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1 Introduction

The exchange of the horizontal and vertical emittances upon traversal of
the linear coupling resonance was observed some years ago in the AGS
during the acceleration of polarized protons and has been observed more
recently during studies in the AGS Booster. Here we develop a simple
simulation of the coupling resonance traversal and demonstrate the effect
on the emittances.

2 Formulae for the Evolution of a Gaussian
Beam Distribution

We assume that the initial beam distribution is gaussian and is given by

zo

1\2 _ 1 _ z{
po(Zo) = (5) ™, Wo= 3B 20 Zo=| 20 |, ()

Yo

where ¢, £}, Yo, Yy are the horizontal and vertical positions and angles of
a beam particle with respect to the reference trajectory at a point sq along
the trajectory, and Eg is a four-by-four real, symmetric, positive definite
matrix with unit determinant. Then, as shown in the Appendix, the beam
distribution at a subsequent point s along the trajectory is also gaussian



and is given by

T
1 \2 1 z’
ZY=(—) W% = _zg! 7=
o2)=(5=) ¥ W=paEs, . ©
yl
where
E = TE,Tf, (3)

T is the symplectic four-by-four transfer matrix between sy and s, and E
is real, symmetric, positive definite, and has unit determinant. Equations
(2) and (3) give the evolution of the gaussian beam distribution as it
moves along a beam line or around a ring.

The projections of the distribution (2) on the z, 2’ and y, ¥’ planes are

Py(z,2') = / p(Z)dydy', Pa(y,y) = / p(Z)deds’, (4)

and doing the integration (see Appendix) one finds

1
e, W= "2;‘(91:1;2 +2a;z2" + b12?), ()
1

1 1
PZ(y, ?l,) = _e-W2, Wy = '—(923’2 + 2a222, + melz): (6)
Tey 2eq
where
e1 = €(E11Eq — 1'3'122)1/2 =eDy, ey =€(E33E4— E§4)1/2 = €Dy, (7)
ay = —E13/Dy, b = E11/D1, g1 = Eq3/Dn, (8)
ay = —E34/Ds, by = E33/D3, g2 = E44/Ds. (9)

The projections are therefore gaussian distributions with rms emittances
e; and ey. The evolution of the projection parameters is obtained by
substituting the matrix elements, E;;, obtained from (3) into equations
(7-9).



3 Simulation Algorithm

To produce linear coupling in the booster we perturb the lattice with six
thin skew quadrupoles equally spaced (one per superperiod) around the
ring. The transfer matrix for each thin skew quad is (see Appendix)

q=(f{‘;), kz(gg), (10)

where k is the integrated strength. The transfer matrix for one
superperiod of the unperturbed lattice is,

t:(l\(;-[]g-)a (11)

where

_ . _ A ﬁz‘
M=1Icost, + Jysintp,, J;= ( e~ ) , (12)
. Qy By
N =Icostp, + Jysint,, J, = ) (13)
Yy —Qy
10
= ( 01 ) s Yo =2mQ5[6, 1, =27wQ,[6, (14)

Q. and @, are the horizontal and vertical tunes, and az, Bz, ¥z, ay, By, Ty
are the Courant-Snyder parameters at the location of each skew quad. The
complete one-turn transfer matrix through six superperiods is then

T = (tq)°. (15)

To simulate the traversal of the linear coupling resonance we calculate the
turn-by-turn evolution of the gaussian distribution as the tunes pass
through the resonance @, — @, = 0. Let Qzn, Qyn, kn be the tunes and
skew quad strength on the nth turn around the machine. Then the
one-turn transfer matrix, T, on the nth turn is obtained by substituting
these values into equations (10-15), and it follows from (3) that

Eny1 = TE, T, (16)

where E,, and E,,; are the matricies which define the gaussian beam
distribution on the nth and (n + 1)th turns. The turn-by-turn evolution of



the gaussian distribution and it’s projections can then be obtained quite
simply with computer code which, when supplied with the one-turn
transfer matrix T, and the initial matrix Eg, calculates E,, after each turn
using the recursion relation (16).

