

BNL-104871-2014-TECH

AGS/AD/Tech Note No. 455;BNL-104871-2014-IR

AGS Tune Quad Production Measurements

E. J. Bleser

January 1997

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

For Internal Distribution Only

Accelerator Division Alternating Gradient Synchrotron Department BROOKHAVEN NATIONAL LABORATORY Upton, New York 11973

> Accelerator Division Technical Note

AGS/AD/Tech. Note No. 455

AGS Tune Quad Production Measurements

E. Bleser

January 14, 1997

AGS TUNE QUAD PRODUCTION MEASUREMENTS E. BLESER

INTRODUCTION

This note reports on the magnetic measurements made on the high field quadrupoles which were installed in the AGS in the early 1990's as the Horizontal and Vertical Tune Quads and as the Skew Quads. It consists of three parts. Part A summarizes the available measurements. It includes results on 22 of the30 quads installed. Part B is an example of a detailed report which is generated for each magnet. These reports will not be given wide circulation, but they will be stored as part of the permanent record for each magnet. Part C is a data sheet for these magnets.

A. SUMMARY OF RESULTS

This note reports on results from 22 measured quadrupoles. The magnets were measured by the AD Group and the results were reported in their TMG Series of notes as well as being made available to us on the VAX computer.

The nomenclature we shall use is as follows:

$$B_{y}(X) = B_{0} + B_{1} * X + B_{2} * X^{2} + B_{3} * X^{3} + \dots$$
$$B_{x}(X) = A_{0} + A_{1} * X + A_{2} * X^{2} + A_{3} * X^{3} + \dots$$

In a quadrupole the only allowed terms are B_1 and B_5 etc. Those magnets installed as skew quads are rotated 45 degrees in effect interchanging A1 and B1.

All the measurements are DC, and are made with a rotating coil, 36.5 inches long, which projects well outside the ends of the magnets. Therefore all our data is in the form of integrated field values, written as B_1*L_{eff} etc. Figure 1 shows a typical plot of B_1*L_{eff} , the integrated gradient, versus the current, I. Figure 2 is a more interesting plot of the integrated gradient divided by I versus I. The simple linear fit shown in Figure 1 does not give a good fit to the data when it is plotted on the greatly expanded scale of Figure 2. The fit shown in Figure 2 is derived from a sixth power fit to the plot in Figure 1.

B1 *L_{eff} =
$$q_0 + q_1$$
*I + q_2 * I² + q_3 *I³ + q_4 *I⁴ + q_5 *I⁵ + q_6 *I⁶

Table 1 gives the results of this fit.

TABLE 1					
q0 1.7718E-03					
q1	1.7193E-3				
q2	6.3848E-8				
q3	-6.4030E-11				
q4	-1.1111E-13				
q5	2.5804E-16				
q6	-1.3982E-19				

The precision used here may seem excessive but something of this sort is needed to give a good fit in Figure 2, the classic form of presenting precision magnet data. In this case there is very little saturation but a very visible residual field effect. The relative measurement accuracy has been reported in previous results (Booster Technical Note 174) as one part in ten thousand. This applies to all of these quads. The absolute measurement accuracy (essentially the area of the measuring coil) must be known to compare these quads against the AGS main magnets but has not been calibrated and at present can be estimated to be accurate to one or two per cent.

Figure 3 is a plot of B1*Leff/I at 500 and at 800 Amperes for the 22 measured magnets. It shows that at 500 Amperes the average for the measured magnets is:

 $B1*L_{eff}/I = 0.001~735 \pm 0.000~003$ T/A

and that the saturation in each magnet is very similar from magnet to magnet. Magnet number 18 matches this average value and will be used to typify the entire collection of magnets. The first allowed term, B5, is so small that the results do not seem reportable.

