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ABSTRACT 

In this paper, we present a new formulation for the longitudinal 
coherent dipole motion, where a quadrature response of the environ- 
mental impedance is shown to be the effective longitudinal impedance 
for the beam instability. The Robinson-Pedersen formulation for the 
longitudinal dipole motion is also presented, the difference of the two 
approaches is discussed in the comparison. The results by using the 
Sacherer integral equation for the coherent dipole motion can generate 
the same results as by using the other two approaches, except for a 
scaling difference. The formulation is further generalized to the rigid 
bunch motion using signal analysis method, where a form factor shows 
up naturally. Finally, the formulation is applied to  solve the coupled 
bunch instabilities. Examples of the AGS Booster and the AGS coupled 
bunch instabilities are used to illustrate the applications of the formu- 
lation. 
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I. Introduction 

In this paper, we present a new formulation for the longitudinal coherent dipole motion. 

The formulation is based on the idealized condition of the synchrotron oscillation modulated 

by the RF frequency. We will show that for the longitudinal coherent motion, the quadrature 

response of the environmental impedance to the beam signal represents an effective longitudinal 

impedance. The Robinson-Pedersen approach to the same problem is also presented, and the 

comparison shows the difference of the two approaches, the results however are the identical. In 

Sacherer integral equation, the Vlasov equation is used to  consider the particle density evolu- 

tion in the phase space, the results of the coherent dipole instabilities are shown to  be different 

by a scaling factor from other two approaches. 

By considering the rigid bunch beam signal and the associated impedance, the formula- 

tion will be further generalized to the rigid bunch motion. A form factor under this condition 

will be developed. Finally, the coupled bunch instability is studied as a special case of the long- 

itudinal coherent motion, and the application of the presented formulation gives rise to several 

results. Two examples at the AGS Booster and the AGS will be presented to illustrate the 

application of the formulation. 

II. The New Formulation 

In this section, we present a formulation for the bunched beam coherent dipole motion. In 

the longitudinal motion, the beam performs a synchrotron oscillation. This oscillation is modu- 

lated by the RF carrier. The induced voltage through the longitudinal impedance, for instance 

the RF cavities, may affect the synchrotron oscillation and cause the beam instability. A 

model of the beam dynamics based on the longitudinal impedance will be proposed. It will be 

shown that under the RF frequency modulation and demodulation, a quadrature response of 

the longitudinal impedance with respect to the RF carrier will be the dominant impedance and 

therefore to contribute to the beam instability. 
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2.1. Beam Dynamic Model 

In Fig.1, a dipole motion model is shown, where each block represents a transfer func- 

tion between two variables, and s is the Laplace operator. wo and wRF are the revolution 

and RF frequencies, respectively. Let h be the harmonic number, we have URF= hwo .  /3 is 

the ratio of the particle velocity and the light velocity, and E is the total energy of the par- 

0 

ticle. Throughout this paper, only the situation below transition is considered, therefore the 

frequency slip factor 77 is negative. V and 4s are the RF voltage amplitude and the syn- 

chronous phase, respectively. We use 4, AE and A V  to denote the phase, energy and the 

equivalent voltage deviations from the equilibrium state. AVB is the equivalent R F  gap vol- 

tage deviation caused by the beam motion itself, and AV,,, caused by the cavity voltage 

variation. IB is the beam current amplitude of the fundamental frequency, Le., the RF fre- 

quency. Finally, ZM( s) represents the longitudinal impedance, where the subscript M 

denotes that  the impedance is not a conventional one but under the consideration of RF 

modulation and demodulation. 

In the block diagram, the upper loop represents the synchrotron oscillation, where the 

following relations are used [15], 

4 
e wo V C O S ~ ~ ~  

27rs 
AE= 

and 

Since we have 

M=-  e"o A V  (2-3) 2ns 

it follows, 

AV' = V C O S ~ ~  4 (2-4) 

which indicates that  under the linearization, if 4s= 0, then 1 rad of beam phase deviation 

will be equivalent to  the RF cavity voltage variation with full RF voltage amplitude V. 
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The lower loop represents the effects of the beam current t o  the cavity voltage through 

the longitudinal impedance. Note that under the linearization the transmission relation 

between 4 and the beam current variation NB is IB. Now what remains to  solve is the 

0 

impedance ZM(s). 

