STUDY OF A NEW EXTRACTION SCHEME

C. Steinbach

May 1987

Collider Accelerator Department
 Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Accelerator Division
Alternating Gradient Synchrotron Department BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc. Upton, New York 11973
Accelerator Division
Technical Note
AGS/AD/Tech. Note No. 280
STUDY OF A NEW EXTRACTION SCHEME

Charles Steinbach*
May 4, 1987

Recent measurements of the efficiency of the AGS slow extraction give a result of $97 \pm 1 \%$. The increase in intensity expected from the future use of the Booster makes it desirable to improve this efficiency. This note presents the summary of studies on possible more efficient new extraction schemes for the AGS. All these results have been obtained using a program initially written for the HP 9845 desk computer, now available on IBM PC, ${ }^{2}$, and described in Appendix I.

Present Extraction

Figure 1 shows the phase plane at the electrostatic septum (ES) straight section (bump not taken into account).

When the four sextupoles are powered, extraction can start, driven by a negative slope of the flattop. This pushes the beam from its stable position slightly inside the machine, toward the resonance region near the center. For each energy, there is a set of three separatrices, forming a triangle within which particles are stable. The lower the energy, the larger the stable triangle. Resonance occurs near the central orbit, when the triangle reduces to zero.

At any time during extraction particles escape on all separatrices between the zero emittance triangle and the nominal emittance one, the corresponding energy being higher for the zero and lower for the nominal emittance.

For a $2 \pi \mathrm{~mm}$ mrad emittance,

$$
\frac{\Delta p}{p} \simeq 2 \times 10^{-4}
$$

*Visitor from CERN.

Particles move outward along each of the three separatrices, one after the other, at an increasing velocity in the horizontal phase plane. They eventually jump across the ES, and are kicked toward the outside. They now follow trajectories outside the separatrices, with a different velocity, so that after almost three revolutions they reach the thin septum magnet (TSM) at F5. The part of the beam being extracted has then become wider, and is separated from the circulating beam by a gap wide enough to accommodate the 0.8 mm septum at F 5 , as can be seen in Figure 2 showing the horizontal phase space in $F 5$.

F5 gives the beam another kick to the outside, creating a hole at Fl0, wide enough to accept the 16 mm thick extraction magnet (EM), which deflects the beam to the outside into the extracted beam transfer line (Figure 3).

New Possibilities

There are two ways to improve efficiency:

1. decrease the ES effective thickness (Ti-alloy wires being tested), ${ }^{3}$
2. increase the spiral pitch at the ES.

We will concentrate on this second approach.

We must obviously drop the idea of using the non-linear effect to create the gap at the thin septum magnet, and we choose to use the ES deflection directly.

Unfortunately, the hole one can create at the TSM is small and emittance dependent (two examples in Figures 4 and 5). The phase of the extracted beam at the EM is also a problem. Figures 6 and 7 show cases in which the extractor magnet comes too early or too late in betatron phase around the machine. It is also possible that straight sections may not be available, as in the case of Figure 7, which would require that the ES be located in A20 in order to keep the EM in F10.

We, therefore, propose to enhance the kick produced at ES with a quadrupole to increase the clearance at the TSM. An additional quad of equal strength and opposite polarity will roughly cancel the tune shift due to the first quad and can be used to help adjust the phase at the EM.

A further gain can be obtained from the quads，since they modulate the dispersion functions around the machine．If the dispersion func－ tion is increased at the ES and decreased at the TSM，then the holes at the TSM created by the ES kick at various energies tend to move closer together．A careful choice of the quad locations can give this result． This effect becomes stronger if the chromaticity is reduced，but the instantaneous $\Delta \mathrm{p} / \mathrm{p}$ is then increased．

Three tentative schemes are presented here，as examples，following these principles．

1．ES in A20，TSM in F 5 ，and EM in F10 with quads in A 5 and L 5 normal chromaticity（Figures 8，9，and 10）．

2．Same as 非1 with reduced chromaticity（Figures 11，12，and 13）．

3．ES in F20，TSM in K5，and EM in F10 with quads in F5 and H5， normal chromaticity（Figures 14，15，and 16）．

4．Same as $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2$ with reduced chromaticity and quad strength （Figures 17，18，and 19）．

Appendix II shows the main characteristics of these schemes together with those of the existing one，as calculated from the com－ puter program．Standard present strengths of the ES and TSM have been used．

None of these can be implemented as such due to the unavailability of many straight sections．There are obviously other interesting schemes，but no real good one has been found until now that fits in the present machine without requiring straight sections which are necessary for other uses．

However，the A20 straight section will no longer be used when the AGS is injecting through the Booster．Schemes 非1 and \＃2 would become possible．The second is particularly interesting as it offers small beam sizes for the circulating beam as well as in both magnetic septa for a 10 mm spiral pitch at the electrostatic septum．The clearances for both magnetic septa are large and relatively independent of emit－ tance．It is an attractive and simple design with apparently good performances，which could potentially halve the losses at extraction．

