

BNL-104808-2014-TECH

AGS/AD/Tech Note No. 392;BNL-104808-2014-IR

TUNE AND CHROMATICITY OF THE AGS VS. QUAD CURRENTS CALCULATED PLOTS AND FITTING COEFFICIENTS CODE QFIT

A. Luccio

January 1994

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Accelerator Division Alternating Gradient Synchrotron Department BROOKHAVEN NATIONAL LABORATORY Upton, New York 11973

> Accelerator Division Technical Note

AGS/AD/Tech. Note No. 392

TUNE AND CHROMATICITY OF THE

AGS Vs. QUAD CURRENTS

CALCULATED PLOTS AND FITTING COEFFICIENTS

CODE QFIT

A. Luccio

March 31, 1994

TUNE AND CHROMATICITY OF THE AGS VS. QUAD CURRENTS CALCULATED PLOTS AND FITTING COEFFICIENTS CODE QFIT A.Luccio March 31, 1994

ABSTRACT

Tune and chromaticity of the AGS as a function of the current in a set of high field quadrupoles was calculated with the model MAD, Ref.[1]. Series of plots for the "bare machine" were created at various values of the proton momentum, between 15 and 29 GeV/c, and tables of coefficients to fit the plots were created. The coefficients are intended for the tune control programs of the AGS model-based control system. The results were compared -and found in good agreement- with some measured data.

PROCEDURE

A description of the bare AGS and tables of the quadrupole strengths of the alternating gradient magnets for various proton energies is given in Ref. [2]. Using these tables and the program MAD iteratively, we have produced a series of tables and coefficients of the tune and chromaticity of the AGS vs. the current in the "High Field Quadrupoles", HFQ's, meant to correct for the natural tune of the machine. The procedure has been made automatic, and a computer tool has been created to generate new tables, plots and coefficients, everytime that the parameters of the AGS are being changed.

To produce tables of tune, Q and chromaticity, $\xi = -\frac{1}{Q} \frac{\partial Q}{\partial p}$ as a function of the HFQ

currents, MAD is simply run many times, with the currents being stepwise varied in the mad input file ("mad.in" or "DATA"). A script on the HP Apollo workstations is doing that for us. The inverse problem , i.e to find the currents needed to produce a given tune or a given chromaticity, and to produce relevant tables and coefficients can be solved using the "match" option in Mad. We prepared a script to do this, however since the procedure is time consuming, an alternate method was developed based on the inversion of the tables already created with the direct method.

The steps performed are the following:

a- Direct problem

- 1a- For a given proton momentum, e.g. p = 20 GeV/c, MAD is run in a double loop of HFQ currents, I_x and I_y for the horizontal and verical quadrupoles, respectively. For instance, both currents are varied between -1.6 and +1.6 KA in steps of 100 A. A first table is created, containing groups of records of Q and ξ , each group having a constant I_x and a range of values of I_y .
- 2a- The records are reordered to create another section of the table, containing groups of records of Q and ξ , each group now having a constant I_y and a range of values of I_x . At this point the table is ready to be read and plotted by the plotting program CPLOT, Ref.[3].
- 3a- A set of coefficients is calculated by linear fit in the first part of the just made,table for the four quantities Q_x, Q_y, ξ_x, ξ_y. Thebase for the fit is powers, up to a given degree (say, 3, 5, 7...). The least square fitting routine is LFIT, as described in Ref. [4]. The routine is applied twice. First, the coefficients of the fit are calculated in each group -with constant I_x -, for a quantity, e.g. Q_x, vs. I_y. Then the coefficients themselves are fitted vs. I_x. The result looks like this

$$\begin{cases} Q_{x} = a_{0} + a_{1}I_{y} + a_{2}I_{y}^{2} + a_{3}I_{y}^{3} + \dots \\ a_{0} = a_{00} + a_{01}I_{x} + a_{02}I_{x}^{2} + a_{03}I_{x}^{3} + \dots \\ a_{1} = a_{10} + a_{11}I_{x} + a_{12}I_{x}^{2} + a_{13}I_{x}^{3} + \dots \\ a_{2} = a_{20} + a_{21}I_{x} + \dots \\ \dots \dots \end{cases}$$
(1)

(n+1)(n+1) coefficients are produced, for each variable, where n is the order of the fit.