2.2. Impedance 

In the beam dynamic diagram represented by the transfer functions, e.g., in Fig.1, the 

Laplace transform is used. T o  discuss the impedance where the modulation and demodulation 

are involved, the Fourier transform is convenient. In this article, both transforms will be used. 

For instance, an impedance in the Laplace form can be Z ( s + j u ~ ~ ) ,  and its counterpart in the 

Fourier form is written as Z(CJ+CJ~F),  where we used s=ju. 

In this section, we will show that the impedance ZM(s) in Fig.1 is, 

Consider a general situation of modulated input and output. Let the input signal of a sys- 

tem be f ( t )  and the output be g ( t ) .  The input signal is assumed to be a low frequency signal 

f L ( t )  modulated by an RF frequency, say COSURF~, Le., we can write, 

f ( t )  = J L ( ~ )  COS*RF~ (2-6) 

If we use f (t)+F(u) and f L ( t ) + F ~ ( u )  to  denote the Fourier pairs, then we have, 

Also if, 

then we have, 

Under the modulation of the frequency WRF, the in-phase and quadrature responses due 

to the impedance Z(w) with respect to  the RF carrier are defined by [8], 
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and 

respectively. We also define 

(2-10) 

(2-11) 

(2-12) 

Gg (4 = FL (4% (4 (2-13) 

If the Fourier pairs gp(t)+GP(w) and gQ(t)+GQ(w) are used, the total response through the 

impedance Z(u) for the modulated signal F ( u )  in (2-7) can be written as, 

g ( t )  = gp( t )  CosURFt + g Q ( t )  SinURFt (2-14) 

which implies that  the total response of the impedance Z(U) for the signal f ( t )  in (2-6) con- 

sists of the in-phase response, modulated by coswRFt, and the quadrature response, modulated 

by sincjRF t . 

To prove (2-14), we only need to  show that it is equivalent to, 

G(W) = F(u)Z(U) (2-15) 

By using (2-12), (2-13)) and (2-7), (2-9), the right hand side of (2-14) has the following 

Fourier form, 

Substituting (2-lo), (2-11) into (2-16), we have 

(2-17) 

Substituting (2-7), the equation (2-17) becomes (2-15). Therefore this part of the proof is com- 

pleted. . 
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When the beam passes the cavity gap, the in-phase response due to the cavity impedance, 

which is modulated by cos w R F ~ ,  provides an almost constant force in the beam synchrotron 

oscillation, which will not affect the synchrotron oscillation directly. In fact this force will 

induce a synchronous phase shift and therefore the RF driving system can provide a compensa- 

tion through the phase feedback. On the other hand, the quadrature response is modulated by 

sin u R F t ,  which is in the same fashion as that of the RF driving wave and therefore functions 

as the same as that the RF driving wave does. In other words, this force generates a bucket in 

the phase space, which affects the synchrotron oscillation directly. Therefore, if the instability 

of the the synchrotron oscillation is concerned, the effect of the in-phase response can be 

neglected, and the quadrature response becomes a dominant factor. It follows, 

a 
. 

ZM(4 = ZQ(4 
and therefore (2-5) is proved by substituting (2-11). 

(2-18) 

2.3. Impedance of RF cavity 

In this subsection, we present the transfer function of the impedance of (2-5) for the RF 

cavity. 