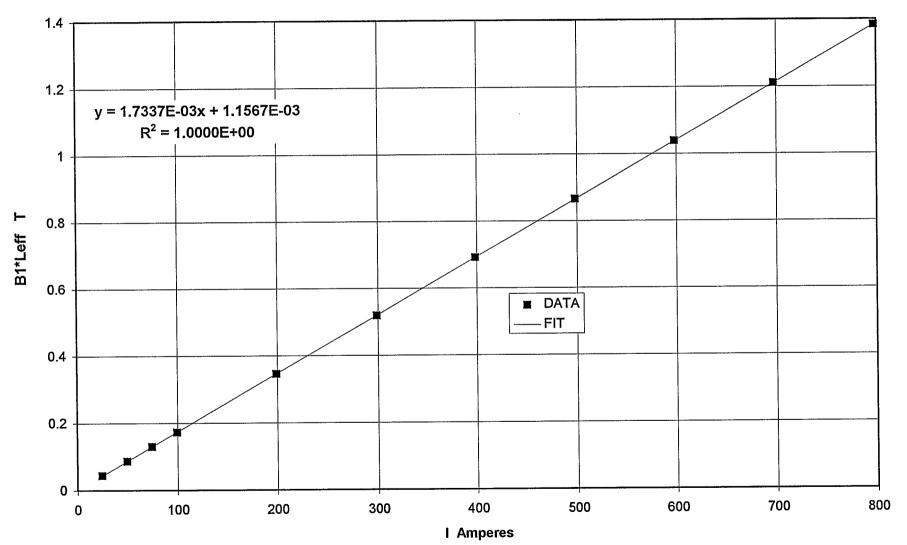
B. STANDARD MEASUREMENT REPORT

The appended report has been generated and permanently stored for each magnet. It is intended to be self-explanatory.

C. PARAMETER SHEET FOR THE AGS TUNE QUAD

The appended data sheet is an attempt to provide a fairly complete description of a magnet.

ACKNOWLEDGMENTS


r,

The analysis and the conclusions in this note are the responsibility of the author alone and represent his sole contribution to this effort. The measurements were carried out by the Measurements Group of the Accelerator Development Division, using a system developed over many years by many people, with a particular effort having been expended over the past several years to adapt the system to the present application.