4 Results

We shall assume that the initial beam distribution is the product of two
gaussian distributions, p, and p,, which are matched to the unperturbed
lattice at the location of the skew quads. Thus we have

po(Zo) = pz(z0, 24)py(Yo, ¥0)s (17)

where

1
2T€,

~ 1
pz(z,2') = € Wz’ We = E—('hwz + 2022’ + ﬂzz,z)’ (18)
T

1 _w 1
py(yy) = 5—e Y, Wy = 5—63(%;3/2 + 20,9y + Byy™),  (19)

y
€; and ¢, are the initial rms emittances, and a;, 8z, 7z, oy, By, vy are the
unperturbed lattice parameters at the location of the skew quad in each
superperiod. The values of these parameters obtained from the MAD code
are a; = —1.60, 8, = 11.34, a,, = 0.76, 8, = 4.76.

Comparing equations (17-19) with (1) we obtain the initial matrix, Eq, to
be used in the recursion relation (16);

- eAsl/e, 0

we(Lg) a=(ng)

4.1 Adiabatic Traversal of Resonance

where

We consider first the case for which the tunes and skew quad strength on
the nth turn are given by

Qz‘n = on + néQxa Qyn = QyO + naQw k, = (N - iN - n|) 6k1 (22)
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where
Q@20 = 8.80, 6@, =0.01/1000, @, =8.82, 6Q,=0, (23)

_KI
= Ny’
I is the skew quad current in Amps, and p is the momentum in Gev/c.
Thus the vertical tune is fixed at 4.82, while the horizontal tune increases
linearly from 4.80 to 4.84 over 4000 turns, crossing the @, — Q, =0
resonance on the 2000th turn. The skew quad strength increases linearly
from 0 to KI/p over the first 2000 turns and then decreases linearly to 0
over the next 2000 turns. Choosing initial emittances ¢, = 0.7, ¢, = 0.3,
and I/p = 2.0 we obtain the projection emittances, e; and e, shown
versus turn in Figure 1. Here we see that the horizontal and vertical
emittances are exchanged during the resonance traversal. Figure 2 is a plot
of ey + e3 — (&z + €y) = e3 + €2 — 1 which shows that the sum of the
projection emittances differs from the sum of the initial emittances by only
a very small amount during the resonance traversal and returns to the
initial sum at the end of the 4000 turns. The plot also shows that the sum
of the projection emittances is always greater than or equal to the sum of
the initial uncoupled emittances, a result which Brown and Servranckx [2]
have shown to be true under quite general conditions (see Appendix).
Figures 3 and 4 are plots of (a; — az)/ay, (b1 — Bz)/Bz and (a2 — ay)/ay,
(b2 — By)/B, which show that the ellipse parameters of the z, 2’ and y, y’
projections differ from the unperturbed lattice parameters by only very
small amounts during the resonance traversal and return to their initial
values at the end of the 4000 turns. This is the behavior expected for an
adiabatic traversal of the resonance. Figures (5-8) and (9-12) are the
corresponding plots for the cases in which I/p = 0.2 and I /p = 20.

ok K = (.000545/3.335641) m ™! /amp, N = 2000, (24)

For the case in which the skew quad strength is held constant during the
4000 turns, i.e. k, = KI/p = 2.0K in equation (22), we obtain the plots
shown in Figures (13-16). Here we see that e; + e — 1 is very small as
before but continues to oscillate rather than settling down to zero after
passing through the resonance. The same is true of (a1 — a;)/az,

(bl - ﬂw)/ﬂm (a2 - ay)/aw and (b2 - ﬂy)/ﬂy



4.2 Nonadiabatic Traversal of Resonance

Now consider the case for which the tunes and skew quad strength on the
nth turn are given by (22), but the skew quads are ‘snapped’ OFF on the
2000th turn and stay off for the remaining turns. (The skew quad strength
increases linearly from 0 to KI/p over the first 2000 turns.) The resulting
projection parameters for the case in which I/p = 2.0 are shown versus
turn in Figures (17-20). Here we see that the projection parameters

(al - ax)/a:ca (bl - ,B:z:)/;ga:a (0,2 - ay)/aya (bZ - lgy)/:@y, and e; +e; — 1 are
small as before but continue to oscillate after passing through the
resonance.

For the case in which the skew quad current is ‘snapped’ ON with
I/p=2.0 at 2000 turns and then decreases linearly to 0 over the next 2000
turns we obtain the projection parameters versus turn shown in Figures
(21-24). Here we see that e; + e; — 1 settles down to zero, but the other
projection parameters continue to oscillate after passing through the
resonance.