Consider an RF cavity with the resonant frequency uR, the shunt resistance R ,  and the 

half-bandwidth a, which can be written as, 

where Q is the quality factor of the cavity. The transfer function of the cavity is, 

2aRs 
Z ( S )  = 

s2 + 2 a s  + w;4 

We assume that 

WRF M WR >> w M 

Let the cavity be detuned from wRF by an angle 4z. We have 

(2-19) 

(2-20) 

(2-21) 

(2-22) 
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We write, 

(2-23) 

In the numerator, since 1s I = w << CJ,, , the term 2aRs can be neglected. In the denomina- 

W R  tor, since that if Q >> 1, a = n~ << W R F ,  then compared with either 2 j w ~ ~ s  or 2jacjRF, 

we get, 

In a similar way we get, 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

Substituting (2-26) and (2-27) into (2-5), the longitudinal impedance of the RF cavity 

becomes, 

(2-28) 

4. Stability 

To study the beam stability under the influence of the longitudinal impedance of RF cav- 

ity, we can write the following equation from Fig.1, 

No'te that  below transition, 

(2-29) 

(2-30) 
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Substituting (2-30) into (2-29), we get, 

Define the ratio of the beam current to  the generator current as [2,9], 

where IGO is the generator current without beam loading effect. Substituting tL-2€ 

omitting the variable 4, the characteristic equation of the equation (2-31) becomes, 

(2-31) 

(2-32) 

, (2-32) and 

(2-33) 

which is a fourth order dynamic system. Using Routh-Hurwitz table, it is straightforward to  

find the following stability conditions [9,12], 

tan4z > 0 (2-34) 

and 

which are called the first and second Robinson criteria, respectively. The first criterion con- 

cerns just the detuning angle, and the second criterion concerns also the beam intensity, which 

is represented by Y. 

III. Robinson and Pedersen Approach 

The stability problem for bunched beam longitudinal dipole motion was first solved by 

Robinson [12], where the effect of the fundamental component of the beam phase deviation on 

the cavity phase deviation is considered to  give rise to the stability criteria (2-34) and (2-35). 

Among later works, the Pedersen formulation [5,9] is of particular interest because where the 

phase and amplitude modulations and their cross effects due to  the detuned cavity are treated 

separately, therefore the phase feedback and tuning control can be included in the dynamic 

model of the beam loading. The stability analysis gives rise to the same results as by Robinson. 
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In this section, we present the Pedersen formulation, and then it will be compared with 

0 the model presented in the last section. 

3.1. Pedersen Formulation 

In the Robinson and. Pedersen approach of longitudinal bunched beam stability analysis, 

the perturbation source is the beam phase deviation. The stability is studied by finding the 

equivalent RF cavity phase deviation due to the beam phase deviation. The block diagram can 

be shown in Fig.2, where an inspection indicates that the upper loop is nothing more than a 

rearrangement of the synchrotron oscillation loop in Fig.1, and the transfer function Z& (a) 

represents the total effect of the cavity voltage phase variation due to the beam phase devia- 

tion A$B. 

To find the transfer function Z$ (a), several steps have to be followed. Since only the 

fundamental beam frequency at uRF is considered, the vector diagram shown in Fig.3 can be 

used, where I,, IB, and I T  are the generator, beam image, and the total currents, respectively. 

If the cavity detuning angle 4~ is chosen properly as shown, which can be achieved by a tun- 

ing loop, then the total cavity voltage VT can be kept unchanged under the beam loading. 

The Pedersen approach considers the total effect on the phase variation of the cavity vol- 

tage VT due to  the variation of the phase of the beam current. 

Step 1: Projection of IB on IT.  

From Fig.3, we can write, 

I~ - jIB e-j4s = IT e - j 4 z  

The relation of both phase and amplitude variation on IB and IT is, 

(3-1) 

(3-2) 
-i (4s + A ~ B  1 = (IT +uT e -i(42+A4,) 

I G  - j (IB +uB e 

By linearizing (3-2), subtracting (3-1) from (3-2), and equating the real and imaginary 

parts separately, we have, 

(3-3) 
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Step 2: Projection of I T  on V T .  

