A VERTICAL BUMP AT THE J-10 SCRAPER

E. J. Bleser

October 1996

Collider Accelerator Department
 Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Accelerator Division
Alternating Gradient Synchrotron Department BROOKHAVEN NATIONAL LABORATORY

Upton, New York 11973

Accelerator Division
Technical Note

AGS/AD/Tech. Note No. 446

A VERTICAL BUMP AT THE J-10 SCRAPER

E.J. Bleser

October 9, 1996

A VERTICAL BUMP AT THE J-10 SCRAPER

E.J. Bleser

1. SUMMARY

This note describes a possible vertical bump at the J -10 scraper using the new steering dipoles. At injection this bump can be strong enough to scrape off most of the beam.

2. INTRODUCTION

The beam scraper to be installed at J-10 in the summer of 1997 will be essentially fixed in position, and the beam will be moved onto it using local orbit bumps. At present, we have significant injection losses at vertical apertures in the ring, and our goal is to collect those losses on the scraper. This note finds that a local vertical bump using the new low field steering magnet system will scrape the injected beam very nicely. Similar bumps might be designed to scrape the beam at the E-20 dump for the winter 1997 run.

3. THE 3-BUMPS

This note documents two basic three-bump designs: the short three-bump and the long threebump. The short three-bump uses three dipoles in sequence. The long three-bump uses magnets 1 , 3 , and 4 in a sequence of four magnets. Table 1 gives the phase advances between various dipoles for "The Standard Injection AGS" (Appendix I). By skipping the second magnet in the sequence, there is always more than a 90 degree phase advance between the first and second magnets of the bump. Therefore at the second magnet of the bump the orbit has already peaked and is decreasing which means that the second magnet of the bump must just steer the orbit back to the axis at the third magnet of the bump. Thus for long three-bumps the first magnet is the strongest magnet and determines the peak amplitude. For short three-bumps this is not always true and the achievable amplitude is less than for the long three-bump. In a superperiod the new steering dipoles will be located in straight sections $2,8,12$, and 18 . Thus for each kind of bump there are four variations. The bumps will be named by the initial magnet position along with the suffix S for short bump or L for long bump. The required dipole strengths are readily calculated from the formula:

$$
\frac{\theta_{1} \sqrt{\beta_{1}}}{\sin \left(\Delta \mu_{3,2}\right)}=\frac{\theta_{2} \sqrt{\beta_{2}}}{\sin \left(\Delta \mu_{1,3}\right)}=\frac{\theta_{3} \sqrt{\beta_{3}}}{\sin \left(\Delta \mu_{2,1}\right)}
$$

where θ is the bend and $\Delta \mu_{m, n}$ is the phase at m minus the phase at n. Table 2 gives the bends calculated from this formula. At injection the maximum dc current is 12.5 Amperes which gives a bend of $1 / 3$ of a milliradian. Scaling the bends in Table 2 by this value and feeding them into

MAD gives orbits plotted in Figures 1 through 4 and summarized in Table 2. It should be noted that bumps calculated from the formula above have almost no residuals in the MAD calculations.

4. COMBINING BUMPS

In order to maximize the bump amplitude at the J-10 Scraper we combine two long bumps, J02L and J08L. The results are shown in Figure 5. The second peak at J-15 is undesirable and can be reduced by subtracting bump J12L. There is a trade off here. Too much reduction at J-15 produces an undershoot at $\mathrm{J}-18$ which may or may not matter. For discussion purposes we take the vertical bump for scraping at J-10 to be the combination of J02L, J08L, and J12L summarized in Table 3 and plotted in Figure 5. This bump is probably the most compact bump of significant amplitude that we can readily achieve. Table 4 records all the various bump orbits at the exits of the AGS main magnets for a peak bend of $1 / 3$ milliradians.

Acknowledgments

This work was made possible solely through the efforts of those who have developed and maintained the MAD Program.