b- Inverse problem

The tables created in the steps a-, above, are simply inverted by calculating with the expansion (1) the currents needed for the values of tune and chromaticity on equally spaced grids. In a similar way as for the direct problem, coefficients for the inverse tables are created. The result is:

$$\begin{cases} I_{x} = b_{0} + b_{1}Q_{y} + b_{2}Q_{y}^{2} + \dots \\ b_{0} = b_{00} + b_{01}Q_{x} + b_{02}Q_{x}^{2} + \dots \\ b_{1} = b_{10} + b_{11}Q_{x} + b_{12}Q_{x}^{2} + \dots \\ b_{2} = b_{20} + \dots \\ \dots \\ I_{y} = d_{2} + \dots \end{cases} \qquad \begin{cases} I_{y} = c_{0} + c_{1}\xi_{y} + c_{2}\xi_{y}^{2} + \dots \\ c_{0} = c_{00} + c_{01}\xi_{x} + c_{02}\xi_{x}^{2} + \dots \\ c_{1} = c_{10} + c_{11}\xi_{x} + c_{12}\xi_{x}^{2} + \dots \\ c_{2} = c_{20} + \dots \\ \dots \\ I_{y} = e_{2} + \dots \end{cases}$$
(2)

c. Difference tables.

It is useful to have tables of the differences of the values of tune, ΔQ and chromaticity, $\Delta \xi$ with respect to the values at I = 0. The program is searching in the direct table to find these reference values and builds tables of the (direct) differences. Then, it inverts the table as already described in Sec. b, and finally calculates coefficients for the direct and inverse difference problem.

TABLES AND PLOTS

Tables and plots for the bare AGS, for momenta 15, 20, 29, 32 GeV/c are given. First, for the direct case: tune and chromaticity charts for constant values of the current in the horizontal and vertical HFQ in the range ± 1.6 KA, then for the inverse case: current charts for constant values of the tune, in the range (7,10) and chromaticity, in the range (-4,-2) (ξ_x) and (-0.1,0.5) (ξ_y). Finally, for the difference case.

Tables 1-5 are for the direct problem, Eq. (1), $2 \ge 2$ coefficients, proton momenta 15 to 32 GeV/c.

Tables 6-10 are for the inverse problem, Eq. (2), $2 \ge 2$ coefficients, same momenta. Tables 11-15 are for the difference problem, $2 \ge 2$ coefficients, same momenta.

Figures 1-5 show charts of the tune vs. quadrupole currents for proton momenta of 15, 20, 25, 29 and 32 GeV/c, respectively.

Figures 6-10 show charts of the chromaticity vs. quadrupole currents for the same set of proton momenta.

Figures 11-15 show (inverse) charts of quadrupole currents vs. tune.

Figures 16-20 show (inverse) charts of quadrupole currents vs. chromaticity

Figures 21-25 show (inverse) charts of currents vs. tune differences.

Figures 26-30 show (inverse) charts of currents vs. chromaticity differences.

EXTENSIONS

Tables and charts, created for different values of the High Field Quadrupole Currents, can also be made with the same code for sets of values of any other parameter.

REFERENCES

- F.Ch.Iselin and J.Niederer, "The Mad Program Version 7.2" CERN/LEP-TH/88-38, Geneva, July 13, 1988.
- E.Auerbach "Computer models of the AGS, I: The DC Bare Machine at High Fields" AGS/AD/Tech. Note No. 297, March 7, 1988.
- A.Luccio "CPLOT: An Apollo Plotting Program" AGS Booster Tech. Note No.156, January 9, 1990.
- W.H.Press, B.P.Flannery, S.A.Teukolsky and W.T.Vetterling "Numerical Recipes", Cambridge University Press, Cambridge, MA 1986, p.509.

Q_x vs. I_{x, I_y}		Q_x yvs. I_x, I_y		ξ_x vs. I_{x, I_y}		ξ_y vs. I_{x, I_y}	
8.67862	.799120	8.73773	376369	-2.59145	.825042	.075907	178643
382835	.064923	.790011	.058558	459910	.392263	086553	043684

Table 1. AGS. Protons 15 GeV/c

r,

Table 2. AGS. Protons 20GeV/c

Q_x vs. I_x , I_y		Q_x yvs. I_x, I_y		ξ_x vs. I_{x, J_y}		ξ_y vs. $I_{x_i} I_y$	
8.69416	.574584	8.74664	268872	-2.57960	.486355	.252419	132769
271333	.030245	.570752	.026633	263825	.125997	086553	019944

Table 3. AGS. Protons 25 GeV/c

Q_x vs. $I_{x_y}I_y$		Q_x yvs. I_x, I_y		ξ_x vs. I_{x, I_y}		ξ_y vs. I_{x, I_y}	
8.67995	.451972	8.72331	211575	-3.00630	.453298	.702600	124213
212957	.017457	.449794	.015494	243774	.081286	072167	013043