Under detuning, the impedance of the cavity can be written, 

j h  Z = R e 

Thus, we have 

VT = IT  e - i 4 z Z  = I T R C O S ~ Z  

To find the static projection of IT  on VT , we write, 

(3-4) 

(3-5) 

Since the bandwidth of the RF cavity is narrow, the transient response must be con- 

sidered. The complete projection from I T  to  V T  therefore is, 

[ AvT 1 ["uu(") z p a ( s ) ]  [ NT 1 (3-8) 
vTA#V = Rcosdz Z,,(S) Z P p ( s )  I T A # T  

where Zu,(s) is the normalized transfer function from the amplitude variation of I T  to  the 

amplitude variation of V T ,  and so on for other transfer functions. These transfer functions are 

as follows [7,9], 

and , 

Using 2-26) anc 2-27), we have, 

Substituting (2-26), (2-27), and (3-11) into (3-9) and (%lo), we get, 

(3-9) 

(3-10) 

(3-11) 

(3-12) 
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and , 

(3-13) 

Step 3: Projection of beam phase variation A4B to V,. 

Assuming N B = O J  using (3-3) and (3-8), the total voltage phase variation due to  the 

beam phase variation can be written as, 

Substituting (3-12) and (3-13) into (3-14), we get, 

Also from, 

(3-15) 

3-16 

we have, 

- C O S ~ ~ ~ S  - 0 2 c o s ~ z c o s ( ~ ~  - 4s)(l + tan2$z) 

s2 + 2 0 s  + 2(1 + tan2$z) 

- C O S ~ ~ ~ S  - 02(tan4zsin4s + cosbs) 

s2 + 2as + 02(1 + tan24z) 

2;. ( s )  = RIB 

= RIB (3-17) 

Step 4: Total equivalent projection of A ~ B  on A ~ v .  

In order to develop the total projection of A4B on A$v, including the contribution of 

voltage amplitude variation AV, the equivalent phase deviation of the RF voltage due to AV 

is needed. Note that the total particle energy gain due to  the RF voltage amplitude and phase 

variation is proportional to 

( V  + AV) sin(4s + Aq+) - Vsin4s ( V  + AV) cos4sA4v + AVsin4s (3-18) 

Letting AV= 0 and Aq5v= 0, separately, and equating each gain leads to 
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A4v = 7 tan4s AV (3-19) 

Therefore consider the contribution of Z;, (s), the total transfer function from A& to 

3.2. Stability 

From Fig.2, we have 

ZpTp (8) 4 (3-21) e u o  ~ R F  VVCOS~S e ~o CJRF VVCOS~S 
# =  2nP2Es2 4 -  2?rP2Es2 

Using (2-30), the equation (3-21) can be written as, 

s 2 4  + u;4 = u;zP', ( s )  9 (3-22) 

Substituting (3-20) into (3-22), and leaving off 4, we get the same characteristic equation 

of that  of (2-33). This shows that the two approaches are equivalent with respect to  the dipole 

motion inst ability. 

3.3. Comparison 

In deriving the transfer function ZM(s) in Fig.1, the in-phase and quadrature transfer 

functions Zp(s) and ZQ(s) are used. T o  determine the beam stability under beam loading, it 

it shown that the quadrature transfer function plays a key role. In deriving the transfer func- 

tion Z i p  ( 8 )  in Fig.2, the phase to phase, amplitude to  amplitude, and the phase to  amplitude, 

amplitude to phase transfer functions, Z,, (s), Z,, (s), and Z,, (s) ,  Z,, (s) ,  respectively, are 

used. The total equivalent transmission from the beam phase variation to the induced cavity 

voltage phase deviation, i.e., ZFp (s) ,  determines the system stability. 

In Fig.4, the step responses of these transfer functions are shown, where the parameters of 

the AGS upgraded RF cavity are used, and the detuned angle 4z is at 40 degrees. From these 

responses, the fundamental difference between the two types of the transfer functions, and the 

two approaches as well, can be observed. 
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IV. Sacherer Integral Equation 

In this section, we present the solution of the dipole coherent motion solved by using the 

Sacherer integral equation. 