TABLE 1
PHASE ADVANCES BETWEEN VERTICAL DIPOLES IN STANDARD INJECTION AGS

DIPOLE	PHASE ADVANCE FROM DIPOLE DVCJ02 DEGREES	PHASE ADVANCE BETWEEN DIPOLES DEGREES
DVCJ02	0	
DVCJ08	84.24	84.24
DVCJ12	133.56	49.32
DVCJ18	213.12	79.56
DVCK02	266.76	53.64
DVCK08	351.00	84.24
DVCK12	400.32	49.32
DVCK18	479.88	79.56

TABLE 2

GENERIC VERTICAL THREE-BUMPS

BUMP	MAGNETS	$\begin{gathered} \text { BETAY } \\ \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { MUY } \\ \text { 2PI } \end{gathered}$	BEND mr	$\begin{gathered} \text { PEAK } \\ \text { POSITION } \\ \text { EXIT of MAGNET } \end{gathered}$	\qquad
J02L	DVCJ02	15.190	0.073	1.000	J7CD	5.26
	DVCJ12	18.458	0.444	0.504	J11BD	5.29
	DVCJ18	14.697	0.665	0.749		
J08L	DVCJ08	13.817	0.307	1.000	J11BD	4.17
	DVCJ18	14.697	0.665	0.053	J15AD	6.25
	DVCK02	15.190	0.814	0.922	J19BD	3.89
J12L	DVCJ12	18.458	0.444	1.000	J16AD	4.32
	DVCK02	15.190	0.814	0.674	J19BD	6.45
	DVCK08	13.817	1.048	0.847	K3CD	4.77
J18L	DVCJ18	14.697	0.665	1.000	K3CD	5.24
	DVCK08	13.817	1.048	0.170	K7CD	4.53
	DVCK12	18.458	1.185	0.789		
J02S	DVCJ02	15.190	0.073	1.000	J7CD	4.42
	DVCJ08	13.817	0.307	-1.002		
	DVCJ12	18.458	0.444	1.190		
J08S	DVCJ08	13.817	0.307	1.000	J11BD	4.18
	DVCJ12	18.458	0.444	-0.685	J15AD	3.41
	DVCJ18	14.697	0.665	0.748		
J12S	DVCJ12	18.458	0.444	1.000	J16AD	3.20
	DVCJ18	14.697	0.665	-1.014	J19BD	4.22
	DVCK02	15.190	0.814	1.346		
J18S	DVCJ18	14.697	0.665	1.000	K3CD	4.68
	DVCK02	15.190	0.814	-0.663		
	DVCK08	13.817	1.048	0.835	* For max bend $=1$	13 mr

TABLE 3
THE J-10 VERTICAL BUMP

							J02L+	J02L+J08L
	MAGNETS	J02L	J08L	J12L	J08L			
	mr	mr	mr	mr	$-\mathrm{J12L}$			
DVCJ02	1.000			1.000	1.000			
DVCJ08		1.000		1.000	1.000			
DVCJ12	0.504		1.000	0.504	-0.496			
DVCJ18	0.749	0.053		0.802	0.802			
DVCK02		0.922	0.674	0.922	0.248			
DVCK08			0.847		-0.847			

