
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC)

Collider Accelerator Department

July 1997

J. Niederer

BNL MAD Program Notes: Upgrade to Version 7C

BNL-104879-2014-TECH

AGS/AD/Tech Note No. 463;BNL-104879-2014-IR

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical
note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for
United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Accelerator Division
Alternating Gradient Synchrotron Department

BROOKHAVEN NATIONAL LABORATORY
Upton, New York 11973

Accelerator Division
Technical Note

AGS/AD/Tech. Note No. 463

BNL MAD Program Notes

Upgrade to Version 7C

J. Niederer

July 14, 1997

BNL MAD Program Notes

Upgrade to Version 7C

J . Niederer

July 14, 1997

1. Introduction
Extensive changes have been made to the BNL enhanced version of the MAD Program used at the

AGS. All names in the program command language have been increased to at least 16 characters in length
to agree with CERN versions, and to help with local machine element naming practices. The prevailing
CERN practice of describing a lattice in terms of locations of magnets has been added, along with
corresponding lattice editing features. Other changes allow unique features of our BNL Version to be used
for improved matching, in particular for CERN LHC and other applications. Similarly the graphics of the
BNL Version can be used on other lattices expressed in terms of MAD Version 8 conventions without
further changes. Multiple passes with iterated error distributions, and corresponding graphics, can now be
obtained with new features of the BNL Runtwiss command. This new version will be called BNL MAD
Version 7.C, and older versions will no longer be maintained. New dictionary versions are provided. Most
changes should otherwise be transparent to present lattice descriptions and command files, except of course
for the older mistakes which have been corrected. Trial execution and dictionary files may be copied from
the directory: /diskll/jn/CMad+ on the AGS ad1 computer.

2. CERN Sequence Commands
A style of describing lattices in terms of the emplacement of magnets has evolved at CERN, along

with several schemes for simplifying the repeated use of similar classes of magnets. A series of names of
magnets and their positions, along with any attributes that differ from those of some common class, is
called a Sequence, with a particular format. The details are described in the CERN Version 8 MAD
Manuals. The program provides for the drifts, and repetitious attributes, such as magnet lengths and
strengths, offering some conveniences over the usual LINE kind of description. A similar internal lattice
map is generated from either of the two descriptions, which is then used by the various matching and track-
ing services. The idea is to begin with some standard lattice, and apply edit features to modify a copy of
the standard lattice for a particular study, such as an insertion match. These mechanics preserve the master
version, and offer a kind of history of what has been tried.

These features are provided in the BNL version by translating the Sequence list of statements about
elements and their positions into an open ended direct access file, composed as a linked list, using the BNL
MAD table buffer service. Edit commands insert, move, or delete various elements, or rotate to a new
starting element, or reflect the entire lattice. All of this is done by merely changing pointers in a table. As
these tables can be long enough to influence memory caching and paging, the table buffering service is
used to reduce their resident size to a few thousand words. The lattice map building section, invoked by
the USE command, follows the linked element list of the sequence table. It generates drifts and copies of
standard classes of magnet as needed. This is all rather similar to the inheritance feature of cloning copies
of basic magnetic elements in an object oriented environment. Sequence services are coded in the new
routines Seqdef, Seqedit and Seqtonzup, and their supporting routines, all in the Line.C Source File.

It should be remarked that the MAD Program is also undergoing considerable modification at CERN
in several directions. One direction is a complete rewrite in terms of the C++ language and is well in pro-
gress. Another direction appears to be rather similar to what has been done at Brookhaven, but without the
graphics and menu based control. There is some concern as to how these programs will be handled in the m

- 2 -

future, and by whom, as specific LHC demands compete with further program development and distribu-

3. The Error Section
The Error section of BNL MAD has been rewritten so the basic error generating features can be

repeated in place, and thus be reusable. Studies can now iterate error distributions with changed seeds and
random selections without piling up new modules or other nuisances of the original coding. This section
now calls INCLUDE files generated before compilation from the dictionary definitions of its commands to
obtain its structure definitions, like most of the rest of BNL MAD.

