

BNL-104877-2014-TECH

AGS/AD/Tech Note No. 461;BNL-104877-2014-IR

CALCULATED FORMULAS FOR CONTROLLING THE AGS CHROMATICITY

E. J. Bleser

April 1997

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

For Internal Distribution Only

Accelerator Division Alternating Gradient Synchrotron Department BROOKHAVEN NATIONAL LABORATORY Upton, New York 11973

> Accelerator Division Technical Note

AGS/AD/Tech. Note No. 461

CALCULATED FORMULAS FOR CONTROLLING THE AGS CHROMATICITY

E. Bleser

April 23, 1997

CALCULATED FORMULAS for CONTROLLING THE AGS CHROMATICITY

AGS Accelerator Division Technical Note 294 documented the field measurements for a typical AGS high field sextupole. It also gave some formulas for controlling the chromaticity in the AGS based on these field values and the existing configuration of magnets in the AGS. In the summer of 1994 the configuration of the high field horizontal sextupoles was changed. Four more magnets were added so that there were horizontal sextupoles in all 12 of the Straight Sections 13. This note documents MAD calculations of the formulas to be used with the new configuration.

Chromaticity is defined in this note as the linear change in tune with the fractional change in momentum:

$$Q' = dQ/[dP/P]$$

(Chromaticity frequently is defined also as the fractional change in tune divided by the fractional change in momentum.) Recent MAD calculations give :

$$P * dQ'_{X} = 1.7593 * I_{H} - 0.5961 * I_{V}$$
$$P * dQ'_{Y} = -0.8306* I_{H} + 1.2476 * I_{V}$$

where:

P = the momentum in GeV/c dQ'_{X} = the change in the horizontal chromaticity dQ'_{Y} = the change in the vertical chromaticity I_{H} = the current in the horizontal sextupole string in Amperes I_{V} = the current in the vertical sextupole string in Amperes.

It is convenient to record the inverse of this matrix:

 $I_{H} = 0.7340 * P * dQ_{X} + 0.3507 * P * dQ_{Y}$ $I_{V} = 0.4887 * P * dQ_{X} + 1.0350 * P * dQ_{Y}$

The calculations were carried out at injection, transition, and extraction. The results agreed to the order of a per cent and are presented here as the average of the three calculations. The tune did not change enough to make the alternate definition of chromaticity matter. These calculations were for a bare, dc machine.

When the AGS operates with a large tune shift produced by strong currents in the high field quadrupoles, the beta and dispersion functions may change significantly. The product of the sextupole magnet strength, the value of the beta function at the sextupole, and the value of the dispersion function at the sextupole determines the change in the chromaticity reported above. Changing the tune may change these values by as much as 20%, and thus change the formulas given above by an equal amount.