PEAK ORBIT AMPLITUDES

for $1 / 3 \mathrm{mr}$ maximum bend
AT THE EXIT OF MAGNET

BUMP	J7CD	J11CD	J15BE	K3CD	
J02L+J08L	5.27	9.45	9.670	0.000	mm
J02L+J08L-J12L	5.25	9.46	5.500	-4.790	mm

TABLE 4
SUMMARY of VERTICAL BUMP ORBITS

		J02L	J02S	J08L	J08S	J12L	J12S	J18L	J18S
EXIT of	S	Y	Y	Y	Y	Y	Y	Y	Y
MAGNET	meters	mm							
J1BF	607.31	-0.01	-0.01						
J2BF	609.93	-0.01	-0.01						
J3CD	612.93	0.84	0.71						
J4CD	616.84	1.69	1.42						
J5AF	619.84	2.22	1.86						
J6AF	623.75	3.86	3.25						
J7CD	626.74	5.26	4.42	0.01	0.00				
J8CD	630.66	4.97	4.17	0.01	0.00				
J9BF	633.27	4.08	2.74	0.81	0.81				
J10BF	635.89	4.25	1.95	1.92	1.93				
D10	638.94	5.19	1.40	3.50	3.51				
J11BD	640.94	5.29	0.92	4.17	4.18	-0.01	-0.01		
J12BD	643.56	4.25	0.11	4.11	4.12	-0.01	-0.01		
J13CF	646.56	3.18	0.01	3.81	3.16	0.95	0.70		
J14CF	650.47	3.17	0.00	5.03	3.16	2.75	2.03		
J15AD	653.46	3.42	0.00	6.25	3.41	4.16	3.08		
J16AD	657.38	2.38	0.00	5.33	2.38	4.32	3.20		
J17CF	660.37	1.15	-0.01	3.82	1.16	3.90	2.89	0.00	0.01
J18CF	664.28	0.06	-0.01	3.61	0.07	5.19	3.84	0.00	0.01
J19BD	666.90	-0.02	-0.02	3.89	0.00	6.45	4.22	0.75	0.76
J20BD	669.52	-0.02	-0.02	3.20	0.00	6.11	3.47	1.40	1.41
K1BFM	674.57			0.95	0.00	3.92	1.03	2.49	2.50
K2BFM	677.19			0.09	0.00	4.00	0.10	3.80	3.80
K3CD	680.18			0.01	-0.01	4.77	0.01	5.24	4.68
K4CD	684.09			0.01	0.00	3.77	0.02	4.82	3.70
K5AF	687.09					2.37	0.01	3.79	2.32
K6AF	691.00					1.52	0.02	4.04	1.48
K7CD	694.00					1.08	0.02	4.53	1.04
K8CD	697.91					0.09	0.02	3.36	0.07
K9BF	700.53							2.16	-0.01
K10BF	703.14							1.53	-0.01
D10	706.19							1.10	-0.01
K11BD	708.20							0.72	-0.01
K12BD	710.81							0.08	-0.01
K13CF	713.81							0.00	0.00

	J02L+
J02L+	J08L-
J08L	J12L
Y	Y
mm	mm
0.00	-0.01
0.01	-0.01
0.86	0.85
1.71	1.70
2.23	2.22
3.88	3.87
5.27	5.27
4.98	4.97
4.89	4.89
6.17	6.17
7.43	7.43
9.45	9.46
8.36	8.37
6.98	6.03
8.20	5.45
9.67	5.50
7.71	3.39
4.97	1.07
3.67	-1.52
3.87	-2.59
3.18	-2.93
0.93	-2.99
0.07	-3.93
-0.02	-4.79
-0.01	-3.78
0.00	-2.37
0.01	-1.52
0.01	-1.07
0.02	-0.07
0.02	0.01
0.02	0.02

VERTICAL THREE BUMPS: J02L \& J02S

Figure 1

VERTICAL THREE BUMPS: J08L \& J08S

Figure 2

VERTICAL THREE BUMPS: J12L \& J12S

Figure 3

VERTICAL THREE BUMPS: J18L \& J18S

Figure 4

VERTICAL BUMP for J10: J02L + J08L - J12L

Figure 5

Appendix I

The Standard Injection AGS

We define the standard injection AGS as having a momentum of $2.25 \mathrm{GeV} / \mathrm{c}$ and currents in both tune quad strings of 50 Amperes. This produces a lumpy AGS as tabulated in Table A1 and shown in Figures A1, A2, and A3. On the figures the arrows indicate the exit points of the main magnets. The results given are for Superperiod J, but the other superperiods are identical. The absolute value of the tune of the AGS has not been carefully cross calibrated against the MAD calculation and the present results may not agree exactly with reality, but they are in general very good.

TABLE A1

THE STANDARD INJECTION AGS

MAD INPUT: $P=2.25 \mathrm{GeV} / \mathrm{c}, \mathrm{l}_{Q X}=50 \mathrm{AMPS}, \mathrm{l}_{Q Y}=50 \mathrm{AMPS}$
MAD OUTPUT: $Q_{X}=8.83903, \mathrm{Q}_{\mathrm{Y}}=8.892302$