4. Cycling Error Distributions with Runtwiss
Twiss tracking over iterated error distributions can now be done through new features of the

Runtwiss command. This is a menu or batch operated command that will cycle program parameters on
Vary commands, and / or various Error kinds of commands. For each parameter change, it performs a
Twiss tracking run, optionally draws the Twiss computation, then makes another change, and repeats
through the repertoire of prescribed changes. This command is quite effective in showing the range of
expected spread in variables such as the optical functions as a given parameter is varied.

New attributes for the Runtwiss command are:
Errorlist List of the names of Ehgn and / or Efield alignment and field error description com-

mands to be applied. (Xmenu form of list.) For each new value of a seed for the
random generator, all errors implied by the list of error commands are evaluated, and
a Twiss pass is performed.
Optional list of integers to be used as seeds for the MAD random number generator -
one seed per error and Twiss pass. (Mvector form - integer vector)
1. Number of trials (passes) if Seedlist not given. Small integer.
2. Increment to be added to current seed. Large integer. Default is 7777777

Seedlist

Nseed(2)

If operated in the menu mode, the error calculations are obtained by selecting the Run Ewors button
on the main popup menu. The passes can be single stepped using the E Steps button near the bottom of the
menu. E Steps is a toggle which reverses the current setting of the single step option, which is initially off.

An example of the error sequence iteration for a spallation source booster model is given in Figure 1.
(Splash) The Figure shows the scatter expected among 50 runs for a configuration in which Gaussian field
errors are applied to various quads

The Monitor classes of lattice elements will now optionally record a copy of the optical functions
during each Twiss pass. This allows orbit readings to be tabulated over a series of orbit passes by the
Runtwiss command. A given monitor will record orbit functions when the logical flag Optics is set on the
statement that defines the monitor. A table is obtained by defining a Snoopy data gathering command and
its various lists and buffers, and attaching it to a Runtwiss session by means of a Rundata command. An
example data setup for the Splash example is appended.

5. Savebeta and BetaO
The Savebeta command causes a snapshot of the principal orbit functions to be taken at a particular

point in an FTwiss run. It delivers output to a BetaO module, which is suitable as input to FTwiss,
FMatch, and FConstraint commands. The functions recorded on the BetaO module are: Betx, Bety, Alfx,
Alfy, Dx, Dy, Dpx, Dpy, Mux, Muy, T, Pt, Wx, Wy, Phix, Phiy, Ddx, Ddy, Ddpx, Ddpy, Dmux, and
Dmuy. The command and its use corresponds to the CERN v8 descriptions.

Attributes for Savebeta are:
Label
Place

The name of the BetaO module to be generated.
The place in the lattice where the optical functions are to be gathered. Normally this
is the naine of a lattice element. For a Beam Line, the end of the line is used.

6. General Coding Changes
Most of this upgrade also involves code changes intended to make names of program vari-

ables, and coding patterns and styles more consistent throughout the program. As programs age,
they get harder to maintain and accept changes and new features safely unless this kind of periodic
housekeeping and busy work is done. In principle, this also makes it easier for others besides the
authors to penetrate the code of a program. The longer name lengths have caused considerable com-
plication in the code, as they introduce name / character data groups which no longer have the same
8 byte lengths in the data base as the numeric data groups. About half of the approximately 150,000
lines of code have been changed in some way during the last two months, albeit much of it cosmeti-
cally for better clarity. Users of the program should benefit from increased speed, corrected mis-
takes, and fewer crashes.

7. Coding Style
The internal coding of BNL MAD, being based on an object oriented data base, has to deal

with various data types, often in a rather invasive and unsatisfactory manner. The particular BNL
style used leads to fast, reliable execution of the major computations, but also to considerable com-
plications that some think are often handled better by other programming languages. Without labor-
ing these matters, several naming conventions have been adopted to reduce the confusion caused by
intermixing the various types of data in the code and the data base interface. The intent is to spare
the casual reader of the code the nuisance of looking up the data types while trying to understand
what a given statement is trying to do. With proper attention to coding style, and particularly in
naming variables, it is hopefully evident whether a given statement is dealing with decimal or integer
arithmetic, logical expressions, or names and character strings.