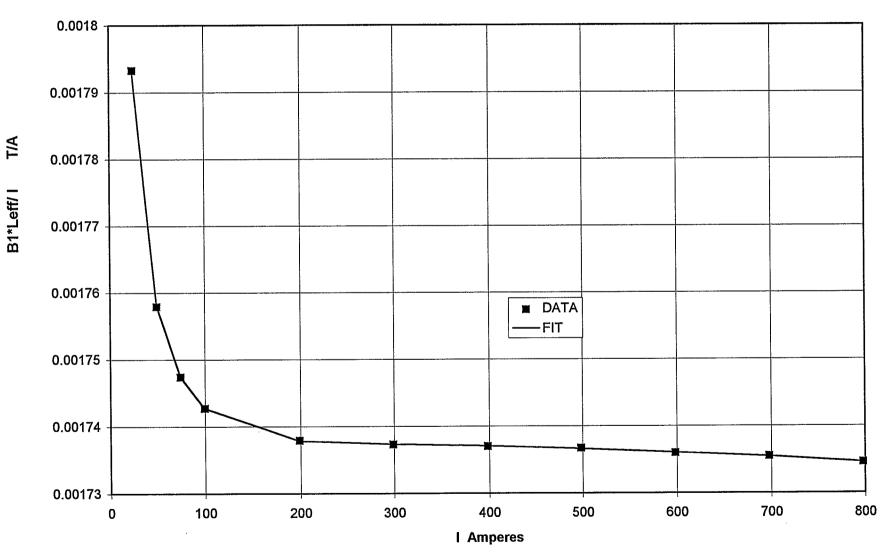
Figure 1

B1*Leff vs I

QNU018

- 4 -

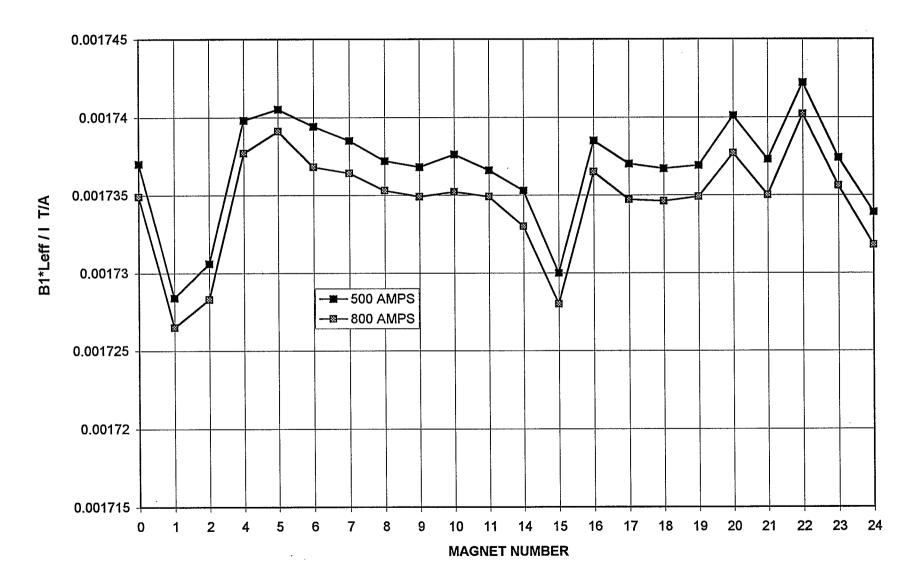
۰


·. .

.