5 Appendix

5.1 Transport of the Beam Ellipsoid

Let o, 0, Yo, ¥y be the horizontal and vertical positions and angles of a
beam particle with respect to the reference trajectory at a point so along
the trajectory. Then the positions, 2 and y, and angles, =’ and 3/, of the
particle at the point s along the trajectory are given by

Z = TZy, (25)
where
T Zo
z )
7 = Zo = 26
y 9 0 %o ( )
y Yo

and T is the four-by-four transfer matrix between sy and s. The matrix T
is symplectic:
TisT =5, |T|=1, (27)



where

01 00 -1 0 0 0

| -1 0 00 s | 0 -1 0 0

S=1 90 o1 |" S=T= o o0 -1 of @
00 —1 0 0 0 0 -1

and a 1 denotes the transpose of the matrix.

Suppose the beam at sp is contained within the ellipsoid defined by
ZiBy Zo = ¢ (29)

where Ey is a four-by-four real, symmetric, positive definite matrix with
unit determinant. Then it is easy to show that the ellipsoid at s¢ is
transformed into another ellipsoid at s. Using (25) in (29) we find

Z'E1Z = ¢, (30)

where
E = TE,T". (31)

Equation (30) defines an ellipsoid provided the matrix E~! is symmetric
and positive definite. Using (31) and (27) we find

E' = TE{T! = TE,T' = E, |E| = |T||Eo||T =1. (32)

Thus, E and E~! are symmetric and have unit determinant. Now a real
and symmetric matrix, A, is positive definite if the quadratic form
ZTAZ > 0 for every Z # 0. To show that E~! is positive definite, consider

ZiE1Z = ZiT'E 1 TZ, = Z)E; ' Zo. (33)

Since ngglzo > 0 for all Zg # 0, and since Z = 0 if and only if Zo = 0, it
follows that ZTE~1Z > 0 for all Z # 0. Therefore E~! is positive definite,
and the ellipsoid defined by Eg is transformed into another ellipsoid
defined by E in going from sq to s. The phase space volume enclosed by
the ellipsoid is conserved and any particle inside (outside) the ellipsoid at
5o will also be inside (outside) the ellipsoid at s.



5.2 Transport of Gaussian Beam Distribution

Suppose the beam density at Zg is given by the gaussian distribution

1\? _w Lt
po(Zo) = <§7—Tz> C_WO, Wo = EZ;E()lZo. (34)

Then according to Liouville’s Theorem the beam density, p(Z), at
Z = TZ is just po(Zo), and it follows from (25) and (34) that

1\? _ | R
p(Z) = (%) e, W= ézz*E 'z, (35)

where E = TEGT!. These equations give the evolution of a gaussian beam
distribution as it moves along a beam line or around a ring.

5.3 Second Moments of Gaussian Distribution

The second moments,
< Z;Z; >= /Z,'Zj p(Z) d4Z, (36)

of the distribution can be calculated by transforming to a representation in
which E~! is diagonal. Since E is real and symmetric there exists an
orthogonal matrix, O, which diagonalizes E. Thus we have

OEO' = e, ¢€;= eiaij, oot = I, (37)

and defining Y = OZ, equation (36) becomes

<7:2;>= Y, [ olx.0l¥,(¥) 0" ', (38)
kl
where
p(Y) = (L)ze—w W= Lvlely (39)
2e ’ 2¢ )
Thus

< 2:2;>= Y0, <Vi¥i > 0y, <Yi¥i>= / YiYip(Y)d'Y. (40)
kl



Applying the integrals

+oo N +o0 ,
/;oo e—Azyde:_\Qf, _[00 YZ(A?”dY:%, (41)

and using |e| = 1 we find
<YLY >=cep by (42)

and therefore
<ZiZij>=¢€) 0}, et O1; = €Ey;. (43)
124

5.4 Projections

It is useful to partition the matricies in equations (25) and (31) into
two-by-two matricies. Introducing the notation

_ Fy Cg ([ F C (M n
E°_<CE Go)’ E_(C" G)’ T—<m N) (44
and

e (z) ve(z) o= (2) v ()
Zg Yo z Y

where Fg, Go, Cg, F, G, C, M, N, m, n are two-by-two matricies, the
equation E = TET' becomes