At this stage, one can list some of the further questions to be answered before one can talk of implementing the scheme:

- Make sure the A20 straight section is really available, and so are A5 and L5 for the quadrupoles.
- A current of 600 A is assumed for the quadrupoles, as well as the sextupoles. Is this possible, or should special elements be designed? The chromaticity will have to be decreased too.
- It may not be impossible to find a sextupole arrangement using still available straight sections in 5 , so that those in 13 would be freed for chromaticity corrections.
- The electrostatic septum gap and its voltage should be doubled, to increase the useful width and keep the field to its present value. Does this raise big problems?
- The instantaneous momentum dispersion is equal to about 8 x 10^{-4} for $1.5 \pi \mathrm{~mm}$-mrad (5 times bigger than at present for the same circulating beam emittance). Is this acceptable?
- The vertical phase optics should be checked.
- Last but not least, the next step should be a more realistic simulation with a sophisticated tracking program including the full machine non-linearities.

The author wishes to thank all the AGS people who have helped him in this work, one way or another, and particularly E. Bleser, C. Gardner, J.W. Glenn, D. Lowenstein, Th. Sluyters, A. Soukas, M. Tanaka, R. Thern, and W. van Asselt.

References

1. M. Tanaka, Extraction Group Physics Note \#001.
2. R. Thern, Private Communication.
3. L. Repeta, Private Communication.

COMPUTER PROGRAMME

The tracking programme, written in Basic, uses the interactive and plotting possibilities of the HP 9845 desk computer.

A set of data describes the machine. These are the values of the betatron wave number Q in both planes and the horizontal chromaticity for the bare machine.

The number of straight sections taken into account is limited to those where a relevant element is installed: septum, dipole, quadrupole or sextupole. The data describing each section of the bare machine are:

- the phase angle as counted from the last section $\Delta \varphi_{i}$ for both planes,
- the Twiss parameters α_{i}, β_{j} for both planes,
- the dispersion parameter $\alpha_{p i}$ and its derivative $\alpha_{p i}^{\prime}$,
- the strength of the element located in the section,
- in the case of a septum, its radial position.

The elements are all considered as thin and placed in the centre of the straight section. The $2 x 2$ matrix, referring to the closed orbit as origin, between two sections labelled 1 and 2 is ${ }^{5}{ }^{6}$:

$$
\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right|=\left|\begin{array}{lr}
\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \Delta \varphi_{2}+\alpha_{1} \sin \Delta \varphi_{2}\right) & \sqrt{\beta_{1} \beta_{2}} \sin \Delta \varphi_{2} \\
\frac{-1}{\sqrt{\beta_{1} \beta_{2}}}\left[\left(1+\alpha_{1} \alpha_{2}\right) \sin \Delta \varphi_{2}+\left(\alpha_{2}-\alpha_{1}\right) \cos \Delta \varphi_{2}\right] & \sqrt{\frac{\beta_{1}}{\beta_{2}}}\left(\cos \Delta \varphi_{2}-\alpha_{2} \sin \Delta \varphi_{2}\right)
\end{array}\right|
$$

and the $3 x 3$ matrix applying to the horizontal phase plane coordinates relative to the centre of the machine and to $\Delta p / p$ may be written ${ }^{7}$:

$$
\left|\begin{array}{ccc}
A_{11} & A_{12} & \alpha_{p_{2}}-A_{11} \alpha_{p_{1}}-A_{12} \alpha_{p_{1}}^{\prime} \\
A_{21} & A_{22} & \because \alpha_{p_{2}}^{\prime}-A_{21} \alpha_{p_{1}}^{\prime}-A_{22} \alpha_{p_{1}}^{\prime} \\
0 & 0 & 1
\end{array}\right|
$$

A choice of actions allows the study of the extraction as defined by the programme data. Among, the possibilities, let us- point out:

- the program performs, on request, calculations of the β fonctions as perturbed by the quadrupole in both planes for all odd straight sections.
- A " mountain climbing " routine finds out the horizontal closed orbit and $\Delta p / p$ of particles just on resonance, which allows tracking of the extraction from the centre of the emittance.
- Starting from an initial particle that can be changed at any time, tracking is performed and followed continuously on the plot of any of the straight section phase plane.
- The beam emittance enclosed in any stable phase plane trajectory can be calculated on request.
- A final plot of the horizontal phase plane, almost normalized, can be obtained from any of the sections. It shows the separatrices for the two energies corresponding to the nominal emittance and its centre, and the part of the beam being extracted. This is the way the figures presented in this paper were obtained.