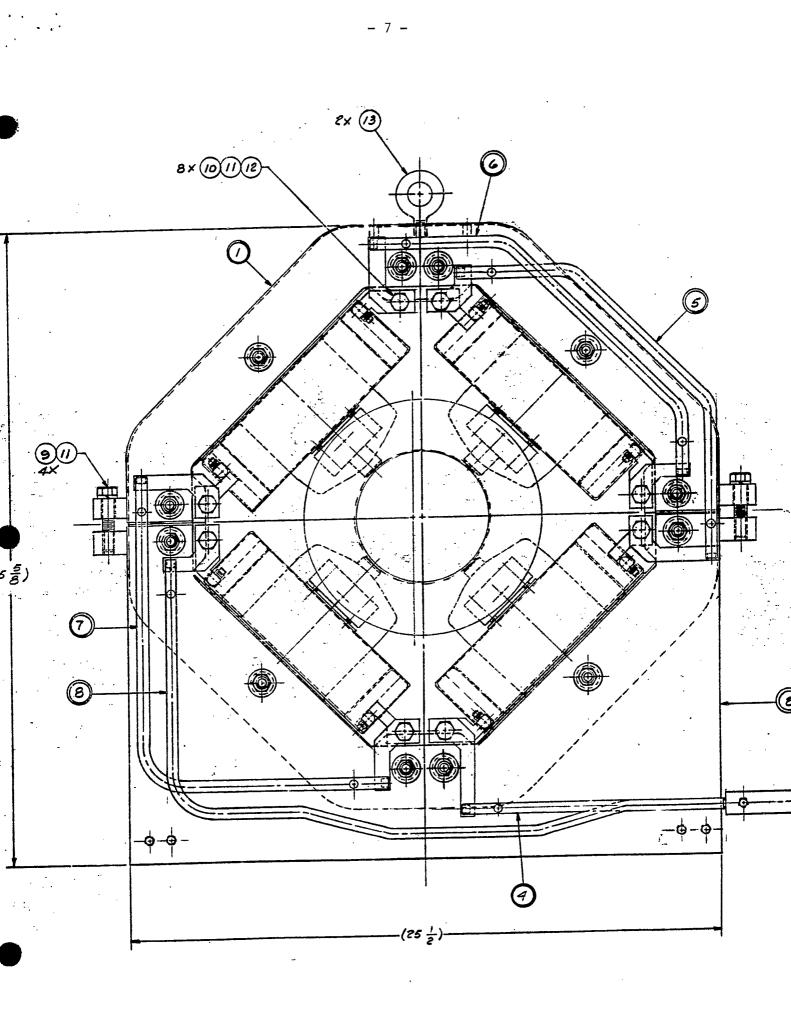
B1*Leff / I vs I QNU018

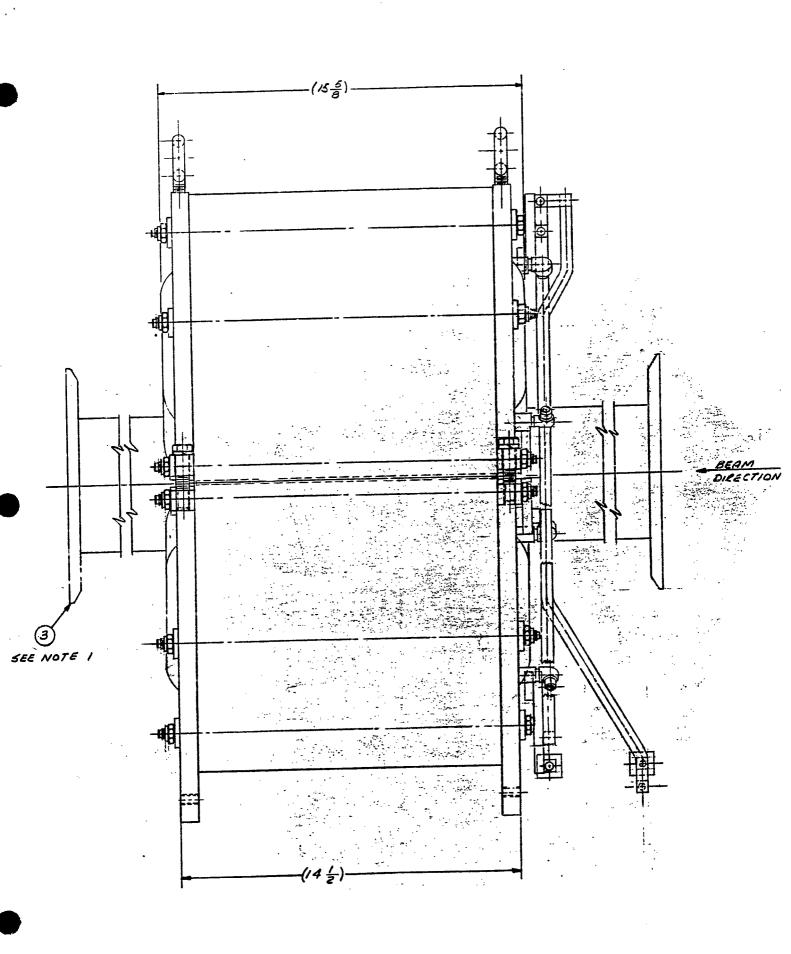
.


ו 5 ו

•_ •

3 -, -





н 6-

٠

з ⁻ -, -

- 8 -

B. STANDARD MEASUREMENT REPORT

·• . '

ANALYSIS of FIELD SHAPE MEASUREMENTS

	الان من عن جو بي يا هو الله من من جو الي بن عن عام الله بن عن عن بي الحاص جد بي ال ال هو الي ال هو ال
MAGNET TYPE	AGS TUNE QUAD
MAGNET NUMBER	QNU018
RUN NUMBER	QNU018.101 TX
DATE of MEASUREMENT	17-Mar-90
DATE of ANALYSIS	11-Feb-92

