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TRANSVERSE INSTABILITY WITH LARGE SPACE CHARGE TUKE e 
SHIFT 

M. Blaskiewicz and W. T. Weng 

ABSTRACT 

The problem of transverse instabilities in circular machines with a large space charge tune shift is considered. In 
particular, we consider the situation where the space charge tune spread is large compared to the synchrotron tune. 
The different synchrotron modes couple together, yielding a more complicated situation than when the magnitude of 
the betatron tune shift is small compared to  the synchrotron tune. As the space charge tune shift grows it is found that 
the coherent frequencies of different modes can cross, without dramatic increases in growth rates. In the extreme limits 
where the synchrotron frequency vanishes, or where the synchrotron frequency is large compared to any frequency 
shifts, we find that the space charge tune spread can lead to  Landau damping. A new technique for the intermediate 
range is also presented. 

I. INTRODUCTION 

The problem of transverse instabilities in bunched beams has received much attention in the past. In the low intensity 
limit, where the magnitude of the betatron tune shift is small compared to the synchrotron tune, well established 
formalisms exist [l, 2, 3, 4, 51. These formalisms yield expressions for the betatron frequency shifts and the normal 
modes of the beam. When the space charge tune shift is large compared to the synchrotron tune, the low intensity 
formulae usually yield frequency shifts that are larger than the synchrotron frequency, which violates the assumptions 
in the derivation of the equations. The large frequency shifts are due to the transverse space charge impedance which 
is given by, 

where R is the machine radius, /3 = w/c, 7 is the Lorentz factor, 20 = 377i2, a is the radius of a uniform equivalent 
beam, and b is the radius of the vacuum chamber. When a << b, the frequency shifts obtained from the low intensity 
formulae are essentially weighted averages of the incoherent space charge frequency shift. When the betatron tune shift 
is comparable to, or larger than, the synchrotron tune, the mode coupling formalism has been used [6, 7, 8, 4, 51. The 
treatments, in this moderate coupling limit, usually include the coupling between only a few synchrotron modes, as 
the equations become very complicated when a large number of modes are included. Studies in the moderate coupling 
limit have usually been applied to high energy electron machines, where the transverse impedance is thought to be 
dominated by parasitic modes in the accelerating cavities. These parasitic modes produce a resonator impedance of 
the form. 

Z ( W )  = -+w,  W (1- $)I 

w, 
where RI is the transverse shunt impedance oi the resonator, Q, is the quality factor, and w, is the angular resonant 
frequency. For a broad band resonator impedance, it is generally found that the growth rate of the most unstable mode 
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iitcreases dramatically when the current rises above the threshold where the coherent frequencies of two neighboring 
niodes cross. This is referred to as the mode coupling instability. a This paper considers the transverse stability problem when the space charge tune shift is large. In section 11, the 
eApations used in the moderate coupling limit are reviewed, and an upper limit to the growth rate for a Gaussian beam 
is  derived. We consider the simplest, non-trivial case of mode coupling analytically and find that the space charge 
iinpedance may effect the threshold of the instability, but that the magnitude of the growth rate is limited by the 
risistive impedance. 

In section 111, the effect of the space charge tune spread is considered. First, the case of an unperturbed beam 
a t th  constant radius, parabolic line density, and the associated incoherent space charge frequency spread is considered. 
'I'he Vlasov equation is reduced to a matrix equation for this case. Solution of the lowest order synthetic kernel 
approximation, in the weak coupling limit, shows that incoherent space charge may lead to  Landau damping if the 
broad band transverse impedance is large enough. Next, we consider the moderate coupling case where the space 
cnarge tune spread is a few times larger than the synchrotron tune. When the unperturbed distribution is Gaussian, 
t le pertubation can be expanded in Hermite polynomials and the differential equation can be reduced to  a matrix 
ezuation. The system is solved by truncating the matrix and numerically solving the eigensystem. It is found that 
t ze mode frequencies can cross, without creating instability, even when some resistance is present. Finally, we consider 
t ne limit where the synchrotron motion is neglected. In this limit, the incoherent space charge force may be handled 
ercactly. The eigenvalue problem is solved for the case where the impedance consists of a single narrow band resonator, 
and space charge. It is found that space charge can dramatically reduce growth rates, and even damp them completely. 
Our conclusions are summarized in section V. 

