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Summary 

The po ten t i a l  sources of gas load i n  the  vacuum system of proton 

acce le ra to r s  are iden t i f i ed  and compared with operational experience. 

Methods of eliminating o r  minimizing these gas loads are described. 

In  t rod uc t ion 

The fundamental quant i ty  i n  a real vacuum system i s  the  t o t a l  gas 

load Q,  which a pumping system has t o  remove continuously a f t e r  an 

i n i t i a l  pump down. In  acce lera tor  vacuum systems, Q i s  given by 

where Q i s  the  outgassing rate due t o  the gas dissolved i n  the bulk of 

vacuum system materials with surface area A; i n  p a r t i c u l a r ,  the  w a l l  of 

vacuum chambers. 

face  molecules of various bonding energies. 

i s  the gas load generated by spec ia l  equipment such as l eak  rate. 

p i c k u p  e l e c t r o d e s ,  kicker and septum magnets, which are necessary f o r  

the  proper operation of acce lera tors .  

ion induced desorption of surface molecules. 

B 

i s  the  time dependent outgassing of adsorbed sur- 

represents  the t o t a l  
QS 

QL 

QSE 

i s  the gas load generated by 
Q I D  



Once Q has been determined, an appropriate pressure, P ,  can be 

achieved by se l ec t ing  an appropriate pumping system with pumping speed 

S; such t h a t  P = Q / S .  

Sources of G a s  Load 

QB - 
In a l l  metal systems, hydrogen i s  the  dominant (> 99%) of the  gas  

species d i f fus ing  from the  bulk i n t o  the  vacuum system. The amount of 

dissolved hydrogen as w e l l  as Q can be d r a s t i c a l l y  decreased by proper 

high temperuater vacuum f i r i n g  before the  construction of the  vacuum 

system. The estimated Q o r  Q of vacuum chambers i n  various accelera- 

t o r s  are l i s t e d  below. 

B 

B 

CBA, ISR SS with vacuum f i r i n g  1 x Torr. R . ~ - ’ c m - ~  

AGS Inconel < 1 x 10-10 

SP s ss 1 x lo-12 
PS ss > 5 x 

w i l l  depend on the  roughness of t he  sur face ,  as w e l l  as the  

bonding s t r eng th  of adsorbed molecules, which are replenished a f t e r  

every exposure of a few hours t o  the  atmosphere. 

t i m e .  For an unbaked reasonably smooth sur face ,  the  upper l i m i t  of Q 

i s  

QS 

w i l l  decreqse with 
QS 1 

S 

max 1.7 x 10’5/t (Torr. R . ~ - ’ c m - ~ )  
QS 

with t being t i m e  i n  seconds. Over a period of severa l  weeks Q (with 

water vapor as the  major outgassing) remains the  dominant part of Q; i f  

t he  vacuum system i s  not opened t o  the  atmosphere, a low equilibrium 

pressure w i l l  be reached i n  about a month of pumping with Q and Q 

beconaing more important ( i . e . ,  SPS reaches 5 x lo’lo Torr i n  about s i x  

S 

L B 
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weeks2). 

e i t h e r  by se l ec t ing  the  r i g h t  material (i .e. ,  SS over Al) o r  by chemi- 

c a l l y  and/or mechanically polishing the  surface. 
S 

i s  required,  an i n s i t u  bakeout w i l l  have t o  be implemented. An addi- 

t i o n a l  advantage of a bakeout i s  the  attainment of low pressure sho r t ly  

a f t e r  the  end of the  bake cyc le  s ince  the  desorption of loose ly  ad- 

sorbed molecules depend s exponentially on temperature. 

The surface roughness of the vacuum chamber can be reduced 

I f  an even lower Q 

The t o t a l  l eak  rate c o n s t i t u t e s  real leaks  and v i r t u a l  leaks. 

V i r tua l  leaks  can be kept low by using an a l l  metal system, metal 

gaskets and good vacuum practices.  Organic materials/gaskets have one 

t o  two orders of magnitude higher surface roughness and are a l so  sus- 

c e p t i b l e  t o  atmosphere permeation. With the  present day leak  d e t e c t o r s  

of s e n s i t i v i t y  down t o  1 x 10-l '  Torr g / s ,  real l eaks  can be minimized 

by c a r e f u l  leak  checking. To enhance the  s e n s i t i v i t y  of leak  detec- 

t i o n ,  turbo-molecular pumps should be used f o r  roughing down and dur- 

ing leak checking. 

