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ON SOLUTIONS OF SACHERER INTEGRAL 
EQUATION * 

S.Y. Zhang and W.T. Weng 

AGS Department, Brookhaven National Laboratory, 
Upton, New York 11973 

ABSTRACT 

0 

There are basically two approaches in solving the Sacherer 
integral equation, one uses the orthogonal polynomial expansion for 
radial functions, and another uses the Hankel harmonic samplings, 
both have extensive application. In this article, we discuss these 
approaches and present the corresponding solutions. If the azimuthal 
modes are not coupled, the Sacherer integral equation can be treated as 
an eigenvalue problem. It is shown that the information provided by 
the eigenvalue alone are insufficient in determining the system 
response. The initial perturbation pattern with respect to the radial 
modes must be considered. Several particle distributions are used as 
examples to show the solutions to the equation, and the physical impli- 
cation of the radial modes is illustrated by using the examples. 

* Work performed under the auspices of the U.S. Department of Energy 



I. Introduction 

The coherent bunched beam instability can be described by the Sacherer integral equa- 

tion [l], developed from the Vlasov equat,ion on  the particle evolution in phase space given 

impedances from the environment. The Sacherer integral equation (SIE) nowadays also 

becomes a foundation for further analysis of complicated beam dynamics, such as the 

microwave.instability, the bunch lengthening, and various kinds of mode couplings [2,3]. 

If the azimuthal modes are not coupled, such as in a low intensity regime, then the SIE 

can be reduced to  an eigenvalue problem, where the two unknown variables, i.e. the 

coherent frequency shift and the radial function can be solved separately. There are basi- 

cally two approaches in solving the SIE, and both have extensive applications. One is using 

the orthogonal polynomial expansion for radial functions [4,5], and another is using Hankel 

harmonic samplings for radial functions [3]. 

The approach using orthogonal polynomials is conventional in treating problems such 

as the Sacherer integral equation. By using the lowest orthogonal polynomials for the 

radial mode expansion, the SIE is transformed into a Eth order linear system. To determine 

the stability of the system, usually the eigenvalues should be found. However, in determin- 

ing the system response, the information of eigenvalues alone is insufficient, the initial per- 

turbation with respect t o  the radial modes must be included. In an extreme case, some 

eigenvalues, including unstable ones, may be virtually ineffective, in coupling to the initial 

perturbation. 

In this article, we study the solutions for the Sacherer integral equation. We start  from 

the orthogonal polynomial approach, and concentrate on the issues related to the radial 

modes. Using only necessary analytic mathematical means, the equation will be solved for 

several particle distributions, and the physical implications related to the radial modes are 

presented. The approach using Hankel Iin.rrnonic samplings is also studied, and the relation 

and comparison of the two approaches are discussed. 

’ 
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axis, 

The line density can be Fourier expanded as, 

(2-10) 

where the spectrum is, 

A ( p )  = J m A ( 4 ) e - j p 4  -03 dq5 (3-11) 

Note that in the transform the variable is the phase deviation 4, rather than the conven- 

tional time t .  Using (2-lo), we obtain, 

co 
vp(4) = -IOeiwt Z (p )A(p )e jp$  

p a-03 
(2-12) 

where Io  is the beam average current and Z ( p )  is the impedance corresponding to the spec- 

trum A(p) .  Substituting (2-12) into (2-8), we get, 

(2-13) 

We emphasize that VP($)  is the voltage generated by the line density A($) in (2-9), which 

applies only to the particles with the phase position q5. 

The perturbation distribution can be written, 

where R ( m f ) ( ~ )  is the radial function with the m’th azimuthal mode. Substituting (2-13), 

(2-14) into (2-7), and leaving off e j w t ,  we get, 

Multiplying both sides of (2-15) by e- jme,  and integrating over 0 from 0 to %, we get, 
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and also, 

d+o 1 W ( r )  = -- 
dr r 

(2-24) 

(2-25) 

m. Solution Using Orthogonal Polynomials 

3.1. Eigenvalue Problem 

If the azimuthal modes are not coupled, then only the force generated by the radial 

function R (m)(r) is responsible to the coherent motion w in (2-23), the original Sacherer 

integral equation (2-16) is simplified as, 

03 

(w - r n u S ) ~  cm)(r) = j m w s e W ( r )  c0 Z ( P >  J, ( p r  )Jo R (m)( rr  ) J, ( p r  ' ) rr dr ' (3-1) 
p=-m P 

Thus, the SIE can be transformed to an eigenvalue problem, which is eligible to solve 

separately for two unknown variables, Le., the coherent frequency w and the radial function 

R (m)(r 1. 
For the weight function W ( r ) ,  a set of normalized orthogonal polynomials fk(r) can 

always be found such that,  

W Jo W ( r ) f k ( r ) f l ( r ) r d r  = bk,l (3-2) 

Using the orthogonal polynomial, the radial function can be written as, 

W 

R (m)(r) = W ( P )  ~ ~ ~ ! m ) f ~ ' ( r )  
k' -0 

Define the Hankel spectrum for the orthogonal polynomial, 

(3-3) 
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r 

L!3 l  0 
-p 
0 -  

-p+1 

which is an eigenvalue problem. The eigenvalues can be solved through the equation 

A =  

where I is identity matrix, and 

r 

A )( -p> . . . Al'")(p) 

. . . Af"'(B) 

X = w - m ws 

We note that the eigenvector 

(3-12) 

(3-13) 

(3-14) 

is not presented in (3-12) and therefore it will not directly affect the solution of the coherent 

frequency. 