It. MODERATE COUPLING 

11 this section, first order perturbation theory on the Vlasov equation is used to obtain a dispersion relation for 
the transverse dipole modes. We begin by considering the equations of motion when intensity dependent effects are 
neglected. 

0 
. 

For the longitudinal motion let 0 denote SIR where R is the machine radius and S is the longitudinal Frenet-Serret 
coordinate. The angular revolution frequency is wo and 

vrhere a dot denotes a derivative with respect to  time (t), 4 = 0 - wot is angular phase measured with respect to  the 
synchronous coordinates, w 8  is the synchrotron frequency and h is the harmonic number. Let y denote the transverse 
coordinate of interest. We assume constant lattice functions and neglect horizontal to  vertical coupling. The transverse 
equation of motion is 

vrhere wy is the angular betatron frequency for an  on momentum particle, 7 is the frequency slip factor, t is the 
chromaticity, and 6 is the fractional momentum deviation. For horizontal motion, one could include the momentum 
induced width by making the substitution y + y - 6R/$ in equation (4), but we will not. The fractional momentum 
c.eviation is related to  the longitudinal coordinate via 4 = -wo[q6 + O(y2/R2)], and we neglect the correction that 
depends on y. 

Let 3P(y,y,4,$,t) denote the phase space density. There are M bunches in the ring which are identical for no 
instability. Assume a solution of the form 

M-1 
2r iks /M - int 

a 
k=O 

2 

(5) 



where s = 0 , 1 ,  . . . M - 1 is the coupled bunch mode number and 91, which depends on s, is small compared to 9 0 .  Only 

the real part of the distribution has physical meaning. The transverse coherent force is driven by the dipole moment 
of the beam. Any resonating structure with a fixed position in the ring will be driven by the the dipole moment as a 
function of azimuth and time, D(6, t) .  The normalization is defined by D(6, t )  =< y(0, t )  > p(0 ,  t )  where < y(6, t )  > is 
the average offset of the beam and p(0,  t )  is the line density of the particles. For the solution of the Vlasov equation, 
the natural longitudinal coordinate is q5, since the distribution oscillates only with frequency il in this coordinate. If 
we define the dipole eigenfunction in the beam frame by 

then the dipole moment in the ring frame is given by I 

= x D l ; e  i ( k M  + s ) (6  - wot) - int 
1 

k 

= D(q5)e-iRt, (7) 

where Dk is the Fourier component of D(q5) for harmonic kM + s. In addition to  the coherent force there is also 
an incoherent intensity dependent force which produces the incoherent space charge tune depression. This will be 
neglected for now and considered in section 111. The coherent force is related to the dipole moment using a transverse 
wake potential in the smooth approximation, 

where q is the charge on a single particle, W_L is the wake potential, and 21 is the transverse impedance. Notice that 
the force in the second expression is given in the beam frame coordinates and oscillates only at frequency 52 there. 
However, in the ring frame, all the betatron side bands drive the impedance. The expression for Dk may be obtained 
by integrating over a single bunch, 

The problem is reduced to studying the behavior of a single bunch, which we take to be centered at q5 = 0. 

Consider the amplitude angle variables defined implicitly by 

y = Acosx 

y = -wl(6)AsinX 

4 = T C O S 4  

q5 = -wdTsin7,LJ. 

The longitudinal variables follow from the equations of motion with the approximation sin(hq5) M hq5. The transverse 
variables are approximate, they satisfy the constraint that the amplitude of the y oscillation does not depend on time, 
which follows from equation (4). The unperturbed distribution is given by 90 = Lo(T)To(A). The normalization in the 
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n:w variables is taken as 

0 

Nt 
27rM ' To(A)AdA = - 

0 

where Nt is the total number of particles in the ring and we have absorbed factors of the oscillation frequencies. The 
Vlasov equation in first order perturbation theory is approximated by 

The momentum dependence of the betatron frequency is taken to first order and is given by 