The outgassing due t o  spec ia l  equipment such as septum magnets and 

kicker magnets i s  the major source of pressure i n  both the AGS and the  

PS5 with water vapor and CO being the  dominant gas. By speca i l  treat- 

ment and proper s e l ec t ion  of materials, 

permit operation even belob7 1 x lo-' Torr as i n  the  case of the  SPS. 

The septum magnet laminations having l a rge  surface areas have been 

oxidized r a the r  than phosphated i s  the  SPS6 and i n  SATURNE. This 

improved the outgassing by more than an order of magnitude. A mild 

i n s i t u  bakeout of septum magnets using infrared rod hea ters  mounted 

above the laminations in s ide  ,the vacuum boxes w a s  a l so  required t o  

achieve 1 x lo-' Torr. 

can be kept low enough t o  ' SE 



The average pressures i n  various proton machines a r e  given below. 

AGS 3 Unbaked 

PS 1-2 x 

Saturne 5 x 10-8 6 

SP s 5 x 10 - l0  

CBA (50 m long sec t ion)  10- l2 

LEAR 10- l2 

ISR 10- l2 Baked 

In the  AGS, more than one-third of gas load i s  caused by special e q u i p  

ment, while they only occupy less than 5% of the  circumference. 

When a high i n t e n s i t y  beam i s  introduced i n t o  the machines, the 

ionized r e s idua l  gas molecules which are accelerated by beam-wall 

po ten t i a l  toward the  vacuum chamber w a l l  w i l l  desorb gases from the  

i s  important only i f  the  beam curren t  i s  high enough t o  QID surface. 

produce a p o t e n t i a l 4  of severa l  hundred v o l t s  (above desorption thres- 

hold) according t o  

1 
r 

r 
I I n  - = 2 r E C  
0 0 

where r and r are the  beam and the  vacuum chamber r a d i i ,  and I i s  the  

c i r c u l a t i n g  beam cur ren t  i n  A. Appropriate modifications t o  t h i s  

equation have t o  be made i f  the  beams are bunched. The desorption 

yield 11 (number of desorbed molecules per inc ident  ion)  can be reduced 

by glow discharge cleaning and/or i n s i t u  bakeout. 

magnitude higher f o r  an unbaked chamber. 

1 0 

11 i s  one order of 

Additional outgassing, which may be very important as the cu r ren t  

i n  proton synchrotrons increases ,  i s  due t o  the  beam h i t t i ng lhea t ing  

the vacuum chamber o r  other components. 
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Conclusions 

Based on the operational experience of various proton machines, 

we can draw the  following conclusions: 

a. Pressure of 1 x Torr can be achieved i n  unbaked vacuum 

systems i f  designs,  assembly and processing follow UHV prac- 

tices and i f  frequent interventon can be avoided. This i s  

seemingly the  s i t u a t i o n  i n  the  SPS. 

b. In storage r ings  with high c i r c u l a t i n g  cu r ren t ,  the  i n s i t u  

bakeout i s  needed t o  reduce the  desorption from the  w a l l s  

under the  bombardment of res idua l  gas ions. For smaller cur- 

r e n t s  (i .e. ,  SPS pp opera t ion) ,  the  beam l i f e t i m e  due t o  beam- 

gas nuclear s ca t t e r ing  i s  approximately 500 hours a t  an aver- 

age pressure of 1 x lo-’ Torr. 

- 

c. For the  proposed AGS accumulator/booster with heavy ion op- 

t i o n ,  a pressure of Torr may be required t o  minimize 

beam l o s s  due t o  (1) high charge exchange c ross  section be- 

tween p a r t i a l l y  stripped beam and r e s idua l  gas; and ( 2 )  pres- 

sure bump caused by ion induced desorp t ion ,  due t o  high ioniz- 

ing c ross  sec t ion  of res idua l  gas ,  which i s  proportional t o  

d. For the  improvement of AGS vacuum f o r  heavy ion operation, a 

pressure of < 1 x Torr i n s ide  a regular  vacuum chamber i s  

possible with thorough cleaning and add i t iona l  pumping. Major 

modification of a vacuum chamber and i n s i t u  bakeout may not be 

required. 
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