3.2. Radial Modes 

Using the expansion of the radial function R cm)(r) by the orthogonal functions, as 

shown in (&3), the Sacherer integral equation (3-1) has been transformed to a linear system 

(3-11) with an order F. We have assumed that the higher order modes are not important 

with respect t o  the system response. 

Define 

Z = diag{-} Z(P 1 = 
P 

and 

I o  0 

0 . .  

0 

(3-15) 

(3-16) 



(3-23) 

The corresponding radial function 

03 R(iy’(r) = W ( r )  CV( i (gL’ f k ’ ( r )  (3-24) 
k =O 

is the i t h  radial mode. Substituting the i t h  eigenvalue and the corresponding radial 

mode R($) ( r )  into (3-1), the Sacherer integral equation is satisfied. This indicates that  

according to the SIE if the perturbation distribution is dominated by the i t h  radial mode, 

i.e. 

$ p ( r , ~ )  = R($’(r)eimB (3-25) 

then only the coherent frequency shift is excited, and other eigenvalues are virtually not 

presented. 

To show the complication implied by the existence of F eigenvalues and also K associ- 

ated eigenvectors, the following elaborations are needed. We rewrite the equation (3-11) as, 

Xa=M1a,  (3-26) 

Taking Laplace transform, we have 

S ( Y  (s) - (YO = M ICY (s) (3-37) 

where cyo is the initial condition of the vector a in time domain, i.e. cyo = cy ( 0- ). Since the 

orthogonal polynomials have been chosen, this can be interpreted as the initial perturbation 

distribution with respect to the radial modes, as shown in (2-14) and (3-3). Using partial 

fraction expansion, the evolution of the perturbation can be described as, 

(3-28) 

where T(i1 is the i t h  row of the matrix T-’, and the relation used in the second step can be 
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through for most cases. For instance, if two eigenvalues are the same as instead of one 

j +k) t m with and another with then the second mode will be t e instead of e 

W. Examples for Several Distributions 

In this section, we present solution of the Sacherer integral equation for several particle 

distributions by using the orthogonal polynomial approach. For each distribution, the 

corresponding orthogonal polynomials are found [6]. The remaining calculation are per- 

formed numerically by using the equations shown in the last section. Some closed forms for 

the Hankel spectra can be found in [7]. The physical implication of the radial modes will be 

discussed. For convenience, these discussion will be placed in the section of the Gaussian dis- 

tribution. 

4.1. Gaussian Distribution 

For a Gaussian distribution, the stationary phase space density is 

0 
where i is the effective half bunch length in phase space. The line density is also a Gaus- 

sian, 

(4-2) 

where Q is the effective half bunch length in phase deviation, which is in fact equal t o  i .  For 

Gaussian distribution, we have 

Q = 20 

where u is the standard deviation of Gaussian distribution. 

The weight function can be calculated as 

(4-3) 

First, we find a set of orthogonal polynomials according to the weight function. The 
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obtained by, 

The real part of the line densities are shown in Fig.4, where we used a uniform scaling for 

the strength of the perturbation. For a half period of a synchrotron oscillation, 4 snapshots 

of the corresponding line density at the oqiially divided time period are shown in Fig.5, with 

only the first radial mode. 

The following observations and deliberations are worth mentioning. 

1. The initial condition of the perturbation CY,-, determines the weighting of each eigenvalue. 

The way to find cyo is by observing the line density generated by the initial perturbations, 

which are shown in Figs. 6-10 for first five radial modes separately. Note that  the perturba- 

tion radial modes are shown on both side of (3-1), therefore the scaling is rather arbitrary. If 

the initial line density with perturbation is identified to  be close to the waveform shown in 

Fig.7, which is due to the second radial mode, then the second eigenvalue will be dominant 

in the beam motion. An identification can also be.made through the spectrum analysis. 

With the linearity of the integral equation, each mode will manifest itself with either the 

damping or growth rate, which is determined by the corresponding eigenvalue. Consider an 

unstable case. When the strength of a mode increases, the particle distribution in phase 

space will be changed. This change can be shown as a growth of the amplitude of the 

corresponding radial mode, as shown in Fig.3. Ideally, a growth of a radial mode is not cou- 

pled to other modes. 