6 w ~ ( 6 )  = wy + TQ~W,( -  - 1) sin$, 
77 

where Qy is the tune of an on momentum particle. The coherent force is present in A which is give by 

where the time dependence has been divided out of FA(I$), and the momentum dependence of the betatron frequency is 
n3t included in the coherent force. Next, we approximate the solution of equation (10) as V!1 = g l ( T ,  $) exp(iX)dTo/dA 
which amounts to  neglecting the coupling between the betatron side bands and choosing the upper sideband s2 x wy. 
The accompanying approximation is to  take sin x M -i exp(i;y)/2, in A. The equation for the distribution becomes 

(13) 
--z 

Fl. ( I$)JO(T) .  
a g 1  - i n g 1  + i w l ( s ) g l  +w,- = - 
a$ 27-y 

0 
The coherent force is given by equation (8) with 

A t  this point all the transverse variables have been removed and we are left with an equation which involves the 
lmgitudinal variables alone. Next, the momentum dependence of the betatron frequency is removed by substituting 

g 1 = g2 exp[iQy(E/q - 1)' cos $1 which results in, 

C'ividing equation (15) by w, yields an equation of the form 

u here @ is equal to the right hand side of equation(l5) divided by w,, and Q = (wy - n ) / w , .  The boundary condition 
i s  that g2 is a periodic function of $. The solution of equation (16) is given by, 

2 r  

0 

u.hich is easily verified by direct substitution. At this point one can concentrate on solving for g2 or on solving for the e 
dipole harmonics. The final result will be identical in either case, and we will take the second option [4]. Given the 
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expression (17) for 92, and the relationship of g1 to gz, equation (14) is used to transform the integral equation into a 

matrix equation. The kernel is simplified using the Bessel generating function, 

k = - W  

The final result is, 

where the matrix is given by, 

M 

In equation (19) ET = .ym2, 7 is the average (DC) current, ii = n M  + s - Q y ( ( / ~  - 1) and iit is defined in the same 
way as 6. Note that 

Q = ( w y  - n ) / w s ,  

contains the coherent frequency and plays the part of an eigenvalue. 

At this point we will consider the special case of a gaussian unperturbed distribution, 

For this case, the integral in equation (19) can be found in standard tables [9][p 7101. The expression for the matrix 
element becomes 

We know of no exact solutions to equation (21) and will need to use various approximations in solving it. Before 
proceeding with the approximations, we establish an upper limit on the magnitude of the coherent frequency shift. 
Starting with the matrix equation we find 

Where we assume that the spectrum of dipole harmonics is bounded, so that its supremum is finite. It follows that, 

where we have used a summation theorem for the modified Bessel functions [9]. Since, 

- (x2 + YZ) + 2 1 X Y l  < e - ( x+Y)’ + e  - (X - YI2, - e 
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fc r r ed  x and y, the right hand side of the inequality can be made independent of m. Taking the supremum of the left 
h md side over m and simplifying gives 

I11 practice, inequality (25) may be used to  obtain a quick upper limit on growth rates in Gaussian beams. More 
accurate estimates require approximate solutions and are considered next. 

A. Weak Coupling Limit 

Before proceeding to the mode coupled case it will be instructive to examine the low intensity limit. In this limit, 
[ J : ~ /  << aM for all n. Therefore, the solution requires that IQ + pI M 0 for some p, and that Cl M w y  + pw8.  This 
a:>proximation is used for s2 in the evaluation of the impedance. Only the term in the sum with the small denominator 
is kept. Additionally, the modified Bessel function is approximated by its leading order term, 

PThen equation (26) is substituted into equation (21) one finds that D, = (7ka)lPI exp(-h2a2/2) is the eigenvector. 
S abstituting this solution and solving for the coherent frequency gives, 

Usually, the offset by p8 in the evaluation of the impedance is negligible and one uses x n ( w y ) .  For the cases of interest, 
tlie frequency shift is large enough that including the synchrotron offset is misleading. Expression (27) is the same as 

@ tliat obtained using the lowest order Besnier polynomial expansion [7] and is essentially the same as the expression 
. given by Sacherer [l]. 

