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1 Introduction 

The standard treatment of the static magnetic field in an accelerator 
involves expanding the field about the reference orbit and expressing it in 
terms of normal and skew multipoles, which arise in regions where the field 
is transverse to the reference orbit, and in terms of other non-multipole 
terms which arise in regions where the field has longitudinal as well as 
transverse complonents or where the curvature of the reference orbit is 
nonzero. The coefficients in the expansion depend only on the values of the 
field and its derivatives on the reference orbit, and are essentially what we 
measure and use to characterize the various magnetic elements in an 
accelerator. 

The magnetic vector potential, which is of interest by virtue of its explicit 
appearance in the hamiltonian for particle motion in the accelerator, may 
also be expanded about the reference orbit. The coefficients in this 
expansion will depend on the coefficients in the magnetic field expansion 
but are not completely determined by them owing to the fact that one can 
always add the gradient of an arbitrary scalar function to the vector 
potential without changing the magnetic field. The general expansion of 
the vector potential about the reference orbit will therefore contain terms 
which do not contribute to the magnetic field and which, although they 
appear explicitly in the hamiltonian, do not contribute to the equations of 
motion. These unnecessary terms can be eliminated by making an 
appropriate gauge transformation. The coefficients in the expansion of the 
vector potential will then be completely determined by the coefficients in 
the magnetic field expansion. 

In regions where the magnetic field is transverse to the reference 
orbit-typically far inside the accelerator magnets away from the magnet 
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ends-the choice of an appropriate gauge transformation is straight 
forward. Here one can find a gauge transformation such that the vector 
potential has no transverse components. In this case the vector potential is 
completely determined except for the addition of the gradient of an 
arbitrary function of the position along the reference orbit which may be 
taken to be zera The coefficients in the expansion of the vector potential 
about the reference orbit will then be completely determined by the 
coefficients in the expansion of the magnetic field. 

Near the ends of the magnets the magnetic field has longitudinal 
components and the vector potential must therefore have transverse 
components. The choice of an appropriate gauge transformation in these 
and other regions where the magnetic field has longitudinal components is 
the subject of this report. It will be shown that a gauge transformation 
can be found such that the vector potential has the required transverse 
components near the magnet ends, has no transverse components in 
regions where the magnetic field is transverse to the reference orbit, and 
has expansion coefficients which are completely determined by the 
coefficients in the expansion of the magnetic field. 

The resulting expression for the vector potential may be of use in small 
accelerators or storage rings with large acceptances where it has been 
shown that the effects of the magnet end-fields can become important. 
These effects are discussed in references [2-51. 

2 Expansion of the Magnetic Field about the 
Reference Orbit 

Here we follow the treatment of the magnetic field given by K. L. Brown 
and R. V. Servranckx in reference [l]. 

Inside the aperture of an accelerator the curl of the static magnetic field, 
B, is zero which implies that B can be expressed as the gradient of a scalar 
potential, 4. Thus 

B = Vq5, (1) 

v2q5 = 0. (2) 

and since the divergence of B must also vanish we have 

The desired expansion of the magnetic field can therefore be obtained by 
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f i s t  expanding 9 about the reference orbit and then inserting this result 
into equation (1).  

We shall assume that the reference orbit lies in a plane and shall employ 
the right-handed curvilinear coordinate system (x, y, s )  introduced in 
reference [l]. At each point along the reference orbit the three mutually 
perpendicular unit vectors x, y, and s are defined as follows: s is the unit 
vector tangent to the reference orbit; x is the unit vector which lies in the 
plane of the orbit, is perpendicular to s ,  and points outward from the 
reference orbit; y is the unit vector perpendicular to the plane of the orbit 
and pointing upward. The coordinate s is the distance along the reference 
orbit measured from some reference point, and the coordinates x and y are 
the distances from the reference orbit in the x and y directions. 

In terms of these coordinates we have 

( 1  :hr) 
64 84 
a x  a y  

V $ = x - + y - + s  - - ( 3 )  

and 

[(1+ h x ) 2 ]  + 9 + ~- a [ ~- ""I (4) 
l a  

a24 = iTG& ax 6'y2 l f h x a s  1 + h z  8s 

where h = h(s)  is the curvature of the reference orbit. 