F = MF,M! + nGon' + nCiM! + MCon', (46)
G = NG()N* + mFomT 4 NCf)mJ' + mCONTa (47)
C = MCoN' + nC{m' + MFom' + nG,N', (48)

and Z = TZ; becomes
U= MUO + nVO, V = mUo 4 NV() (49)

Here we see that if the initial ellipsoid defined by Eq has no correlation
between the z and y planes, then Co = 0 and equations (46-48) become

F = MFoM' 4+ nGonf, (50)



G = NGoN' 4+ mFom/, (51)
C = MFom' + nGyNf. (52)

On the other hand, if there is no coupling in the transfer matrix, T, then
m = n = 0 and we have

F = MF,M!, G =NG,Nf, C€=MCN". (53)

5.4.1 Projections of the Beam Ellipsoid

Consider the ellipsoid ZEEE 17, = e. We wish to find the equations for the
boundries of the projections of this ellipsoid onto the zo, z{, and yo, ¥§
planes. To find the projection on the zg, &{, plane we seek a
transformation, T, from coordinates Uy, V to new coordinates U, V such
that U = Uy, and the equation for the transformed ellipsoid is of the form

UIF U+ VIGTIV =, (54)

where F~! and G™! are positive definite. We obtain such a transformation
if we choose

M=1I, n=0, m=-NC/F;!, |Nj=1 (55)
in the last of equations (44). Then the equation E = TE(T! becomes
F=F, C=0, G=N(G,-ClF;'co)N, (56)

and

U=1U, V=N(V,-ClF;'U). (57)

= (5 & ). (59

and the equation for the transformed ellipsoid is

Thus

UIF U+ VIGTIV = UJF;'Up + VIGTIV = e (59)

Now since E;' is positive definite and since T~! exists, the matrix Elis
positive definite. The quadratic forms U:SFE 1Uq and VIG™1V are
therefore positive definite and it follows that

UlF;'Up < e (60)

10



Defining
fo =Fo/D, D =|F|'/? (61)

we obtain
Ul Uy <eD, |fo|=1 (62)

which defines an elliptical region of area weD. This region is the projection
of the ellipsoid z}‘,Eglzo = ¢ onto the zg, z{, plane. The boundry of this
region is given by

UlF;1Uy = ¢, (63)

and for these points we have
vigTlv=0, V=0 (64)
It follows from (57) and (64) that
Vo = ClF;'U,. (65)

These equations give the points on the surface of the ellipsoid which
project onto the boundry of the zq, z{, projection.

Generalizing the argument given above we find that the projection of the
ellipsoid, Z'E~1Z = ¢, on the Z,,, Z, plane is the elliptical region

U'f1U < eD, ' (66)
where

L
U:(z » D = (B Epn — B2)'?, (67)

and the matrix elements of f are

fir = Emm/D, foo = Enn/D, fi2 = fo1 = Emn/D. (68)

5.4.2 Projections of the Gaussian distribution

The projections of the gaussian distribution (35) on the z, 2’ and y, ¥’
planes are

Pi(e,2) = [ p(Z)dydy/, Palw,t) = [p(Z)deds’.  (69)

11



Applying the integral

— 00

we find that the projections are of the form

1
Pi(z,2') = Y e, A = (g12% + 20122’ + b12'?)/2e, (71)
1
Py(y,y") = 2oy e, Ay = (goz® + 2ap22” + byz'?)/2es, (72)
where
blgl - a% = 1, bzgz — a% =1. (73)
The second moments of the projections are then
<z?>=e1by, <2?>=eq, <zz' >=—ea, (74)
<yl>=egby, <y’ >=esgs, <yy >= —ez0s. (75)

These are, of course, also the second moments of the distribution (35) and
so, comparing these equations with (43) we find

ey = €(E11E22 - E%2)1/2 = 6D1, €9 = 6(E33E44 -— E§4)1/2 = €D2, (76)

a; = _E12/D1, b1 _= E11/D1, 9= EZZ/DD (77)
az = —Es4/D2, by = Es3/Dy, g2 = E4/Ds. (78)

The projections {69) are therefore gaussian distributions with rms
emittances e; and es.

5.5 Evolution of Projection Emittances

The evolution of the z, =’ and y, ¥’ projections is given by equations
(46-48), (66-68), and (76-78). The emittances of these projections are
proportional to the square roots of the determinants |F| and |G|. Here we
derive expressions for these determinants in terms of the initial ellipsoid
matricies Fg, Gg, and Cy, and the symplectic transfer matrix T.