Higher order modes must be included when approximation (26) is not justified. This is the case when there is 
a significant impedance at frequencies higher than W O / U  and needs to be considered even if the frequency shift is 
sinall compared to the synchrotron tune. For this case, one still retains a single value of p but includes higher order 
tcrrms in the expansion for the Bessel function. Such a treatment is justified in studies of longitudinal stability where 
tlie frequency shift is small compared to the synchrotron tune, and space charge contributes to the high frequency 
hnpedance. However, it is not justified for the transverse case when lxnl 2 1. The latter is of particular interest and 
wil l  be studied in the following. 

E;. Solution With Moderate Coupling 

Vrhen lxnl 2 1, a few values of p can significantly contribute to  the sum. For this case it is advantageous to  rearrange 
tlie sum involving the Bessel functions, 

111 general, 
1 1 

= X 2 L [ ( 4 -  p)/2]![(4+ p)/2]!’ 
p=-L 

(29) 

where the sum is over even p if 4 is even and over odd p is 4 is odd. The first few coefficients are given by 

(30) 
1 Q 2 - 2  

2 Q(Q2 - 4)’ 
, az(Q) = - 1 Q 

Q ao(Q) = -, a1(Q) = 
0 
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To proceed with the solution, the sum on the right hand side of equation (28) is truncated at l = &,,. Substituting 
this expression into equation (21) implies that D, may be written as a linear combination 

k 0  

where the art are unknown coefficients. Defining the force coefficients 

n 

the equation for the coherent frequency and eigenvector is given by 

Analytic solution of equation (33) is possible for e,,, 5 1. For emax = 0 one recovers the p = 0 synchrotron mode in 
the low intensity limit. For emax = 1 there are two coupled equations, 

aofl ) ( ;; ) = 0. 

The determinant of the matrix must vanish for a non-trivial solution. Substituting the expressions for a0 and a1 from 
equation (30), one obtains a polynomial constraint on Q, 

( Q  - fo)(Q2 - 1 - Qf2) - Qf," = 0. (34) 

The solutions depend on the magnitude and phase of the force Coefficients. 

For electron machines, the mode coupling is found to  be nearly independent of chromaticity [8] and the usual 
approach is to  set ( = 0 in the mode coupling formula. Additionally, the source of impedance is thought to be broad 
band and the characteristic frequency of the bunch spectrum is large compared to the bunching frequency. This allows 
the summation in equation (32) to be replaced by an integral. Under these circumstances, the force coefficients for 
even X: are real and proportional to the imaginary part of the transverse impedance. For odd k , fk is imaginary and 
proportional to the real part of the impedance. Consider equation (34) under these circumstances. If f1 = 0 the 
solutions are given by Q = fo, f2/2 f d m .  The solutions for Q are real, even though they can cross as the force 
coefficients become large. Generally, when fo, f2, and f t  are real, Ilm(Q)I 5 I fll, which is proved in Appendix A. The 
maximum growth rate is proportional to  the resistance, but the instability threshold depends on the reactance as well. 

For many applications, the values of xn need to  be computed numerically. Also, the dispersion relation for Q 
becomes very complicated as Q increases. Computer code has been written to evaluate the various sums and to  solve 
equation (33) for L,,, 5 4. As an example consider the case of space charge and a broad band resonator with Qr = 1, 
w, = w o / u  and a shunt impedance such that f1 = i0.2. Plots of the real part of the resonant frequencies as a function 
of the average space charge tune shift are shown in Figures 1 through 4. The onset of the instability occurs when two 
neighboring curves meet. The threshold value of space charge tune shift is relatively insensitive to L,,,. However, as 
tune shift increases, the solutions can switch between stable and unstable several times. The detailed behavior of the 
solutions depends strongly on emax but the peak growth rates, as a function of space charge tune shift, are usually less 
sensitive to ern,%. 