SHORT SUMMARY of MAGNET QUALITY

SUMMARY of QUADRUPOLE FIELD RESULTS

B1*L _{eff} /I @ 500 Amps	1.7367E-03	T/A
B1*L _{eff} /I @ 800 Amps	1.7346E-03	T/A

 SATURATION EFFECT
 1.00123

 [B1*Leff/I @ 500 Amps]/[B1*Leff/I @ 800 Amps]

SUMMARY of HARMONIC CONTENTS

	AVG	STD DEV	UNITS
B2/B1	-1.12E-02	3.20E-04	m ⁻¹
A2/B1	1.93E-03	2.90E-04	m ⁻¹
B3/B1	1 09F-01	8 40F-03	m ⁻²

A3/B1	7.00E-02	1.30E-02	m ⁻²
· ·			

B4/B1	-2.78E-01	9.30E-02	m ⁻³
A4/B1	-1.87E-03	1.20E-01	m ⁻³

SUMMARY of ALIGNMENT PARAMETERS

xo	2.71E-04	6.50E-06	m
уо	-1.33E-04	1.30E-06	m
Theta	-5.68E-04	3.70E-05	radians

SUMMARY of RESIDUAL FIELDS

B0*L _{eff}	6.75E-05	T*m
A0*L _{eff}	1.70E-06	T*m
B1*L _{eff}	1.88E-03	T

BASIC MEASUREMENT RESULTS

· ·

=========	=======================================					- 4.44
Г	1	B1*L _{eff}	B0*L _{eff}	B2*L _{eff}	B3*L _{eff}	B4*L _{eff}
F	AMPS		T*m	T/m	T/m ²	T/m ³
		0.00188	6.750E-05	-9,40E-05	5.80E-04	8.30E-02
1	0.004			-7.00E-04	7.50E-03	1.70E-02
2	24.529	0.04399			9.40E-03	-8.10E-02
3	49,502	0.08702	8.900E-05	-1.10E-03		
	74.451	0,1301	9.910E-05	-1.40E-03	1.80E-02	1.20E-01
4		0.17318	1.113E-04		1.50E-02	-4.70E-02
5	99.373	the second s		-3.70E-03		-1.60E-01
6	199.141	0.34609				-2.00E-01
7	298.774	0.51907	2.051E-04	-5.80E-03		
. 8	398,529	0.69226	2.472E-04	-7.70E-03	7.90E-02	
		0.8655		and the second design of the s	9.20E-02	-1.80E-01
9	498.351			the second se		-3.00E-01
10	598.176	1.03842				-2.50E-01
11	697.751	1.21097	3.855E-04			
12	797.565	1.38345	4.284E-04	-1.60E-02	1.60E-01	-3.30E-01

Г	1	A1*L _{eff}	A0*L _{eff}	A2*L _{eff}	A3*L _{eff}	A4*L _{eff}
	AMPS	T		T/m	T/m ²	T/m ³
	0.004	1.10E-04	1.70E-06	-1.50E-05	3.60E-03	3.50E-02
2	24.529	9.00E-05	-3,70E-06	-1.30E-04	3.60E-03	-1.50E-01
2	49.502	6.00E-05	-8.50E-06	1.20E-04	8.00E-03	-5.50E-02
	74.451	4.00E-05		5.80E-04	1.40E-02	-9.20E-04
4	99.373	1.00E-05	-2.04E-05	4.50E-04		-1.90E-02
6	199.141	-7.00E-05		6.20E-04		-2.40E-02
	298.774	-1.90E-04	-6.76E-05	8.40E-04		
8	398.529	-3.20E-04	-9.04E-05	1.40E-03		
9		-3.80E-04		1.50E-03		
10		and the second design of the s		2.00E-03		
11	697.751	-6.10E-04		2.50E-03		
12				2.30E-03	8.10E-02	-1.20E-01

٦

•

GRADIENT and POSITION ANALYSIS

× , :