			HORIZONTAL					VERTICAL		
POS.	ELEMENT	DIST	BETAX	ALFAX	MUX	DX	DPX	BETAY	ALFAY	MUY
NO.	NAME	m	m		[2PI]	m		m		[2P1]
630	D10	605.307	18.463	-1.483	6.629	1.971	0.11	10.983	0.94	6.66
631	J1BF	607.313	20.948	0.326	6.645	2.019	-0.06	9.692	-0.263	6.7
632	D2S	607.923	20.570	0.294	6.650	1.98	-0.063	10.054	-0.330	6.71
633	J2BF	609.929	15.974	1.845	6.667	1.692	-0.221	14.117	-1.825	6.739
634	DPUE	610.216	14.938	1.766	6.670	1.629	-0.221	15.190	-1.913	6.742
635	PUE.J02	610.216	14.938	1.766	6.670	1.629	-0.221	15.190	-1.913	6.742
636	DVCJ02	610.216	14.938	1.766	6.670	1.629	-0.221	15.19	-1.913	6.742
637	D2TX	610.539	13.828	1.677	6.673	1.55	-0.22	16.45	-2.012	6.
638	J3CD	612.927	10.180	-0.011	6.707	1.26	-0.033	21.805	-0.017	6.
639	DSQ	613.298	10.202	-0.047	6.713	1.249	-0.033	21.824	-0.034	6.767
640	QHFV	613.688	10.301	-0.206	6.719	1.239	-0.019	21.757	0.204	6.770
641	QPOL	614.079	10.477	-0.245	6.725	1.232	-0.019	21.605	0.185	6.773
642	DSQ	614.450	10.673	-0.283	6.731	1.225	-0.019	21.475	0.167	6.776
643	J4CD	616.838	16.16	-2.226	6.76	1.386	0.15	15.62	2.05	6.7
644	DPUE	617.125	17.471	-2.331	6.764	1.431	0.157	14.477	1.95	6.7
645	PUE.J04	617.125	17.471	-2.331	6.764	1.431	0.157	14.477	1.955	6.799
646	D2LX	617.447	19.013	-2.450	6.767	1.482	0.157	13.251	1.848	6.802
647	J5AF	619.835	25.769	-0.113	6.783	1.671	-0.002	8.806	0.182	6.840
648	D2H	620.597	25.965	-0.143	6.788	1.669	-0.002	8.596	0.093	6.854
649	D2H	621.3	26.20	-0.173	6.79	1.66	-0.00	8.52	0.004	6.
650	J6AF	623.746	20.466	2.350	6.808	1.469	-0.160	11.820	-1.509	6.908
651	D2L	624.356	17.720	2.156	6.813	1.372	-0.160	13.763	-1.678	6.915
652	J7CD	626.744	12.790	0.096	6.840	1.200	0.013	18.328	-0.053	6.938
653	DSS	627.178	12.721	0.062	6.845	1.206	0.01	18.384	-0.077	6.942
65	SXV	627.83	12.67	0.010	6.853	1.215	0.0	18.508	-0.1	6.
655	DSS	628.267	12.679	-0.024	6.859	1.220	0.013	18.616	-0.136	6.951
656	J8CD	630.655	17.161	-2.024	6.886	1.461	0.193	14.722	1.613	6.973
657	DPUE	630.942	18.347	-2.109	6.888	1.516	0.193	13.817	1.543	6.977
658	PUE J08	630.942	18.347	-2.109	6.888	1.516	0.193	13.817	1.543	6.97
659	DVCJ08	630.942	18.347	-2.10	6.8	1.516	0.193	13.817	1.543	6.977
660	D2TX	631.264	19.739	-2.205	6.891	1.578	0.193	12.847	1.464	6.980
661	J9BF	633.271	24.990	-0.240	6.905	1.824	0.048	9.898	0.100	7.010
662	D2S	633.881	25.298	-0.265	6.909	1.854	0.048	9.814	0.038	7.020
663	J10BF	635.887	21.763	1.911	6.922	1.793	-0.108	12.118	-1.260	7.050
664	D10	637.411	16.435	1.585	6.935	1.628	-0.108	16.452	-1.585	7.06
665	D10	638.935	12.100	1.260	6.952	1.463	-0.108	21.778	-1.910	7.080
666	J11BD	640.941	9.798	-0.039	6.983	1.408	0.052	25.298	0.272	7.093
667	D2S	641.551	9.883	-0.101	6.992	1.440	0.052	24.982	0.246	7.097
668	J12BD	643.558	12.838	-1.466	7.022	1.715	0.226	19.703	2.211	7.111
669	DPUE	643.845	13.700	-1.537	7.025	1.780	0.226	18.458	2.125	7.114
670	PUE_J12	643.845	13.700	-1.537	7.025	1.780	0.226	18.458	2.125	7.114
671	DVC.J12	643.845	13.700	-1.537	7.025	1.780	0.226	18.458	2.125	7.114
672	D2TX	644.167	14.717	-1.616	7.029	1.854	0.226	17.119	2.029	7.116
673	J13CF	646.555	18.632	0.130	7.051	2.151	0.017	12.600	0.035	7.144