Compared Calculated Performances of Various Schemes

Scheme	Spiral Pitch mm	Clearance at 1st Mag. Septum mm	Clearance at Extraction Mag. mm	Instantaneous $\Delta p / p$	Beam Width at F10 mm	Corresponding Circulating Beam Emittance $\pi \mathrm{mm}$ mrad
Present	5.8	$1.9{ }^{(1)}$	16.9	2.3×10^{-4}	14	2.5
非1	9.5	2.4	18.7	6×10^{-4}	10.4	2.5
\#2	10.9	3.9	18.9	$12 \times 10^{-4(2)}$	11	2.5
\#3	10.4	4.3	23.0	2.3×10^{-4}	16	2.3
\# ${ }^{\text {4 }}$	11.2	3.8	19.5	9×10^{-4}	20	2.8

(1) becomes 3.2 for a $1.5 \pi \mathrm{~mm}$ mrad emittance.
(2) becomes 8×10^{-4} for a $1.5 \pi \mathrm{~mm}$ mrad emittance.

MOMENTF:

Zero emittance momentum : . 0 gagi
Hominal emittance momentum:-.06022

15.09	15.60	15.10	15.10
1.51	1.18	1.94	1.61.

FFRIL 8 ET
Emittarnce= 2.51 3mmmrad
$\left.\begin{array}{cc}20.82 & 18.31 \\ 2.49 & 1.92\end{array}\right\}$ condinats of herme Ato f on figue

Startirig poirit for zero emittarice in electr.septum sectian : 3 ; 3
Starting point far nominal emittance in electr. Eeptum section: $7.2 ; .39$

94－29－1787 60：46：19
Emitをmce＝

XY1．	XF1	$x y 2$	YF2	XY ${ }^{\text {Y }}$	XF．	XYEI	XFC1	XYCz	YFC
13．$\quad .60$	13，¢0\％	－16．996	-9.720	－6．795	－19－ 644	18．		22．511	1594
1.648	1.464	－1．4\％2	－6．423	$-1: 495$	-1.856	2． 06	1．929	¢191．	2\％$\%$
terting	oint	－	ttamo	\＃tel	\＃epta	1． － 006			90\％
＋arting	oint	Mom．	ttanc	at	senta	－कрक\％	$0, ~ 80 \% \%$	－ 0 ， 001	\％\％
せul ote	zera	itten	riple	aint	＂	$-\ddot{\square}, 5180$	－6． 02 O	$-6.0 ¢ 04$	2 a
arting	noint	－Emitt	ce Ex	ett	sept：	$7: 9666$	\％．$¢$ ¢\％	$\cdots \square .00 \pm$	\％\％

	N	F	刀ro	Ovor	Q1		Dv	cmb	Chmemy				
θ	？	\％	71．6	\％\％\％	B． 666	－	OB－－	\％\％\％	1：¢¢\％ठ				
		¢ter	phen				1 phav						
1	G． 173	22.47	\％，\％¢0	2121	\square	10．10	$\theta=006$	Cusd	0	AS	$0.6 \mathrm{O} \mathrm{\theta} \mathrm{\theta}$		Q：\quad
2	6，72	15：4	$-1 . \Psi 20$	1844	147	15.26	$1-310$	Elg口	Es	A20	E． 4 Q00\％	$\overline{6}=\square$	1区：
\pm	1．186	22． 6 B	\％， 000	2115	－	1\％．59	日，\％\％ด	Sext	Sx	EuS		θ^{2} ． $0 ¢ 0$	\％． 6
4	1．712	$22=60$	\％，b\％	2115	\pm	$1 \% .38$		gext	SX	my	$-\ddot{\square}$	$\mathscr{O}, \Pi O Q$	$\bar{\square} \square$
5	צ E6S	22．47	\％． OQ	2121	0	$10 ; 10$	\＃， 0 \％${ }^{\text {a }}$	Sept	Sm	F	1． 6 D ¢0¢	\％． 76	\square_{\square} O
b	3.775	15，43	1.320	1844	-147	15，26	-1.310	Gept	EF	F10	20．00060	5.600	¢0\％ 0
7	5.541	$22 \times 6 \%$	¢． 606	2115	－	10． 80	日． 0 ¢ 0	Sext	Sx	H13	－6．0004 0		$\ddot{\theta}, \vec{O}$
Q	6.267	22．00	\＃\％． 000	2115	－3	1\％， O	\＃， 000	Sext	$5 \times$	I1	$\cdots \square 0.6040$	0.006	\＃，
$?$	8．158	22．47	\＃，\quad OO	2121	g	10，10，	0_{n} 日ण\％	Duad	0	4	$-6 . \square \bigcirc 6 \% \%$	$9 . \sigma 0 \%$	\％$\%$