7.1. Data Base Names
The names of BNL MAD data base variables generally have a prefix, an underscore, and a

name part that is the same as the name of the variable in the dictionaries that define the MAD user
language. This naming scheme has been adapted from a quite similar one used for the SLAC control
system software. These names are generated by a step in a UNIX make procedure that reads the dic-
tionary that defines the user language, and converts most of the entries into INCLUDE files that
resemble Fortran structure definitions. Such variables also have an index, which is used in the sense
of a pointer to the first member of the data base structure holding the variable. This kind of an index
- "pointer" normally addresses 8 byte data base words, and in the original MAD style, begins with
the letter '5".

quad-l(ielem)

quad-kl(ielem)

quad-tilt(ielem)

Most such names of variables have a corresponding integer equivalence as part of the structure, so
any pointers and tags which are part of the data group can be referenced. Data base names of
integers all begin with the letter 'lm". A typical data group, integer or real, has the form

I Number 1

Pointers such as ielem also have to deal with 4 byte variables, such as reals and integers, as
well as 8 byte variables, such as decimal numbers. The convention used to name 4 byte pointers is to
repeat the first character of the corresponding 8 byte structure pointer:

- 4 -

mquad-kl(iielem + kktag)

mquad-kl(iielem + kkptr)

This first example refers to the tag associated with the data group for the quad-kl variable. A tag is
a small integer which is set if the variable was found on the statement which defined this particular
quad. There is a specific value of the tag for each data type, integer, real, name, etc. The second
example refers to a pointer that shows the program how to derive the value of k l from a parameter
expression. All names of numerical values are in lower case.

7.2. Names, Characters
All variables which either are of a name data type in the data base, or are declared as a simple

character data type in Fortran, are supposed to have their first character written in capitals, to note the
data type. This applies also to Character, String, Word, Beam, Place, Vari, and Namegroup data
types of the data base, all of which involve at least one 8 character word.

7.3. Real * 4
Four byte reals are used mainly for graphics, as the SGI graphics routines used at BNL deal

with relatively small screen dimensions in pixels, and expect four byte arguments. An effort has
been made to prefix names of these variables with the letter "r" in the two graphics section source
files, but not consistently in the data base. Pointer references to such 4 byte names in the data base
also have the first letter of the pointer repeated:

axis-wends(iiaxis)

This 4 byte situation could be handled better, but involves a lot of work in parts of the program
which are not likely to be visited very often.

7.4. Logicals
Logical variables in the data base are stored usually as 8 byte reals (= 0. or I.) , and often are

not obviously of logical data type from their name. Within the program most logicals not from the
data base have an underscore somewhere in the name of the variable, such as ergag. The main
exception is error.

8. Manuals
Manuals covering BNL changes to the MAD Program are found in the directory

/diskll/jn/Docum+ of the AGS ad1 computer. These are written in the older UNIX roff format.
These manuals can be printed and viewed with the UNIX based commands:

alias teq. 'cat * I tbl I eqn I psroff -t -ms > ppp; lp ppp'
alias teqV. 'cat * I tbl I eqn I psroff -t -ms > ppp; xpsview ppp'

teq. Madc.man

The current upgrades have so far been covered in:

Madc.man
Fmatch.man
Twissdriver.man
Snoopyoman

: 5

!! Demo File for Error Iterations on Splash Lattice
1 File = "Madc .data"
1 July 7 , 1997

Ef 1 Efield, QHA, DKL(1) = 0.01 * TGAUSS(2.5) * 0.50 * KHA / Brho
Ef-2 Efield, QVA, DKL(1) = 0.01 * TGAUSS(2.5) * 0.50 * KVA / Brho
Ef-3 Efield, QHC, DKL(1) = 0.01 * TGAUSS(2.5) * 0.50 * KHC / Brho
Ef-4 Efield, QVS, DKL(1) = 0.01 * TGAUSS(2.5) * 0.50 * KVS / Brho
Ef-5 - Efield, QHE, DKL(1) = 0.01 * TGAUSS(2.5) * 0.50 * KHE / Brho

a Field Error Definitions, for Quads.