			HORIZONTAL					VERTICAL		
POS.	ELEMENT	DIST	BETAX	ALFAX	MUX	DX	DPX	BETAY	ALFAY	MUY
NO.	NAME	m	m		[2PI]	m		m		[2PI]
674	DSS	646.989	18.529	0.107	7.055	2.158	0.017	12.585	0.000	7.149
675	SXH	647.644	18.413	0.071	7.060	2.169	0.017	12.619	-0.052	7.157
676	DSS	648.079	18.362	0.047	7.064	2.176	0.017	12.679	-0.08	7.163
677	J14CF	650.466	13.814	1.678	7.087	1.951	-0.200	17.516	-2.123	7.190
678	DPUE	650.753	12.874	1.599	7.090	1.894	-0.200	18.761	-2.213	7.192
679	PUE J14	650.753	12.874	1.599	7.090	1.894	-0.200	18.761	-2.213	7.192
680	D2LX	651.076	11.872	1.509	7.094	1.829	-0.200	20.221	-2.315	7.195
681	J15AD	653.463	8.589	-0.009	7.134	1.622	0.023	25.84	0.180	7.211
682	D2H	654.225	8.670	-0.098	7.148	1.639	0.02	25.598	0.15	7.216
683	D2H	654.987	8.888	-0.187	7.162	1.656	0.023	25.393	0.119	7.220
684	J16AD	657.375	13.382	-1.866	7.199	1.982	0.257	18.702	2.418	7.237
685	D2L	657.984	15.781	-2.071	7.206	2.139	0.257	15.890	2.195	7.243
686	J17CF	660.372	21.684	-0.169	7.225	2.466	0.011	10.470	0.280	7.274
687	DSQ	660.743	21.815	-0.186	7.228	2.470	0.011	10.276	0.242	7.279
688	QHFH	661.134	21.868	0.052	7.231	2.469	-0.018	10.150	0.0	7.285
689	QHFS	661.525	21.835	0.034	7.234	2.462	-0.018	10.100	0.044	7.292
690	DSQ	661.896	21.816	0.017	7.236	2.455	-0.018	10.081	0.007	7.297
691	J18CF	664.283	16.470	2.011	7.256	2.114	-0.261	13.717	-1.668	7.331
692	DPUE	664.570	15.341	1.923	7.258	2.039	-0.261	14.697	-1.747	7.335
693	PUE_J18	664.570	15.341	1.923	7.258	2.039	-0.261	14.697	-1.747	7.335
694	DVCJ18	664.570	15.341	1.923	7.258	2.039	-0.261	14.697	-1.747	7.335
695	D2TX	664.893	14.132	1.825	7.262	1.955	-0.261	15.853	-1.836	7.338
696	J19BD	666.899	10.076	0.327	7.290	1.631	-0.067	20.436	-0.296	7.355
697	D2S	667.509	9.719	0.260	7.300	1.590	-0.067	20.816	-0.329	7.360
698	J20BD	669.515	11.031	-0.955	7.332	1.634	0.111	18.357	1.473	7.376
699	D10	671.039	14.344	-1.219	7.351	1.802	0.111	14.269	1.210	7.391
700	D10	672.563	18.463	-1.483	7.366	1.971	0.11	10.983	0.94	7.410

THE STANDARD INJECTION AGS: BETAY

Figure A1

THE STANDARD INJECTION AGS: BETAX

Figure A2

THE STANDARD INJECTION AGS: HORIZONTAL DISPERSION

Figure A 3

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