1	XP1	XY2	XP2	XYS	XPS	XYE1	XPEL	XYK2	
13.000	13.000	-17.578	-13.946	-8.715	-16.084	13.050	13.050	23.722	18.127
1.677	1.513	-1.47	-6.70	-1.711	-2.25	2.163	1.958	3. 387	2

 Starting point fom mom, emittance et el: =ept: fnobou Calculated zero-emittence triple point. Starting point for emittance celc at el "epts
". OCOC
\%: 8006

- W. $_{\text {. }}$
6.9006

क. BDOD
0.0 DEDOEG
$-\ddot{0}, 0 \sigma 210 \% \sigma$ bdetaprn from file

MOMENTH：
－．00057－．000100

Hominal Emittarme moment um ：－GGege
18.00
18． $6 \underline{1}$
2.35
2.13
18.16
18.10
2.57
2.76
26.36
23.15

4．07
3． 20
14 AFFIL E7

Starting faint for zero emittance in electraseptum sertion ：a ：er Starting point for hominal emittance in electroseptumeection ：\quad ； 1

FDAT5：T14

9	29		Q． 711		8.8	8． 667		E．θ		－4．7		1	
1	． 460	22．60	0.60	2115	－2．5	10.4	6． 60	SExt	6\％	H13	－． 06023	－	
2	2.638	22.6	0.00	2115	－2．5	16.4	0.60	Sext	SX	I13	． 0.0123	\square	0
3	3.803	22.5	0.60	2121	Q． 0	10．1	9． 96	Quad	Q	F5	.040	$\underline{0}$	
4	3.975	15．4	1.32	1844	－147． 6	15．3	-1.31	Sept	EM	F1E	2 5	5	
5	4.356	15.4	－1．32	1844	147.0	15．3	1.31	E1spr	ES	F2g	.42 .1	18	
6	4.815	22.0	0.60	2115	-2.5	10.4	0.60	SExt	Ex	G13	－． 06623	－ 0	
7	5.246	22.5	E． 00	2121	E． 8	10.1	0．00	9います	Q	H5	－． 04 －	－	
ε	6.993	22．61	0.60	2115	－2．5	10．4	6． 90	Sext	S\％	J 13	． 0.6182	$\underline{9}$	$\underline{6}$
9	7．433	22.5	0.60	2121	Q． 0	10．1	日．터제	Sept	sH	k 5	1.89	FE	15

MOMENTA:
$-.00057-.00080$

MOMENTF:
$-.00057-.00080$

MOMENTA:
-.00091 -.00180

Zergemitt.ance momentum : - 00691

19.004	19.00	19.10	19.10
2.48	2.24	2.91	2.67

2.67
2.91

15 FFRIL ET^{7}
Emittance= 2.79 пmmmrad

Starting foint for zero emittance in electraseptum Eectigri: a : 1 Star.ting point for nominal emittance in electr:septumsection: 4.9; :5

FDAT5:Ti4

9		29		11	8.8		. 667	E. 6		-2	1		
1	. 460	22.0	0.00	2115	-2.5	10.4	0.000	SExt	E8	H13	-. 06023	8	$\underline{\square}$
2	1.156	22. 5	0.60	2115	-2.5	16.4	0.600	Sext	Ex	E13	-. 09023	\square	\square
3	3.803	22.5	0.80	2121	0.6	10.1	6. 6.5	Eu\#d	0	F5	. 1250	\square	
4	3.975	15.4	1.32	1844	-147.0	15.3	-1.31	Sept	EM	F10	205		
5	4.356	15.4	-1.32	1844	147.0	15.3	1.31	E15\%	Es	F20	.42 .1	19	
6	4.815	22.6	0.00	2115	-2.5	10.4	0.0010	Sext	5\%	G13	- 0.01023	0	\square
7	5.248	22.5	0.060	2121	0.6	10.1	0.06	Quad	0	H5	-. 025		0
ε	5.541	22.6	0.00	2115	-2.5	10.4	0.00	sext	E\%	H13	-. 09023	6	6
9	7.435	22.5	0.60	2121	0.0	15.1	E. 지지	Sept.	Sm	K 5	1.68		15

MOMENTF:
$-.00091-.00180$

MOMENTA:
$-.00091-.00180$

Emrad
EMF10 29GEv/c

File DUA1: []MAIL.LIS; (15046,43,0), last revised on 23-APR-1987 08:04, is a 3 block sequential file owned by UIC
[BITNET,STEINBACH]. The records are variable length with implied (CR) carriage control. The longest record is 71 bytes.
 100, started on printer _LTA8: on 23-APR-1987 08:05 from queue Le911Q.

AAAAAAAAAA
AAAAAAAAAA AAAAAAAAAA

44 44444444444444444444444 Digital Equipment Corporation - VAX/VMS Version V4. 4 4 44444444444444444444444

AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

