

BNL-104740-2014-TECH

AGS/AD/Tech Note No. 324;BNL-104740-2014-IR

SIMPLE APPROXIMATION FOR SYNCHROTRON FREQUENCY

J. M. Kats

August 1989

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Accelerator Division Alternating Gradient Synchrotron Department BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc. Upton, New York 11973

> Accelerator Division Technical Note

AGS/AD/Tech. Note No. 324

SIMPLE APPROXIMATION FOR SYNCHROTRON FREQUENCY

J.M. Kats

August 2, 1989

Abstract

The synchrotron frequency distribution for particles within the stationary bucket can be approximated with good accuracy by the formula

$$\Omega(\phi_{o}) = \omega_{o} \sqrt{1 - (\frac{\phi}{\pi})^{2}},$$

where $\underset{O}{\omega}$ is the usual synchrotron frequency for small amplitude, $_{O}^{\phi}$ is the particle amplitude angle.

1. Linear-Parametric Approximation

Within a stationary bucket in longitudinal phase space, each particle exercises a synchrotron oscillation with its own constant synchrotron frequency, which is higher toward the bucket center and lower for particles close to the separatrix. I will apply a term central (synchrotron) frequency for the particles of infinitesimal amplitude. That is what is usually called synchrotron frequency, because it comes from the equation

...

$$\phi + \omega_{o}^{2} \phi = 0 , \qquad (1)$$

approximating synchrotron oscillations of particles with such a small angular amplitude ϕ << 1, that satisfy

$$\phi = \sin \phi \quad (2)$$

For arbitrary $\phi,$ however, the approximate equation (1) is replaced by an exact one

$$\phi + \omega_o^2 \sin \phi = 0, \quad -\pi \leq \phi \leq \pi$$
 (3)

whose solution $\phi = \phi(t)$ should satisfy the initial conditions*

$$\phi(0) = \phi_0$$
, $\phi(0) = 0$. (4)

An approximation (2) is a part of a simple class of linear-parametric functions defined by

$$\sin \phi \simeq \phi p^2(\phi_0)$$
 (5)

and applicable to the problem (3), (4).

After the substitution of (5) to (3), the approximate synchrotron frequency

$$\Omega_{\mathbf{p}}(\phi_{\mathbf{o}}) = \omega_{\mathbf{o}} \mathbf{p}(\phi_{\mathbf{o}}) \tag{6}$$

should be compared with the exact one $\Omega = \Omega(\phi_0) = \omega_0 F(\phi_0)$. The latter can be found by the use of an elliptic integral¹ or by tracking the particle motion numerically. I did the tracking. In the next section, we will compare several approximating functions $p(\phi_0)$.

2. Comparison of Approximating Functions

Figures 1 to 4 show the computed results for four approximating functions defined as follows:

$$p_2^2(\phi_0) = 1 - \frac{\phi_0^2}{3!}$$
, (7)

^{*}Any other $(\phi(0) \neq 0)$ initial conditions can be reduced to (3) by the appropriate shifting of the time reference frame: $t \rightarrow t + t_0$.

 $p_3^2(\phi_0) = 1 - \frac{\phi_0^2}{3!} + \frac{\phi_0^4}{5!}$, (8)

$$p_{s}^{2}(\phi_{o}) = \frac{\sin \phi_{o}}{\phi_{o}}, \qquad (9)$$

$$p_{\pi}^2 = 1 - \left(\frac{\phi_0}{\pi}\right)^2$$
 (10)

All of the above originated from linear-parametric representation (5).

Let us now turn to the figures showing approximations and their errors. Each figure has three curves. Two of them are $F(\phi_0)$ (exact distribution) and $p_a(\phi_0)$ (approximate distribution (a = 2, 3, s, π) both starting at $\phi_0 = 0$, $F(0) = p_a(0) = 1$. The space between those two curves is shaded. The third curve $E(\phi_0)$, starting at $\phi_0 = 0$, E(0) = 0is relative error:

$$E(\phi_{o}) = \frac{F(\phi_{o}) - p_{a}(\phi_{o})}{F(\phi_{o})} \quad . \tag{11}$$

The worst approximation is the first which comes from obvious Taylor expansion up to the second term. Because this approximation is valid only for the short interval of argument ϕ_0 , Figure 1 is not completed for ϕ_0 close to π .

Figure 2 represents the approximation coming from the Taylor expansion up to the third term. The improvement in accuracy is not very dramatic for the price of increased complexity in p_3 .

Figure 3 shows that trying to avoid Taylor expansion does not pay in accuracy. Maybe the only profit from this approximation is the lower boundary estimation

$$\frac{\sin \phi_{o}}{\phi_{o}} \leq F^{2}(\phi_{o}) , \quad 0 \leq \phi_{o} \leq \pi .$$
 (12)

- 3 -

-4 --Pi

Figure 4 shows unexpectedly that a small correction in the second order Taylor expansion pays off very well: the relative error is less than 5% for at least 80% of the argument region.

It is interesting to compare the exact distribution $F(\phi_0)$ with its own expansion¹ up to the second term:

$$F(\phi_{o}) \simeq p_{E}(\phi_{o}) = \left(1 + \frac{\phi_{o}^{2}}{16}\right)^{-1}$$
 (13)

The comparison of F and $\rm p_E$ is shown in Figure 5. One can see $\rm P_E$ is good only for 60% of the region.

So, we choose as an approximate synchrotron frequency distribution

$$\Omega(\phi_{0}) = \omega_{0} \sqrt{1 - \left(\frac{\phi_{0}}{\pi}\right)^{2}} \quad . \tag{14}$$

Try it--you'll like it!

Reference

 L.D. Landau and E.M. Lifshitz, Mechanics, Third Ed., 1982, Pergamon Press, Para. 11, Problem 1.

