).
137 A. Carlson et. al. Atomic Data, 2, 63 (1970).

14M A. Lennon et. al. J. Phys. Chem. Ref. Data, 17, No.3, 1285 (1988).



!_ ) T T
- s 0.5
\ 3
% :
s | »
" i
x Tl 0
- " A’; L
o s Cr .2 <
s | % "
3] - Fe "E. S
o ]
a - B 0 -0.5
’(‘ 0
0 b @
2 | % 2
¥ Q
5 ; S
0.1 U 8
'8 [ ' 3 2 41
9 [ &’ o
j= - -
o - " °
@ L & =
2 I :111' S
[ 4 1.5
S
&
001 ey a bk} ]
1 10 100 y ; ;
Reduced energy, E [keV/amul/q!/? 2 i i . i
&y [ / ]/q 0 05 1 1.5 2 25
Fig. 5. Reduced charge exchange cross sections, ¢ /g, vs. reduced collision
energy. £/¢%. for the Ti¥", Cr*", Fe'* and Ni** (g > 4) collisions with log(Ek(KeV/u)/q )
H{is).
¢ b

Fig.1. Unified Capture Cross Section,
projectile energy divided by ,/q, cross section divided by g
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Fig.2. Comparison of KMJ model and Bohr-Lindhard model
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Fig.3. Electron Impact Ionization Cross Section of Gold Ions
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Electron impact Gold lon capture and lonization Cross Section
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Fig.4. Electron Impact Gold Ion Capture and lonization Cross Sections
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Electron Impact, Au3i+
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Fig.5. Electron Impact Capture and Ionization Cross Sections for Au*l*
and Aul*t
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