2. In Figs. 6-10, although the arbitrary scaling was mentioned, care has been taken to avoid 

the appearance of a negative part of the line density. In fact, when a mode continues to 

grow, inevitably an empty portion in phase space will be generated. Any further manifest 

by the mode creates negative line density in theory. In reality, this cannot happen. Instead, 

distortion will appear on the boundary of the empty zone. In Fig.11, we show line densities 

with a strong 5th radial mode along wilh the stationary distribution, which can be com- 
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1. Elliptic distribution ( Parabolic line density ) 

The stationary phase space density is 0 

The line density is, 

3 42 
X O ( 4 )  = - (1 - -1 

445 452 
The weight function can be calculated as 

Consider 

and with 

Letting z = 1-2r2/i2, then we get 

Matching (4-17) with (4-14), we have ,b' = -1/2, and also 

2r2 -1 12 

(4-11) 

(4-12) 

(4-13) 

(4-14) 

(4-15) 

(4-16) 

(4-17) 

(4-18) 

(4-19) 

In this and following examples, we use expansion of 7 orthogonal polynomials with 

p = &lO.The first 5 orthogonal polynomials are plotted in Fig.19. The radial modes with 
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We have 

(4-28) 

Letting Q = m and /3 = 1/2, we have 

The orthogonal polynomials are plotted in Fig.25. The radial modes with inductive 

impedance are shown in Fig.26, and the corresponding line densities are shown in Fig.27. 

V. Solution Using Hankel Harmonic Samplings 

The Sacherer integral equation (3-1) can also be solved by Hankel harmonic sampling 

of the radial modes at p ,  which represents frequencies, in an eigenvalue problem. We rewrite 

the equation (3-1) as, 

. Multiplying both side by J,(qr)r and integrating over r ,  using (2-21), we get, 

W 
X A(m)(q) = jmwsf cQ - Z ( P )  fo  W(r)Jm(pr)J,(qr)rdr.A(m)(p) 

pa--03 P 
Running q from -iT to T, then €or p from -jj to jj, we have, 

where 

The equation (5-3) is also an eigenvalue problem. 

(5-2) 

To find the relation between the two approaches, we have the following equation 

according to (3-5), 
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set of eigenvalues. Even though the dimensions of the two matrices are different, by an 

inspection it can be found that the computing load is the same, i.e. both need the Hankel 

spectra for orthogonal polynomials shown in (3-4). 

2. Using the harmonic sampling approach, the matrix K can be calculated by the Bessel 

functions as shown in (5-4). The  equation (3-6) shows that the Bessel function is equivalent 

to an expansion of the orthogonal polynomials with an infinite order. Meanwhile in the 

orthogonal polynomial approach, IC has to be truncated. If the convergence in the orthogo- 

nal polynomial expansion is guaranteed and it is fast, then the difference between the two 

e 

approaches will not be important. Otherwise, the Bessel function calculation can be used to 

verify the accuracy of the orthogonal polynomial approach. In Fig.28, the Bessel function 

J , ( p r )  with p = 1, 2, 3, 4, 5 are shown, compared with the dotted lines for the orthogonal 

polynomial approximation using (3-6), where the Gaussian distribution and up to 5th order 

orthogonal polynomials are used. It can be observed that to let the approximation accept- 

able, in this case, for the harmonic number larger than 5 a higher order orthogonal polyno- 

0 mial expansion is needed. 

3. In the orthogonal polynomial approach, sometimes the harmonic number can be 

extended to  be very large by an analytical expression of the component in the matrix M .  

Consider an inductive impedance, and assume that the perturbation line density of each 

orthogonal polynomial is known. We may write 

03 

= 27rJ -03 A,'")((qAl(m)(-f$)dd (5-10) 

The last step in (5-10) requires that the harmonic number p be very large, therefore this 

expression includes very high harmonics. Whereas in the harmonic sampling approach, the 

number of the orthogonal polynomials is infinite, but the harmonic number is limited. This 

condition for using (5-10) is crucial and very restricted, therefore the usage of this method is 

limited. 

e 
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Fig.1. Orthogonal Polynomials for Gaussian Distribution. 
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Fig.2. Hankel Spectra of Orthogonal Polynomials for Gaussian Distribution. 
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Fig.5. Snapshot of Line Density of 1st Radial Mode for Gaussian Distribution. 

Phase Deviation in Degree 

Fig.6. Line Density of Stationary Distribution and 1st Radial Mode, Gaussian. 
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Fig.9. Line Density of Stationary Distribution and 

0 

4th Radial Mode, Gaussian. 
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Fig.10. Line Density of Stationary Distribution and 

IO 

5th Radial Mode, Gaussian. 
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I /  Radial Modes 
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Fig.13. Radial Modes with a Narrow Band Cavity, Gaussian. 
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Fig.14. Line Density of Stationary Distribution and 1st Radial Mode. 



0.3 

0.2 

0.1 

H- 

Y 

1 

0 20 40 60 80 100 

Phase Deviation in Degree 

Fig.17. Line Density of Stationary Distribution and 4th Radial Mode. 
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Fig.18. Line Density of Stationary Distribution and 5th Radial Mode. 
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Fig.21. Line Density of Elliptic Distribution. 
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Fig. 22. Or t hogon a1 
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Polynomials of Parabolic Distribution. 
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Fig.25. Orthogonal Polynomials of Elliptic Weight Function Distribution. 

r 

Fig.26. Radial Modes of Elliptic Weight Function Distribution. 