When the chromaticity, discreteness, etc. are taken into account the solutions always have an imaginary part, but 
the growth rate can depend strongly on the space charge tune shift. By examining the behavior of the growth rate as 
a function of tune shift it appears that some useful upper limits can be found, but no threshold information. We go on 
to consider a more complete physical model which includes threshold information. 
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II. EFFECT OF §PACE CHARGE TUNE SPREAD 

0 11 section 11, equation (11) was used for the incoherent betatron frequency. In the presence of a large space charge 
tt ne spread this equation needs to be modified, 

(35) 
t 

w i ( 4  4)  = wy + ~ Q g w s  (- - 1) sin 4 - A w s c p ( 4 ) / p ( o ) ,  

where A w s c  is the space charge frequency depression in the center of the bunch, p ( 4 )  is the line density, and it has 
biten assumed that the radius of the beam is independent of 4. Under these conditions, equation (13) becomes 

77 

A. Parabolic Line Density 

11. general, it is difficult to obtain a matrix equation when the betatron frequency is given by equation (35). For a 

piLrabolic line density with 141 5 d, 

sc,me simplification is possible. The transverse betatron frequency is given by, 

w ~ ( 6 , 4 )  = wy + T Q ~ w ~ ( -  t - l)sin$ - A w ~ c ( l - ~ ~ / / 3 ~ ) .  
77 

The $ dependence of the betatron frequency is removed from equation (36) by the substitution 

The equation for g2 is given by 

with, 
112 

Lo(T)  = 3 2142 (1 - 5) . 
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Next we expand the kernel in equation (41) as 

,. 
where f r (~)  for k = 0, 1, ... form an orthonormal basis on (0,4) with the weighting function 2 n r L o ( ~ ) ,  for each 
superscript m. A natural set of expansion functions are given by 

where Pr"'2(x) is a Jacobi polynomial and, 

2m+3/21?(k: + m + l)I'(k + 3 / 2 )  
hk,m = (212 + m +  3/2 ) l e ! r (k+  m+ 3 / 2 ) '  

Defining 

yields a matrix equation given by 

Equation (44 )  simplifies in the low intensity limit, where K,(ji~, AT') 
in the expansion of the kernel can be expanded as 

eim"/'Jm(iii.). For this case, the coefficients 

0 

where 

and j n ( x )  is the spherical Bessel function. In practice, the sums in equation (44) need to be truncated. The simplest 
case is to take the case where all the summation indicies are zero. Additionally, we will use equation (45) .  This leads 
to a dispersion relation of the form 

3 x d x d D  
l = &  ,/ 0 -x2 + 2(n - w l ( O ) ) / A w s c  ' (47 )  

where a is the beam radius, b is the pipe radius, and tn(Q) is xn(n) calculated without the space charge contribution. 
A stability diagram for this dispersion relation is shown in Figure 5 .  The system is stable if & lies to the left of the 
curve. 

B. Gaussian Line Density 

When the space charge tune spread is larger than the synchrotron tune, several synchrotron modes can couple. Solving 0 
equation (44 )  is quite difficult so we will present a different approach which is easier to program. Consider equation (36 )  



uith a Gaussian line density. We make the substitution g1 = g2 exp[iQ,(E/v- 1)4] and express the result in normalized, 
Clartesian variables z = cp/fiu, v = $ / f i r W a f  

u.here i = kM + s + Qg(l - (/q), 2 k  is Xk calculated without the space charge contribution, a is the beam radius, b is 
the pipe radius, and Q = (wy - Cl) /w,  as before. To solve equation (49) expand g2 as 

u.here 

is the Hermite polynomial of order m and the sum is over all pairs of non-negative integers. Substituting equation (50) 
i i t  equation (49), multiplying by HP(z)Hq(v)dtdv and integrating yields a matrix for the expansion coefficients 

'I'he matrix element is given by 

Tp,q,n,m = i @ % + 1 6 L  - m G - l C + l )  

Awsc S$[1- SL(1- u2/b2)]  
p! f i  + -  

WE 

u.here SF is the Kroneker delta, r(z) = (z - l)!, and EVEN(k) is 1 when IC is even and zero otherwise. 

In real machines, transverse instabilities are often expected and damping systems are installed. The effect of a 

linear feedback damping system can be included in the Vlasov equation and additional terms to the Tp,q,n,m matrix 
are obtained. For a damper which acts on rigid modes at a rate (Yd,O the addition to the matrix is 

u-here 6 = & r Q v ( l  - (/v). Similar expressions for head-tail and higher order dampers are easily obtained. 