Theta X0 yо 1 B1*L_{eff} /I B1*L_{eff} /I A1/B1 B0/B1 A0/B1 AMPS T/A T/A radians m m 0.004 1 2 24.529 1.7933E-03 1.7155E-03 -3.24E-04 3.58E-04 -1.37E-04 3.06E-04 -1.24E-04 3 1.7579E-03 1.7194E-03 -5.32E-04 49.502 -1.36E-04 74.451 1.7218E-03 -5.03E-04 2.82E-04 4 1.7474E-03 -1.31E-04 5 99.373 1.7427E-03 1.7235E-03 -5.26E-04 2.82E-04 1.7283E-03 -1.32E-04 6 199.141 1.7379E-03 -5.03E-04 2.78E-04 2.75E-04 -1.35E-04 7 -5.62E-04 298.774 1.7373E-03 1.7309E-03 8 398.529 1.7370E-03 1.7323E-03 -6.04E-04 2.67E-04 -1.34E-04 -1.34E-04 1.7367E-03 -5.58E-04 2.64E-04 9 498.351 1.7329E-03 -1.34E-04 1.7360E-03 1.7328E-03 -5.85E-04 2.69E-04 10 598.176 -1.32E-04 -5.87E-04 2.67E-04 11 697.751 1.7355E-03 1.7328E-03 -1.34E-04 -6.24E-04 2.65E-04 12 797.565 1.7346E-03 1.7322E-03

AVERAGE(100 to 800 Amps) =	-5.68E-04	2.71E-04	-1.33E-04
STANDARD DEVIATION =	3.70E-05	6.50E-06	1.30E-06

Residual Field Subtracted

HARMONIC ANALYSIS ~~~~

.

•

٠.

	1	B1*L _{eff} /I	B0/B1	B2/B1	B3/B1	B4/B1
ľ	AMPS	T/A	m	m ⁻¹	m ⁻²	m ⁻³
1	0.004	4.6900E-01	3.60E-02	-5.00E-02	3.12E-01	4.40E+01
2	24.529	1.7933E-03	1.77E-03	-1.59E-02	1.71E-01	3.80E-01
3	49.502	1.7579E-03	1.02E-03	-1.32E-02	1.08E-01	-9.30E-01
4	74.451	1.7474E-03	7.60E-04	-1.10E-02	1.35E-01	9.30E-01
5	99.373	1.7427E-03	6.40E-04	-1.19E-02	8.94E-02	-2.70E-01
6	199.141	1.7379E-03	4.60E-04	-1.07E-02	1.08E-01	-4.70E-01
7	298.774	1.7373E-03	4.00E-04	-1.13E-02	1.15E-01	-3.80E-01
8	398.529	1.7370E-03	3.60E-04	-1.11E-02	1.14E-01	-1.70E-01
9	498.351	1.7367E-03	3.40E-04	-1.13E-02	1.06E-01	-2.00E-01
10	598.176	1.7360E-03	3.30E-04	-1.11E-02	1.18E-01	-2.90E-01
11	697.751	1.7355E-03	3.20E-04	-1.11E-02	1.08E-01	-2.10E-01
12	797.565	1.7346E-03	3.10E-04	-1.14E-02	1.13E-01	-2.40E-01