Now for each s along the reference orbit we can expand the potential, 4, as 
follows: 

where the coefficients, Cmn, are functions of s. Then putting this 
expansion into equation (4) we find the following recursion relation for the 
coefficients Cmn : 

where a prime denotes differentiation with respect to s and all coefficients 
with one or more negative subscripts are, by definition, zero. Putting ( 5 )  
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into equations (3) and (1 )  we find that the components of B in the x, y, 
and s directions are respectively 

This is the desired expansion of the magnetic field about the reference 
orbit. 

Differentiating By and Bx with respect to x we find 

and 

0 (9) 

which are the normal and skew multipole strengths, respectively, evaluated 
on the reference orbit. The longitudinal component of the magnetic field 
on the reference orbit is given by 

It follows from the recursion relation (6) that all of the coefficients in the 
magnetic field expansion can be expressed in terms of these multipole and 
longitudinal field strengths and their derivatives with respect to s. 
Equations (7) then show that the field at any point for which the 
expansion is valid is completely determined by the multipole and 
longitudinal field strengths on the reference orbit. Defining 

we find that the coefficients required to expand the field to third order are 
given by (8-11) and 
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3 Expansion of the Vector Potential about the 
Reference Orbit 

Since its divergence vanishes, the magnetic field can be expressed as the 
curl of a vector potential, A. Thus 

B = V x A ,  (13) 

which, in terms of the curvilinear coordinate system introduced in the 
previous section, becomes 

a A,  1 dA, 
dy l f h z  a s  

B, = -----.---- 

dA, dA,  
ox dy 

B, = ---. 

Here, as before, the subscripts z, y, and s denote the components of the 
vectors in the x, y, and s directions. 

Expanding A,, A,, and A,  about the reference orbit we have 
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where amn, bmn? and dmn are functions of S.  

Inserting (15) into (14) and comparing with (7) we find the following 
relations between the magnetic field and vector potential expansion 
coefficients : 

These relations alone are not enough to completely determine the 
coefficients amn? bmn, and dmn, We can remedy this situation by making 
an appropriate gauge transformation. 

4 Choosing a Gauge Transformation 

Since we can add the gradient of a scalar function, f, to the vector 
potential, A, without changing the magnetic field, the general expansion of 
A about the reference orbit is of the form 

A = V + B f ,  (17) 

where 

xn ym 
vn = Cumn-- n! m! 

m o o  

m=Q n=Q 

and 
xn ym m o o  

m=Q m=Q 

Thus, using (18) and (19) in (17) and comparing with (15) we find 
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Now, since f is arbitrary we may choose 

in which case we have 

( 2 2 )  amn = 0 ,  bm0 = 0, do0 = 0, 

and equations ( 1 6 )  become 

Cm,n+l+ nhCmn = dm.+l,n - bLn + nhdm+l,n-l 

Cm+l,n + nhCm+l,n-l = -dm,n+l - ( 1  + n)hdmn 

Chn = bm,n+l+ nhbmn. (23 )  

These relations completely determine the nonzero coefficients bmn and 
dmn. Solving (23 )  one obtains these coefficients entirely in terms of the 
coefficients, Cmn, which in turn can be expressed in terms of the multipole 
and longitudinal field strengths defined by equations (8-11). Using (11-12) 
and (22 )  in (23 )  we find 

do1 = 

do2 = 
d03 = 
d04 = 
dl0 = 

dl l  = 

dl2 = 

d20 = 
dzi = 

d22 = 

d13 = 

d30 = 

d31 = 

d40 = 
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and 

bo1 = 
bo2 = 
b03 = 

b04 = 
b l l  = 
bl2 = 

b2l = 

b22 = 

b13 = 

b3l = 

CO 
Ab - hCo 
Ai - 2hAb + 2h2Co 
AB - 3hAi + 6h2Ab - 6h3Co 

B:, 
Bi - hBh 
Bk - 2hBi + 2h2Bh 
-Ai - h'Ao - hAb - C l  
-A; - h'A1+ 3hh'Ao + 2h2Ab - Ab" + 3h'Ch + 3hCl + h"Co 
-B; - h'B1 - hBi - B t .  ( 2 5 )  