In practical applications the sum in equation (51) needs to be truncated. The sum wil l  be truncated by taking 
terms with 0 5 m + n 5 .emax which allows for a nearly direct comparison between the Hermite expansion method and 
t'ne method used in section IIB. For Lax = 0 one obtains the p = 0 weak coupling frequency shift with the proviso 
t 3at the space charge impedance be given by, 

IVhen .emaz = 1 the characteristic equation k, 

(fo - Q) [(fz - &)(E/&- Q) - 11 - fi ( E / & -  Q )  = 0. 
0 

(55) 

" 10 



where fk  is defined by equation (32), with equation (54) used for the space charge impedance, and E = A w s c / w , .  In 
the limit Aw.7, --f 0, equation (55) is the same as equation (34). Additionally, in the broad band limit appropriate to 
electron machines, Ilm(Q)I 5 If11 as was true for equation (34). 

When C,,, is large, numerical techniques must be employed, and computer code has been written to do so. As an 
example, consider the case with the same broad band resonator as was used in Figures 1 through 4. Plots of the real 
part of Q as a function of A w s c / w ,  are show in Figures 6 through 9. Since space charge satisfies A w s c / w ,  = - f i f n ,  
the limits on the horizontal axes are essentially identical in Figures 1 through 4 and Figures 6 through 9. There are 
several differences between the two sets of figures. 

One obvious difference is that Figures 1 through 4 show a tendency for Re(Q)  to decrease as the space charge tune 
shift becomes larger, while the opposite is true for Figures 6 through 9. This difference is largely due to the fact that 
the incoherent betatron tune was assumed constant for Figures 1 through 4, while space charge tune depression was 
included in the Hermite expansion. A closer agreement between the two methods could be found by taking the intensity 
dependence of the incoherent betatron tune into account for the moderate coupling case. However, this modification 
would have no effect on the growth rates predicted using equation (33). 

Another difference, which is not as apparent from the figures, is that the growth rates for the two cases were different. 
For the Hermite expansion, instability was not predicted until emax = 3, and the peak growth rates for &,,, = 3 and 
Cmax = 4 were nearly identical. For tmax = 5 the peak growth rate was somewhat smaller. 

As long as the space charge tune depression is not too large it has been found that the characteristics of the most 
unstable mode appear to approach their actual values for reasonable values of emax in the Hermite expansion. For some 
machines A w s c  2 lOOw, and calculation using the Hermite expansion becomes a large scale computational problem. 
We go on to consider another approach designed for this large tune shift limit. 

C. Strong Coupling Case 

For the strong coupling case, A w s c  >> w,. Instead of trying to include the motion of a very large number of modes, 
we will neglect the synchrotron motion altogether, giving 4 = 0 and a beam that is frozen longitudinally. The vertical 
equation of motion is given by 

where both transverse coordinates appear in the collective force. The collective force contains contributions due to the 
currents flowing in the walls of the vacuum chamber and direct particle-particle forces which are responsible for the 
space charge tune spread. We average equation (56) over the particles a t  a fixed value of (6. The direct particle-particle 
forces cancel when averaged over the cross section, since they come from a Coulomb-like potential. We approximate 
the wall induced forces using the transverse impedance, as in the earlier sections, This results in an eigenvalue problem 
for < y((6, t) >=< y((6) > exp(-int), which is given by 

The force due to the currents in the wall is given by equation (8) the space charge impedance given by equation (54). 

To turn equation (57) into a proper eigenvalue problem we approximate w i  - 0' = 2wy(wy - a) and set 0 = wy in 
the argument of the impedance. Multiplying the result by the line density gives, 

where p((6) is the line density of the particles, and wy is the bare betatron frequency for an on momentum particle. As 
a consistency check, note that setting w, = 0 in equation (36) leads to  equation (58) which, since equation (58) is quite 
simple, supports equation (36). We proceed to  solve this problem for a model system. 
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Consider a system with space charge and a single narrow band resonator. It is assumed that the impedance of 
t le resonator is negligible compared to space charge for all but a single value of n = K. Under these circumstances 0 epat ion  (58) becomes 

baD(4)  = --ij(d) [AD(d) + i k D ~ e ' ( ~ ' * + ' ) +  1 3  (59) 

u-here Sa = M - wy, - iA/R = Z w a l l , ~ ~ / R ,  R is the resonator impedance when n = K, and b(4) is the normalized line 
density. Solving for D(4) and extracting the Kth  harmonic leads to a dispersion relation, 