4.1. Sacherer integral equation for dipole motion 

Consider the Vlasov equation, 

where $ (4 ,$ , t )  is the normalized phase space density, and 4 is the particle phase deviation. 

Using the phase space co-ordinates (q5,$/ws), and the polar phase space co-ordinates, 

the equation (41)  can be written as, 

The phase space density can be seen as a large time independent part $o and a small per- 

turbation part $1, which oscillates with frequency W, 

1cI ( r , W  = 1 c I O W )  + $ l ( r , @ j w t  (45 )  

84 
We note that in (44), the term $ + w&5 represents a first order quantity, therefore - a$ 

can be replaced by 

w o  - sine d$o 
a+ us dr 
---- 

The linearized Vlasov equation therefore is, 

In the next, we discuss the coherent electromagnetic force represented by 7 + ulq5. Simi- 

larly to  (2-31), in a time domain version, we can write, 
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where V1(4) represents the cavity voltage induced by the perturbation term &(r ,6 )e jUt  in 

(4-5). To determine Vl(4), we define the line density X(4), which is the projection of 1Cll(r,0) on 

the 4 - axis, 

X(4) = Jrn$l(4,b/Q) -CQ W C J S  (49) 

The line density can be Fourier expanded as, 

where 

Using. (410), we obtain, 

where Z ( p )  is the corresponding impedance. Substituting (412) into (48), we get, 

(4-13) 

We emphasize that Vl(4) is the voltage generated by the line density A($) in (49), which 

applies onIy to  the particles with the phase position 4. Therefore the equation (413) is not a 

regular synchrotron oscillation equation, such as (2-31), and to solve i t  for the synchrotron 

motion is not justifiable. 

For dipole motion only, the perturbation distribution can be written, 

&(r,6) = R l ( r ) e j e  (4-14) 

where R , ( r )  is the radial function of dipole motion. Substituting (413), (4-14) into (4-7), and 

leaving off e j w ' ,  we get, 

Multiplying both sides of (415) by e+', and integrating over 0 from 0 to 2n, we ge,, 
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where we have used ( 4 2 )  and the integral 

with m=1. 

The equation (4-16) is the Sacherer integral equation for dipole motion [3,13,17]. 

4.2. Stability 

To determine the beam stability, the Fourier coefficient A ( p )  in ( 4 1 6 )  is needed. Using 

(4-11), (4-9), (414) ,  and the relation, 

d 4  d$/ws = rdrde ( 4 1 8 )  

we have, 

(4-19) 

Substituting ( 4 1 9 )  into (416) ,  multiplying both sides of ( 4 1 6 )  by 2ws rJ1(r) ,  integrating over 

r [6,14], and picking up p =  f l ,  we get, 

where we used 

J1(-r) = - J l ( r )  

Using 

2 2ws(w - ws)  R3 2 - ws 

the equation (4-20) becomes, 

Substituting s=jw, and using (2-5), (2-28), it can be written as, 
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which is equivalent to (2-31) and (2-33) except for a scaling difference. Note that for delta func- 

tions, we have I, = 21,. To solve the integral in (424), a specific static distribution is needed. a 
V. Generalize the Formulation 

In Section 11, the impedance ZM(S) is derived under the consideration of the synchrotron 

oscillation modulated by the RF frequency. In a real situation of rigid bunch motion, the beam 

current signal contains other frequency components, and also the signal scaling has to be con- 

sidered. Therefore to generalize the formulation to the rigid bunch motion, the beam current 

signal needs to  be analyzed. For each component in the signal, the effective impedance can be 

found, which needs only a trivial modification from the results in Section 11. The summation of 

the effects of the impedance due to each component in the signal is the force the beam received. 

In the treatment, a form factor will emerge. 

5.1. Signal of rigid bunch motion 

Let TRF be the RF period, i.e., 

A beam longitudinal signal with N particles in a bunch can be written as, 

where r is the synchrotron oscillation amplitude in time. 

The spectrum of this signal can be cakulated as [16], 

where the identities 



and 

are used. 