Table 4. AGS. Protons 29 GeV/c

Q_x vs. I_{x, I_y}		Q_x yvs. I_x , I_y		ξ_x vs. I_x , I_y		ξ_y vs. I_{x, I_y}	
8.62238	.389182	8.66121	182323	-4.38575	.633612	1.99873	159361
183360	.012381	.387522	.010966	335996	.098370	128167	012924

Table 5. AGS. Protons 32GeV/c

Q_x vs. I_x, I_y		Q_x yvs. I_x, I_y		ξ_x vs. I_{x, I_y}		ξ_y vs. I_{x, I_y}	
8.48523	.356911	8.52642	167345	-6.95433	1.01091	4.38981	236536
168396	.009791	.355150	.008593	534952	.150013	240013	015338

I_x vs. $Q_{x_y}Q_y$		I_x yvs. Q_x, Q_y		I_x vs. ξ_{x_s} ξ_y		I_y vs. $\xi_{x,}$ ξ_y	
-35.9628	3.29646	-35.5415	2.38966	1.42037	.360149	-2.43793	-1.03502
2.46556	188710	3.26211	182212	-2.04281	.474527	-5.97251	299070

Table 6. AGS. Inverse. Protons 15 GeV/c

Table 7. AGS. Inverse. Protons 20 GeV/c

I_x vs. Q_x, Q_y		I_x yvs. Q_x, Q_y		I_x vs. ξ_{x_i} ξ_y		I_y vs. $\xi_{x,}$ ξ_y	
-47.4589	4.34669	-46.7731	3.07311	2.37179	.476774	-2.74338	-1.75981
3.16511	237889	4.26493	227760	638736	1.32653	-9.17930	704387

Table 8. AGS. Inverse. Protons 25 GeV/c

I_x vs.	I_x vs. Q_x, Q_y I_x yvs. Q_x, Q_y		I_x vs. $\xi_{x,}$ ξ_y		<i>I</i> _y vs. ξ _{x,} ξ _y		
-59.1367	5.42487	-58.2904	3.81074	3.73851	.293498	.246971	-1.57852
3.92456	293737	5.32666	281378	706578	1.07422	-8.65562	495727

Table 9. AGS. Inverse. Protons 29 GeV/c

I_x vs. $Q_{x_y} Q_y$		I_x yvs. Q_x, Q_y		I_x vs. ξ_{x_i} ξ_y		<i>I</i> y vs. ξ _x , ξ _y	
-67.5576	6.23692	-66.5794	4.36352	4.83004	060368	6.13197	733504
4.48590	336358	6.11429	321986	442478	.474326	-5.61284	210623

Table 10. AGS. Inverse. Protons 32 GeV/c

I_x vs. $Q_{x_y}Q_y$		I_x yvs. Q_x, Q_y		I_x vs. ξ_{x_i} ξ_y		I_y vs. $\xi_{x,}$ ξ_y	
-69.2882	6.42723	-68.4266	4.40493	5.71221	110362	9.89902	297375
4.52070	329417	6.31574	315673	317122	.165456	-3.24934	074700

Table 11. AGS. Differences. Protons 15 GeV/c

Reference values for $I_x=I_y=0$: $Q_x=8.72007$, $Q_y=8.77242$, $\xi_x=-2.31145$, $\xi_y=0.105530$.

ΔQ_x vs. I_x , I_y		$\Delta Q_x y vs. I_x, I_y$		$\Delta \xi_x$ vs. I_{x, I_y}		$\Delta \xi_y$ vs. I_{x} , I_y	
044913	.804612	034182	377164	409037	1.03083	029806	178348
387974	.073014	.790796	.057348	649357	.692556	086818	043259

Table 12. AGS. Differences. Protons 20 GeV/c

Reference values for $I_x=I_y=0$: $Q_x=8.71350$, $Q_y=8.76270$, $\xi_x=-2.47450$, $\xi_y=0.258700$.

ΔQ_x vs. I_x , I_y		$\Delta Q_x y vs. I_{x, I_y}$		$\Delta \xi_x$ vs. I_{x, I_y}		$\Delta \xi_{y}$ vs. $I_{x, J_{y}}$	
019299	.000575	016017	000269	105076	.000486	006301	000133
000271	.000000	.000571	.000000	000264	.000000-	.000063	000000

Table 13. AGS. Differences. Protons 25 GeV/c

Reference values for $I_x=I_y=0$: $Q_x=8.69195$, $Q_y=8.73368$, $\xi_x=-2.94135$, $\xi_y=0.692810$.