Store

1 Twiss, with dP to Be Varied.
Pdelta Param = 0.
Ftw - 1 Ftwiss, Drawcom = DrawC5, Deltap = Pdelta

1 Variables to Be Tabulated. Beta at Horizontal Monitors.
Var listl" Varlist, N1 = 48,
PUEA1(1:-2)[BETAX], PUEA2(1:-2)[BETAX], PUEA3(1:-2)[BETAX],
PUEA4(1:-2)[BETAX], PUEA5(1:-2)[BETAX], PUEA6(1:-2)[BETAX], 0 0 0 .

1 Labels for Snoopy Data Fields, 48 Monitors.

PUEAl , PUEA2, PUEA3, PUEA4, &
PUEA5, PUEA6 , PUEA7, PUEA8, &

"Lab listl" Xmenu, N1 = 48,

&
&
&

&

. e . .

Snoopy - Data Gathering Service.
= "Var listlll, Labels = "Lab - listlll, &

Table = rvSNP-quadslr, &
Types = SNP-typs 1 I' , &
Buffer = "SNPhffl", &
Freq = 1

SNPbuf f 1 Buffer Tabletyp = lf#Snoopy#ll, Words = I, &
Variable = 48, Items = 1, &
Events = 20, Records = 5, &
Spares = 3000, -All, Take, &

! Buffer Description - Holds Data Gathered by Snoopy at End of Twiss Pass.

Write, Clear, -Recover, Direct

! List of Snoopy Commands to Be Operated during Twiss. Attach to Rundata.

! D&a Types Vector for Snoopy Command. Passed to Snoopdumps.

1 Snoop Dump Command, to Print Group of 12 Monitors from Table.

! Scale Factors for Printing Snoopy Fields. Default Here.

! Masks for Selecting Snoopy Fields to Print. 1 - 12 Here.

"SNP listll' Xmenu, "SnoopSPl 'I

"SNP - typsl" Mvector N1 = 48, 48 A 0

"SNP - dumpla" Snoopdump, Snoop = l1SnoopSP1lf, Fact = I'SP1 - facts", &
Mask = "SP1 masksa", lcol = 160

IlSP1 facts" Rvector, N1 = 48, 48 1.

IlSP1 - masksall Mvector, N1 = 48, 48 A 0, Mvalue(1) = 12 A 1

, ' 5 6

Vary f o r Momentum S e n s i t i v i t y .
#-del t ap Fvary, Pde l t a , S tep = .001, F i l l , Nsteps = 21

Vvv-1 i s t Xmenu = "V - de l t ap"

. 1 Drawing L i s t f o r Runtwiss Rundata. D r a w from Vector, Schema, e tc
D r w - l i s t Xmenu = DrawC5, T.schema, Tl.orbx, T2.orbx

I Define Rundata t o Gather Various L i s t s f o r Runtwiss.
Rdtw Rundata Model = MAD, Machine = C i r c ,

D r a w l i s t = D r w - l i s t ,
V a r y l i s t = V v v l i s t " ,

Snoopl i s t = "SNP l i s t l " ,
S l i d e r s = SL-PFielt

Ftwiss = F t W i ,

! Erro r L i s t , Practice Seed L i s t f o r Runtwiss.
" E r r l i s t " Xmenu = Ef-1, E f 2 , E f 3 , E f 4 , E f 5
"See8-list" Mvector = 1 2 3 4 5 6 7 8 9 5 2345x7891, 345678912, 456789123,

567891234
&

-

1 Define a Runtwiss Command with Er ro r s ,
R t w w Runtwiss Menu, Plotdef = IsPdef. ax" ,

E r r o r l i s t = " E r r list",
Nseed = 50, 77777777

! S e e d l i s t = llSeed-list"
Endstore

Enable Rundata, Operate Runtwiss Session.
Rdtw : R t w w

s P r i n t Table L i s t ings by Groups of 1 2 Monitors.
"SNP_dumplatl ; SNP-dumplb" ; tlSNP-dumplclr ; SNP-dumpld"

RETURN

&
&