AVERAGE(100 to 800 Amps) =	-1.12E-02	1.09E-01	-2.78E-01
STANDARD DEVIATION =	3.20E-04	8.40E-03	9.30E-02

ſ	I	A1/B1	A0/B1	A2/B1	A3/B1	A4/B1
	AMPS	radians	m	m ⁻¹	m ⁻²	m ⁻³
1	0.004	6.10E-02	0.00088	-8.25E-03	1.89E+00	1.90E+01
2	24.529	2.00E-03	-0.00009	-2.89E-03	8.20E-02	-3.40E+00
3	49.502	6.50E-04	-0.0001	1.41E-03	9.16E-02	-6.30E-01
4	74.451	2.90E-04	-0.00012	4.48E-03	1.10E-01	-7.00E-03
5	99.373	6.70E-05	-0.00012	2.58E-03	9.88E-02	-1.10E-01
6	199.141	-2.10E-04	-0.00013	1.79E-03	7.01E-02	-6.80E-02
7	298.774	-3.60E-04	-0.00013	1.62E-03	8.03E-02	4.90E-02
8	398.529	-4.60E-04	-0.00013	2.05E-03	6.86E-02	2.70E-01
9	498.351	-4.40E-04	-0.00013	1.79E-03	6.17E-02	-6.40E-02
10	598.176	-4.90E-04	-0.00013	1.92E-03	5.72E-02	-1.00E-01
11	697.751	-5.00E-04	-0.00013	2.05E-03	6.44E-02	1.00E-01
12	797.565	-5.50E-04	-0.00013	1.68E-03	5.87E-02	-8.90E-02
	AVERAGE(100 to 800 Amps) =		1.93E-03	7.00E-02	-1.87E-03	
	STANDA	RD DEVIATION	1 =	2.90E-04	1.30E-02	1.20E-01

C. PARAMETER SHEET FOR THE AGS TUNE QUAD

Issue Date: October 25, 1996

6

PROTOTYPE NAMEQNU (AGS TUNE QUAD & SKEW QUAD)MAGNET CLASSQUADRUPOLE (Uses booster quad laminations)NUMBER OF MAGNETS30

MECHANICAL

× ...

CORE	INCHES	MILLIMETERS		REF
LAMINATION LENGTH	13	330.2		а
TOLERANCE SPECIFIED	0.003	0.076		а
TOLERANCE MEASURED	#N/A	#N/A		
STRUCTURAL LENGTH	14.5	368.3		а
COIL LENGTH	15.625	396.9		a
OVERALL LENGTH	17.5	444.5		a
APERTURE SHAPE	RC	DUND		
RADIUS AT POLE TIP	3.25	82.55		a
TOLERANCE SPECIFIED	0.003	0.076		
TOLERANCE MEASURED	0.002	0.051		
POLE WIDTH	5.142	130.6		a
CORE HEIGHT	23.15	588.0		а
CORE WIDTH	23.15	588.0		а
LAMINATIONS				
MATERIAL	ARMC	о м-36		а
COATING	AISI T	YPE - C5		a
COATING THICKNESS	0.0002	0.005		а
OVERALL THICKNESS	0.025	0.6		a
APPROX LAMS PER BLOCK	520			
QUADRANT BLOCK WEIGHT	276.5	125.4	POUNDS, KG	a
TOLERANCE SPECIFIED	#N/A	#N/A	POUNDS, KG	а
TOLERANCE MEASURED	#N/A	#N/A	POUNDS, KG	
VACUUM PIPE			-	
HEIGHT - OUTSIDE	6	152.4		b
WIDTH - OUTSIDE	6	152.4		b
WALL THICKNESS	0.063	1.6		b
TOLERANCE SPECIFIED	0.003	0.1		b
TOLERANCE MEASURED	#N/A	#N/A		
HALF HEIGHT - INSIDE	2.937	74.6		
HALF WIDTH - INSIDE	2.937	74.6		
MATERIAL	SS	304		b
RESISTIVITY	78		MICRO-OHM CM	b
TOLERANCE SPECIFIED	#N/A		MICRO-OHM CM	b
TOLERANCE MEASURED	#N/A			

