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HVD o th e s e s 

1. Linear, time invariant, lossless, isotropic medium (in our case the me- 

dium is the vacuum) bounded with uniform, perfectly conducting, cylindrical wall. 

6 2. No charges and no currents in the medium. 

Even upon the above hypotheses to find a general solution of the Maxwell - 

Eq. inside this bounded medium would be a formidable task. 

A very short way to arrive at significant results is to assume that the 

fields depend upon s and t as follows: 

Upon substituting into the Maxwell equation we obtain the fundamental system: 

l o  
-Y Er 0 I 

+jW Hr 0 

0 

0 

-jw"% -YH2 0 

Solving with the Kramer rule and using the normal notation: 
2 K2 = y 2  + w  sp 

C 



RC-2 

We o b t a i n :  

1 

This means t h a t  under t h e  above hypotheses i f  t h e  l o n g i t u d i n a l  f i e l d  i s  known 

c t h e n  t h e  t r a n s v e r s e  f i e l d s  can be obta ined  simply by d e r i v a t i o n .  Moreover be-. 

cause t h e  system is l i n e a r  then s u p e r p o s i t i o n  a p p l i e s  and we can cons ider  f i e l d  
- 

S '  
c o n f i g u r a t i o n s  (modes) depending upon E o r  upon H 

S 

The f i e l d s  depending upon E p e r t a i n s  t o  t h e  group of t h e  a c c e l e r a t i n g  

f i e l d  and a r e  c a l l e d  TM modes. The f i e l d s  depending upon H p e r t a i n s  t o  t h e  

group of t h e  d e f l e c t i n g  f i e l d s  and a r e  c a l l e d  TE modes. 

S 

S 

Now our problem i s  t o  f i n d  a s u i t a b l e  express ion  f o r  H because f o r  t h e  
S 

RFQ we a r e  i n t e r e s t e d  only i n  t h e  TE modes. 

Maxwell equat ion  i n  v e c t o r  n o t a t i o n  a r e :  

V * E  = 0 

V * H  = 0 V x E = - j w y H  

V x H = jwsE 

It fol lows : 
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Combining and noticing that the same result is valid for E we obtain the farnil- 

iar wave equation. 

EXF nding th 

obtain: 

above equation and retaining the Longitudinal S component we 

I f  we substitute an assumed product solution and attempt to seperate the vari- 

ables in order to obtain two ordinary differential equations we should assume: 
c 

- 

HS = W 

0 where R is a function of r alone and 0 is a function of P alone. 

Substituting and manipulating we obtain: 

2 R" R' + r -  r -  
R 0 

The left side is function of r alone, the right of FI alone. Consequently, if 

both sides are to be equal for all values of r and FI then both sides must be 

equal to the same constant: 2 f o r  instance v . Substituting we obtain: 

2 

- Y R = O  1 2 R" + - R' CK 
r C r 

e ' '  - 2 
0 
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The f i r s t  equa t ion  i s  solved with t h e  Bessel and Neuman func t ions  o f  t h e  order  

e V while  t h e  second i s  solved with s i n u s o i d s  and we could w r i t e :  

For r = 0 FI cannot be i n f i n i t e ,  thus B = 0. On t h e  o t h e r  hand t h e  f i e l d s  should 

be the  same every t i m e  we vary  0 of a m u l t i p l e  of 2T. This means t h a t  V must 

be an i n t e g e r .  Moreover, a proper  s e l e c t i o n  of 0 w i l l  a l low us  t o  use e i t h e r  

t h e  s i n e  o r  t h e  cos ine .  

S 

So we o b t a i n  t h e  genera l  formula: 

HS = H . J (K r )  cosV0 ( 6 )  o v  c 

c 
On t h e  i n n e r  s u r f a c e  of t h e  c y l i n d r i c a l  hollow p ipe  t h a t  c o n t a i n s  t h e ' f i e l d  t h e  

0 

component E9 must be zero .  

From (2) we have: 

This means t h a t  i f  a i s  t h e  r a d i u s  of t h e  p i p e  then:  

J;(Kca) = 0 

This c o n d i t i o n  determines K 

determining an i n f i n i t e  number of modes of t h e  same family T 5  

and w e  have an i n f i n i t e  number of s o l u t i o n s  
C 

R' 
I f  we a r e  looking f o r  a t r a n s v e r s e  f i e l d  with four  p o l e  symmetry and no 

v a r i a t i o n  along S then  we have t o  set :  



-. ._ 

‘c 

and from ( 7 1 ,  s e l e c t i n g  t h e  f i r s t  zero  w e  o b t a i n :  

0 

2 
W a  = 3.05424 

145.8 MHz o r  f c  = - a 
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( 8 )  

where f i s  t h e  so c a l l e d  cut-off  frequency of t h e  s e l e c t e d  mode (F ig .  1). 
C 

This means t h a t  an i n f i n i t e l y  long c y l i n d r i c a l  l o s s l e s s  p ipe  with i n n e r  ra -  

d i u s  equal  t o  a can support  t h e  wanted a x i a l l y  uniform four  p o l e  mode. The r e l a -  

t i o n s h i p  between frequency and mode being def ined  by (8 ) .  