Continuing in this way one obtains all of the coefficients b,, and d,, in 
terms of the multipole and longitudinal field strengths and their 
derivatives with respect to s. For the case in wkich the magnetic field is 
transverse to the reference orbit, the coefficients C&, are zero and it 
follows from (22 )  and the last of equations (23) that the coefficients b,, 
are all zero. The vector potential then has only the longitudinal 
component A,. In regions where the coefficients Ck, are nonzero the 
magnetic field has a longitudinal component, the coefficients b,, are 
nonzero, and the vector potential has a transverse component A,. 
The components of the vector potential to fourth order can be obtained by 
inserting (22) and (24-25) into (15). Collecting terms we find 

A, = A: + Ab,, ( 2 6 )  

where (to fourth order) 

1 h 
-B2 [-&x3 - 32~') - -(z4 24 - y4)] 

1 
-B3 [ ,(z4 - 6e2y2 + y4)] t 
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and 

b -  [ : z  h A, - --B{ --zy + -(9z2y2 -y4)] - Bhh' 24 12 

-Abh' [:z3y] - Aoh" [+y3] 

h2 
gzZy) + -(exCy3 6 - iiz3y) 

1 h -Cob' [-(3z2y 6 - y3) + -(6zy3 6 - 7z3y) 

and 

9 



. (29) 

Equations (27-29) show explicitly that in the regions where Co = 0 and the 
multipole and longitudinal field strengths and curvature are independent of 
s, the vector potential has only a longitudinal component and is given by 
A:. Outside these regions, and in particular near the magnet ends, the 
vector potential has the additional terms given by At and A,. In regions 
where the curvaiture, h, is zero A: contains only pure multipole terms. 

5 A Quadrupole with End-Fields 

Here we illustrate the use of the formulae developed in the previous 
sections for the case of a quadrupole of finite length. We shall assume that 
the reference orbit coincides with the longitudinal axis of the quadrupole 
so that the curvature, h, is zero. As discussed in reference [2], the scalar 
potential for a pure quadrupole is an odd function of both e and y. The 
scalar and vector potentials to fourth order are therefore 

1 1 1 2 2  A, = --B1(x2 - y2) - -B3(x4 - 6x2y2 4- y4) - 5B:'(Y4 - 6X Y ) 
2 24 

A, = B1- I Z2Y (30) 2 

with the constraint that 

10 



which follows from the additional requirement that $(z, y, s) = $(y, E ,  s) 
for a pure quadrupole. 

The components of the magnetic field, obtained from equations (1) and ( 3 )  
or from equations (14), are then 

B, = B I Z -  - B ; ( z 3 + 3 z y 2 )  1 
12 

B, = Bizy. 

Here we see that the longitudinal variation of B1 near the ends of the 
quadrupole produces a third-order transverse field (which is not an 
octupole field) and a second-order longitudinal field. If the transverse 
coordinates of a particle do not change significantly as it passes through 
the quadrupole, then the net effects of the terms involving Bi and BY on 
the particle trajectory are small. This is typically the case for the 
quadrupoles (and other magnetic elements) in high-energy particle 
accelerators. In smaller accelerators at lower energies, the transverse 
coordinates can change significantly as the particle passes through the 
end-field regions and the net effects of the terms involving the longitudinal 
variation of B1 can become important. These effects and the conditions 
under which they become important are discussed in references [2-51. 

The longitudinal variation of B1 near the ends of the quadrupole also 
contributes fourth-order terms to the longitudinal component of the vector 
potential and a third-order term to the transverse component, as seen in 
equations (30).  These terms can become important in the excitation of 
transverse resonances in an accelerator if the betatron functions, ,& and 
Py, or the betatron phase advance times the order of the resonance, vary 
significantly along the reference trajectory as it passes through the 
quadrupole. 

For the case of high-energy particle accelerators, the effects of the terms of 
the vector potential involving the variation of the multipole and 
longitudinal field strengths with respect to s are generally unimportant. 
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However, in smaller accelerators at lower energies, these terms can become 
important in the excitation of transverse resonances. I t  is for these cases 
that the expansion of the vector potential developed in the previous 
section becomes useful. 
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