Eor a constant line density with ij(4) = 1/26 for 141 5 $, the integral is trivial with the result SCl = -iMR/2ir-A/26. 
'I'he growth rate is independent of the reactance. On the other hand, if F(4) = cos2(n4/2$)/$, the frequency shift, 

s.here k = MR$/nA, and the solution is valid for 11 + 2 4  > 1. Setting A = 0 gives Im(dfl0) = -MR/2n. The 
actual growth rate is always smaller than the A = 0 growth rate with the ratio of the actual growth rate to  the A = 0 
growth rate given by Im(SL?)/Im(bno) 5 2lkl. The growth rate reduction can be understood by considering the dipole 
e igenfunction 

cos2(n4/24)e'(Km+')+ 
D(4)  = sinz(lt-4/26) - f i 2 / ( 1 +  2 i i ~ ) .  

Eor small k, the magnitude of D is relatively small unless 141 5 JlkI. In physical terms, the space charge impedance 
cmses the local coherent betatron frequency to  vary along the bunch, like a collection of oscillators with different 

@ natural frequencies. The resonator is only partially effective at maintaining the oscillators at a single coherent frequency, 
r:sulting in a reduced growth rate. 

T T .  CONCLUSIONS 

'I'he effect of space charge on transverse instabilities has been considered. When the space charge induced tune spread 
v'as neglected, it was found that the threshold for transverse mode coupling instability depends on space charge. For 
t Le simplest, non-trivial case of 3 modes, an upper limit on the growth rate that depended only on the resistance was 
iimnd. When the space charge tune spread was included, we found that transverse instabilities can be Landau damped 
i11  the low intensity limit, but the beam size and transverse impedance constraints are fairly severe. When the space 
charge tune shift is not much larger than the synchrotron tune an expansion using Hermite polynomials is applicable. 
Illhis technique has the added benefit that increasing the number of synchrotron modes is easy and calculations using 
as many at A10 synchrotron modes have been performed. In the high intensity limit where the synchrotron tune is 
negligible, we found that the space charge forces can lead to growth rates which are far smaller than those predicted 
using Besnier polynomial or rigid bunch approximations. 
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Appendix A 

In this appendix it is shown than the growth rates obtained from equation (34) are bounded via IIm(Q)I 5 Ifil, when 
fo, f2 ,  and f: are all real. 

Rewrite equation (34) to yield 

(Q - fo) (Q - F+)(Q - F-)  = Qff- A1 

Where F& = f 2 / 2  k Jm. Notice that F+ > 0 and F- < 0. Taking absolute values and using the triangle 
inequality yields 

1Qf;I  A2 
I&-F-I' 

IIm(Q)12 I I& - f o l l Q  - F+I = 

Dividing by Q - F+ instead of Q - F- yields 

Since a 5 b and a 5 c implies a 5 min(b, c) ,  

A3 

A4 e 
F- and F+ are real, and of opposite sign. When they are viewed as vectors on the complex plane one of them will add 
constructively to any Q one cares to choose. Hence, one of the denominators on the right hand side will be larger than 

I Q I ,  giving IIm(Q)I 5 IfiI- 

Appendix B 

The coherent frequency for a cosine squared line density is derived. 

Defining Q = 2&n/A, equation (60) becomes 
% 

Making the substitution z = exp(i6), equation (Bl) becomes, 

B1 

B2 

where the integral is along the unit circle in the complex plane. The integrand of equation (B2) has simple poles at 

z& = -(I+ Q )  f d w .  Since z+z- = 1 either both poles lie on the unit circle or one lies inside and the other 
lies outside. Assume the second case, which is equivalent to assuming a non-singular integrand in equation B1. Define 

0 zin to be the root inside the unit circle and zout to  be the root outside the unit circle. The integral is trivial with the 
result 



B4 

Assuming Q # 0 yields 

B5 

wnich.is equivalent to  equation (61). Equation (B5) suggests that very large frequency shifts are possible if fi zz i /2,  
biit this does not occur. For Il+2ifil < 1, equation (B4) is satisfied but equation (B3) is not, and the system is Landau 
ditmped. 
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