Following Courant and Snyder [1], we define the symplectic conjugate of a
two-by-two or four-by-four matrix A as follows

A = —SATs, (79)

12



where S is given by (28). For two-by-two matricies we have

A
Ay

A12
A22

01
-1 0

Az
-4

N

and

ED RN

AA = KA = (A11A22 - A12A21)I = |A-]I7
A+ A = (A5 + Ap)Il = Tr(A)L

For the four-by-four matrix T we have

— Ay
). o
(81)
(82)

- (0 S ) (% F) (o ey ) o)
- (N R) ([ 3)- (i Em IR ) e
Now if T is symplectic, then TIST = S, T-1§(Tt)~1 = S, S = TST', and
therefore
TT = -STIST=-82=1I, TT=-TST/S=-S2=1  (85)
Using (85) in (83-84) we find
lm|=|n|, [M]=|N], (86)
M|+ |m|[=1, [|N[+n|=1, (87)
Mn +mN =0, Mm+ nN = 0. (88)
Now if
E = TET', (89)
then we have
EE = TE,T'T BoT = TE EoT (90)
and using (44) and (81-82) in (90) we find
[F| + [C| = [M|[Fo| + |m||Go| + |Co| + 7 (91)
|G| +|C| = |m||Fo| + |M]|Go| + |Co| — T (92)
T = Te(MF,C/1) + Tr(MCGon). (93)

13




Thus we have
|F| + |G|+ 2|C| = [Fo| + |Go| + 2|Col, (94)
|F| - |G| = (L — 2[m|)([Fo| - |Gol) + 2. (95)

Using (48), (81-82), and (86-88) we also find
|C| = |M||m|(|Fq| + |Go|) ~ TH(MF,M'a{Gom) + C; 4+ C2 + C3,  (96)

where .
¢y = (IM]? + |m|?)|Co| + Tr(MC,N'm'Cha), (97)
Cy = [M|Tr(MCoGot) + |m|Tx(MF,Cya), (98)
Cs = Te(MCoNtmtFyM) + Tr(nClm'N'Gon). (99)

Equations (91-99) give the evolution of the emittances, ¢|F|'/? and
€|G|Y/2, of the @, 2’ and y, y' projections in terms of the partitioned
matricies of Eg and T.

For the case in which the initial ellipsoid has no coupling between the =
and y planes,

Co =0, (100)

and using (91-93) and (96-99) we find
|F| = [M|?|Fo| + |m|?|Go| + Tr(MF,M'aGon), (101)
|G| = |m|?|Fo| + [M|?|Go| + Tr(MF M @il Gon). (102)

And since 7 = 0 (95) becomes
IF| - |G| = (1 — 2[m|)(|Fo| — |Gol)- (103)

The consequences of this last relation have been worked out by Brown and
Servranckx and are discussed in Ref. [2]. Here they also prove that for the
case in which there is no coupling (Cp = 0) in the initial ellipsoid matrix,

[F|*/2 > (1 - jm])[Fo|'/? + |m||Go|'/?, (104)
1G[/2 > |m||Fo|*/2 + (1 - |m])|Go|'/?, (105)

and therefore
[F|*2 4 |GJH2 > |Fo| /2 + |G /2. (106)

Thus the sum of the emittances of the z, 2’ and y, y’ projections is always
greater than or equal to the the sum of the initial uncoupled emittances.

14




5.6 Transfer Matrix for a Rolled Quadrupole

The transfer matrix for a quadrupole rolled clockwise by angle ¢ is given by

q = R(-¢)QR(¢), (107)
where
M o
Q= ( 0 N ) , (108)
is the transfer matrix for the unrolled quadrupole, and
Cc 0 -S o0
0 C 0 -S .
R(9) = s o0 c ol C=cos¢, S =sing. (109)
0 S 0 C

Thus we have

CS(N—M) C2N +S§°M (110)

o= ( C?M + $2N CS(N - M) )
For the case of a skew quadrupole the angle ¢ = 45° and (110) becomes

_1({M+N N-M

For the case of a thin quadrupole we have

MZ(_; g)a N:(; 2>’ k:l/f, (112)

and (111) becomes
I k 0 0
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