We further assume that the bunches have a Gaussian distribution with an effective bunch 

length rL. The reason to choose the Gaussian distribution is for convenience. For each bunch, 

we have the following line density, 

With the average beam current 

N e  WRF I ,  = 
27r 

and using the phase oscillation amplitude 

r = W R F T  

the equation (5-3) becomes [16], 

which is the spectrum of the rigid bunch motion. 

5.2. Generalization 

To compare the spectrum of the rigid bunch motion (5-9) with the signal used to develop 

the formulation in Section 11, we let an idealized RF frequency modulated synchrotron oscilla- 

tion signal to be, 

il(t) = I'r coswst sinwRFt 

whose spectrum can be written as, 

1 11(w) = ?rnIBr - ( - p )  6 (6J-pwRF-mws) 
4 j  p = ~  m=&1 

(5-10) 

(5-11) 
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The first difference between the real rigid bunch motion signal represented by (5-9) and 

the idealized signal (5-11) is that (5-9) contains not only RF  frequency modulation but also RF 

harmonics modulation, i.e., by the frequencies PwRF,  lp 1>1. To justify the corresponding 

effective longitudinal impedance for these components, it is convenient to take the beam signal 

as approximately a delta function series, then to consider its frequency decomposition, such as, 

03 

( If 2 COS p W R F ~ )  (5-12) 1 03 5 6 ( t  - k T R F ) = -  1 e j p W R F t  - 
ka-m TRF TRF p =1 

Note that all the frequency components are in cosine waveform. Furthermore, at the bunch 

passing time t = kTRF, these components become cos p27i%c, - , which shows p = 0, 1, * 

that  in the decomposition, at the beam passage these cosine functions have no phase shift for 

all p . Therefore concerning the effective longitudinal impedance the same argument as that in 

Section I1 can be used for p # 1, and the conclusion is that  the quadrature responses still 

determine the effective longitudinal impedance for all p .  Thus we have ZM(w) = ZQ(w) not 

only for the RF frequency modulation, but also for the RF harmonic modulation. For the car- 

rier component with the frequency P w R F ,  the variable WRF in (2-11) should however be 

replaced by p w R F .  In the system synthesis, firstly these frequency components in the rigid 

bunch motion signal should be identified, then the corresponding longitudinal impedances 

should be used to  find the induced forces. The combined force is the one the beam received. 

' The second difference of (5-9) from (5-11) is that it contains not only dipole motion but 

also high mode motion, i.e., mus,  Im I > l .  If only the dipole motion is concerned, this aspect 

can be overlooked. 

The third difference is that in (5-9), the spectrum amplitude is affected by several factors, 

such as the Bessel function, the bunch distribution and the bunch length. The combined 

influence of these factors can be called a form factor, which should be multiplied to the scaling 

IB in Fig.1. If the synchrotron oscillation frequency is assumed to be constant, then this 

modification will change the stability margin. A detailed discussion will be presented in the fol- 

lowing. 
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5.3. Form fackor 

Consider the most important case of dipole motion with RF frequency modulation, where 

p = f l  and m = fl. We write (5-9) as, 

0 

I (w)  = 2T10 c j m  Jm(rO/CJRF)e -(" w/wRF)2/32  6 (W-p u R F - ~  US) (5-13) 
p- f l  m=fl 

Since Jm(rw/wRF) is evaluated at w = - f W ~ ~ f w s  M fWRF, and we have, 

J1(-.) = - J1(.) 
J-1( .) = - J1( x) 

the equation (5-13) can be written as, 

(5-14) 

(5-15) 

- ( r ~  w / w R F ) ~ / ~ ~ L  c c ( - p )  6 (w-p wRF -m os) (5-16) 
4 j  p = f ~  m = f l  

I(cJ) = s ~ I o J i ( r  IW I / ~ J R F ) ~  
Using the standard relation between the average beam current Io and the beam current at 

the fundamental frequency I B ,  for the delta series distribution, 

IB = 210 

the form factor can be written as, 

(5-17) 

where in the simplification we consider that  in this case 10 I WRF. 