MAIN COIL

нд 4 с ⊮ Када − К З

ATI					
	COIL	INCHES	MILLIMETERS		REF
	TURNS PER POLE	12			a
	POLES PER MAGNET	4			a
	RESISTANCE PER MAGNET	8.4		MILLIOHMS	a
	INDUCTANCE PER MAGNET - DC	1.5		MILLIHENRY	С
	COIL AREA	3.5	2277		
	CONDUCTOR				
	MATERIAL	OFHC	COPPER		a
	SHAPE	SQ	UARE		
	WIDTH	0.472	11.99		a
	HEIGHT	0.472	11.99		a
	COOLING HOLE DIAMETER	0.236	5.99		a
	CONDUCTOR AREA	0.179	115.51		a
	LENGTH PER POLE	624	15850		a
	LENGTH PER MAGNET	2496	63398	ļ	а
	INSULATION				
	MATERIAL	EPOXY F	IBERGLASS		a
	THICKNESS	0.01	0.25		а
	GROUND THICKNESS	0.02	0.51		а
	GROUND TEST	2		kVOLTS	a
	IMPULSE TEST	3		kVOLTS	a
	COOLING				
	CIRCUITS PER MAGNET	4			a
	FLOW RATE PER MAGNET	2.5		GALLONS/MINUTE	а
	INPUT PRESSURE	55		PSI	a
	TEMP RISE @ RAMP to Imax	20		DEGREES F	a
	CURRENT		•		
	Imax (PS LIMIT)	800		AMPERES	С
	COIL CURRENT DENSITY @ Imax	2721	4.22	AMPERES/AREA	
	CONDUCTOR CURRENT DENSITY	4468	6.93	AMPERES/AREA	
	@ Imax		-		
	DC POWER @ Imax	5		kWATTS	
	STORED ENERGY @ Imax	0.5		kJOULES	

TUNE TRIM COIL REF MILLIMETERS INCHES COIL а 12 TURNS PER POLE POLES PER MAGNET 4 MILLIOHMS 208 RESISTANCE PER MAGNET MILLIHENRY С INDUCTANCE PER MAGNET - DC 1.5 CONDUCTOR #10 COPPER WIRE - ETP а MATERIAL а ROUND SHAPE 2.57 а DIAMETER 0.101 0.008155 5.3 AREA 15850 а 624 LENGTH PER POLE 2496 63398 LENGTH PER MAGNET INSULATION а MATERIAL а THICKNESS С **kVOLTS** GROUND TEST kVOLTS С IMPULSE TEST CURRENT AMPERES С 10 Imax (PS LIMIT) 1.9 AMPERES/AREA 1226 CURRENT DENSITY @ Imax WATTS 20.80 DC POWER @ Imax JOULES STORED ENERGY @ Imax 0.1

به ۲ ۱۳۰۵ م

MAGNETIC PROPERTIES OF THE MAIN COIL

RANDOM ERRORS			REF
Bl*Leff/I rms	0.000003	T/A	е
TYPICAL MEASUREMENTS			
B1*Leff @ I = 0	0.001880	т	е
Bl*Leff/I	0.001000	-	-
@200 AMPS	0.001738	T/A	е
6200 AMPS	0.001737	Т/А	e
0600 AMPS	0.001736	T/A	e
-	0.001735	T/A	e
@800 AMPS	0.001735	1/A	6
CALCULATIONS			
B1/I	0.004426	[T/m]/A	е
Leff	I		
@200 AMPS	0.393	meters	e
@400 AMPS	0.392	meters	e
@600 AMPS	0.392	meters	е
Q800 AMPS	0.392	meters	е
POLE TIP FIELD			
@200 AMPS	7.31E-02	т	е
@400 AMPS	1.46E-01	T	е
@600 AMPS	2.19E-01	T	e
6000 AMPS 6800 AMPS	2.92E-01	Ť	e
GOOD WILLS	2.526-01	-	-
MAGNETIC PROPERTIES OF THE TUN	E TRIM COIL		

CALCULATIONS

B1/I	0.004426	[T/m]/A	е
B1*Leff/I	0.001738	T/A	е

REFERENCES

9 **** 4 4

- a. E. RODGER, Private communication
- b. H. C. HSUEH, Private communication
- c. A. SOUKAS, Private communication

e. E. BLESER