ΔQ_x vs. I_x, I_y		ΔQ_x yvs. I_{x, I_y}		$\Delta \xi_x$ vs. I_x, I_y		$\Delta \xi_y$ vs. $I_{x_i} I_y$	
012000	.451972	010370	211575	064953	.453298	.009791	124213
212957	.017457	.449794	.015494	243774	.081286	072167	013043

Table 14. AGS. Differences. Protons 29 GeV/c

Reference values for $I_x=I_y=0$: $Q_x=8.63262$, $Q_y=8.67035$, $\xi_x=-4.32175$, $\xi_y=1.96050$.

ΔQ_x vs. I_{x, J_y}		ΔQ_x yvs. I_x, I_y		$\Delta \xi_x$ vs. I_{x, I_y}		$\Delta \xi_y$ vs. $I_{x_i} I_y$	
010241	.389182	009144	182322	063999	.633612	.038226	159361
183360	.012381	.387522	.010966	335996	.098737	128167	012924

Table 15. AGS. Differences. Protons 32 GeV/c

Reference values for $I_x=I_y=0$: $Q_x=8.49678$, $Q_y=8.53693$, $\xi_x=-6.85840$, $\xi_y=4.29907$.

ΔQ_x vs. I_{x, I_y}		ΔQ_x yvs. I_x, I_y		$\Delta \xi_x$ vs. I_x , I_y		$\Delta \xi_y$ vs. $I_{x_i} I_y$	
011546	.356911	010510	167345	095934	1.01091	.090743	236536
168396	.009792	.355151	.008593	534952	.150013	240013	015338

Fig.1. AGS. Chart of Tunes vs. High field Quadrupole Currents. Protons 15 GeV/c.

Fig.3. AGS. Chart of Tunes vs. HF Quadrupole Currents. Protons 25 GeV/c.

AGS bare tunes. 1994/02/28.11:32:02

Fig.5. AGS. Chart of Tunes vs. HF Quadrupole Currents. Protons 32 GeV/c.

AGS bare tunes. 1994/02/28.18:27:20

AGS bare chromaticity. 1994/02/25.15:09:18

Fig.6. AGS. Chart of Chromaticity vs. HF Quadrupole Currents. Protons 15 GeV/c.

Fig.8. AGS. Chart of Chromaticity vs. HF Quadrupole Currents. Protons 25 GeV/c.

Fig.9. AGS. Chart of Chromaticity vs. HF Quadrupole Currents. Protons 29 GeV/c.

Fig.10. AGS. Chart of Chromaticity vs. HF Quadrupole Currents. Protons 32 GeV/c.

•

AGS bare tunes. 1994/02/23.12:04:52

Fig.13. AGS. Chart of HF Quadrupole Currents vs. Tunes. Protons 25 GeV/c.

AGS bare tunes. 1994/02/09.12:57:57

Fig.15. AGS. Chart of HF Quadrupole Currents vs. Tunes. Protons 32 GeV/c.

ر ۲

Fig.18. AGS. Chart of HF Quadrupole Currents vs. Chromaticity. Protons 25 GeV/c.

(),

r)

AGS bare chromaticity. 1994/02/28.17:28:25

Fig.21. AGS. Chart of Tune Differences vs. HF Quadrupole Currents. Protons 15 GeV/c. Reference values for $I_x=I_y=0$ (see fig. 1) are: $Q_x=8.72007$, $Q_y=8.77242$.

AGS bare tunes. 1994/02/23.13:24:37

Fig.22. AGS. Chart of Tune Differences vs. HF Quadrupole Currents. Protons 20 GeV/c. Reference values for $I_x=I_y=0$ (see fig. 2) are: $Q_x=8.71350$, $Q_y=8.76270$.

<u>,</u>

AGS bare tunes. 1994/02/23.12:43:38

Fig.23. AGS. Chart of Tune Differences vs. HF Quadrupole Currents. Protons 25 GeV/c. Reference values for $I_x=I_y=0$ (see fig. 3) are: $Q_x=8.69195$ $Q_y=8.73368$.

AGS bare tunes. 1994/02/24.09:59:34

Fig.24. AGS. Chart of Tune Differences vs. HF Quadrupole Currents. Protons 29 GeV/c. Reference values for $I_x=I_y=0$ (see fig. 4) are: $Q_x=8.63262$, $Q_y=8.67035$.

t 1

AGS bare tunes. 1994/02/23.10:32:27

Fig.25. AGS. Chart of Tune Differences vs. HF Quadrupole Currents. Protons 32 GeV/c. Reference values for $I_x=I_y=0$ (see fig. 5) are: $Q_x=8.49678$, $Q_y=8.53693$.

AGS bare chromaticity. 1994/02/23.14:55:03

AGS bare chromaticity. 1994/02/24.10:39:52

. .

.