An i n f i n i t e l y  long wave guide i s  not  a p r a c t i c a l  device but  i t  i s  

p e r f e c t l y  p o s s i b l e  t o  b u i l d  a p r a c t i c a l  s t r u c t u r e  where f o r  a long p o r t i o n  of 

t h e  a x i s  t h e  f i e l d  has  four  pole  symmetry and is  adequately uniform. 

s t r u c t u r e  i s  t h e  RFQ-resonant c a v i t y . )  

(This  

1 
F: 

I n  o r d e r  t o  have some i d e a s  about the  c y l i n d r i c a l  c a v i t y  r e s o n a t o r s  we sup- 

pose t o  s h o r t  c i r c u i t ,  wi th  a conducting w a l l  normal t o  t h e  a x i s ,  both t h e  ends 

of our hollow p i p e  l i v i n g  a c l e a r a n c e  L between t h e  s h o r t  c i r c u i t s .  

Now b e s i d e  t h e  above c o n d i t i o n s  on t h e  c y l i n d r i c a l  w a l l  ( E q .  ( 7 ) )  t h e  

e l e c t r i c  f i e l d  should be normal o r  zero  on the  s h o r t  c i r c u i t i n g  s u r f a c e s  and we 

have a t h i r d  c o n d i t i o n  t h a t  e n t e r s  i n  determining t h e  c a v i t y  resonant  

frequency . 
It i s  n e a r l y  obvious t h a t  b o t h ,  f o r  t h e  TE and TM modes, t h i s  c o n d i t i o n  i s  

f u l f i l l e d  i f  and only i f  t h e  d i s t a n c e  L i s  an i n t e g e r  m u l t i p l e  of h a l f  

wavelength of t h e  - f i e l d .  

For t h e  TE modes we have a l r e a d y  seen t h a t  t h e  c o n d i t i o n  ( 7 )  must be 

s a t i s f i e d .  

c a l  w a l l .  This i n  t u r n  demands t o  f u l f i l l  t h e  condi t ion :  

For t h e  TM modes i s  t h e  f i e l d  ES t h a t  must be z e r o  on t h e  c y l i n d r i -  

Jy(Kca) = 0 . ( 9 )  
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Let us call R,,% the value for the argument that satisfies Eq.  ( 7 )  or ( 9 ) .  

Consequently we have : 

2 y 2 + W 2 q l  = (%) 

Because we need propagation then y should be imaginary and we put y = j$. If we 

call X the wavelength inside the pipe then it is rather obvious that $ 2l~/X . 
In fact when we pass through a length equal to the field has to repeat be- 

cause the argument of e 

we obtain 

g g 

g 
changes of 2lT. Substituting in the above equation 31, 

(F) 2 =(+)2 +(?) 2 

g h 

Rearranging and introducing the third condition, that the resonator length L can 

be only equal to an integer number, say p, of half guide wavelength we obtain: 

where X is the free space wavelength of a cylindrical resonator of radius a 

and length L operating in the TE 

in Fig. 2. )  

(Three examples are given 
Or Tap mode* VR P 

Up to this point, we considered 'only the elementary cylindrical resonator 

where the fields E 

and the resonant frequency is the corresponding eigenvalue. 

or Bs are completely described with only one eigenfunction 
S 

However the cavity resonators, used as accelerators, even maintaining the 

cylindrical symmetry, are very often much more complicated and in order to sat- 
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isfy the boundary conditions dictated by a technical resonator the complete set 

of the cylindrical eigenfunctions is normally required. 

Even a simple outline of the general theory would be beyond the purpose 

of this rather intuitive treatment, vice versa it is important to know that many 

powerful computer programs are now available for analyzing, with good accuracy, 

practically any useful cylindrical resonator. 

The cavity for an RFQ originates from a "E cylindrical resonator which 211 

is loaded with four V-shaped vanes symmetrically connected to the cylindrical 

wall as shown in Figs. 3&4. 

The vanes terminate at some distance from the short circuiting wall and 

consequently the central vane section is symmetrically coupled to the two 

end sections (we note, in passing, that this resonator is no longer uniform 

along the abscissas). 

# 

- 

The boundary conditions provided by the end sections allows the whole cav- 

ity to resonate in a very complicated manner where the fields are nearly uniform 

21 along the axis of the vane section. This condition is obtained if the TE 

cut-off frequency of the guide represented by the vane section* is slightly 

below the operating frequency of the whole cavity. 

*For this reason 
mode. Only an i 

some authors write that the cavity is resonating in the TE210 
.nfinitely long resonator could support this mode. In a physi- 

cal cylindrical resonator the TE electric field must be zero at both the ends 
so the last index of the mode cannot be zero and consequently the guide 
wavelength should be finite. 
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Fig. 1. Lines of force of the electric field in a cylindrical wave guide at 
the cut-off frequency for the TE21 mode. 

E 

n o , , .  

21 

Cy l i n d o  

qQ) 
1 7 -  

Fig. 2. Cross and longitudinal sections of the same cylindrical resonator 
excited in three different modes. 
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Fig. 3. Simplified scheme of an RFQ resonant cavity. 

- 
Fig. 4 .  Perspective view of an RFQ resonator. 

is also shown. 
The serration on the vane tips 