The factor - 2 J 1 ( r )  is plotted in Fig.5, which shows that if the phase oscillation amplitude 
r 

varies within 1 rad,  the error caused by using the idealized dipole motion model is not larger 

than 12 % compared to the rigid bunch dipole motion. 

Consider the longitudinal dipole motion discussed in Section 11 again, where only the syn- 

chrotron oscillation modulated by RF frequency is concerned. The form factor F in (5-18) has 

to be multiplied to the scaling IB in Fig.1, and therefore also to Y = - in (2-33). Thus, 
V / R  

the new ratio of the beam current to the generator current 

F = F Y  (5-19) 
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will replace Y in the stability equation (2-35). Since F < 1 ,  the stability margin due to the 

beam loading effect defined in (2-35) is extended. 0 
VI. Coupled Bunch Instabilities 

A typical coupled bunch motion is generated by the impedance of a resonator, such that 

the relative phase position of the adjacent bunches is changed in phase space in a certain mode 

for a period of the revolution, and therefore in the beam current signal a frequency shift can be 

observed. Several consequences of this change will be discussed by using the presented formula- 

tion. 

6.1. Coupled bunch motion 

Let there be h bunches, and let n be the coupled bunch mode number. There will be 

n = 0, 1, ..., h -1 coupled bunch modes [4,13]. The phase difference between two adjacent 

bunches in the phase space is E. Since the period between the two adjacent bunches, Le., 
h 

the RF period, is T R F  = - 2 f f  , if one observes from a wall beam current monitor, frequency 

components of the coupled bunch mode e j(nwo+mGIS)t will show up in the beam current sig- 

nal. Corresponding to the longitudinal signal in (5-2), the signal of the coupled bunch motion 

can be written as, 

hcJ, 

i(t) = N e  
W c 

If further a rigid Gaussian distribution is also considered, then similar to (5-9), the spectrum of 

the signal observed from the wall monitor becomes, 

0 3 .  co 

pa-w m=--05 
I(U) = 27dO j V m ( r U / C 3 R F ) e  -(rL w/wRF)2/32  6 (U-P WRF-n U0-m US) (6-2) 

where a frequency shift of the coupled bunch mode is shown. 

j n  w,t If the coupled bunch instability is considered, then the coupled bunch mode e can 
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be assumed to be a rigid wave, which is generated from the relative phase difference of the 

bunches in the phase space and then its induced force is applied back to these passing bunches. 

Thus for an individual bunch, which performs a synchrotron oscillation in the phase space, the 

modulation effects of the beam current signal due to  the coupled bunch mode is demodulated. 

By the same argument as in Section 11, the quadrature response represents the effective longitu- 

dinal impedance. Consider the effect of the frequency shift, we therefore have the following 

longitudinal impedance for the signal with RF modulation, 

6.2. Coupled bunch instabilities 

Combine the longitudinal impedance (6-3) with the consideration of the signal analysis 

(6-2), several results of coupled bunch instabilities follow. 

Taking an example that h = 4 and la = 1, the coupled bunch modes are shown in Fig.6, 

where the fundamental spectrum lines of p = f l  are directly from (6-3), and others are from 

the signal generalization (6-2). 

If n # O ,  then the two spectrum lines of the same frequency modulation may be far 

apart, for instance the two lines of p = 1 and p = -1 in Fig.6, and therefore in general the 

treatment for the resonator type impedance under the RF modulation such as that  in Section 

I1 cannot be applied, and the spectrum lines may have to  be treated separately. Consider the 

dipole upper sideband at Z(W+CJO+WRF), and let the real part of the impedance be E .  Using 

s = j w  jhs, the stability equation (2-31) can be written as, 

which can be written as, 

ws IB K 
s + w ; = o  

s 2 +  2vcosfps 03-51 

Below transition cos$, >0, therefore the upper sideband is stable because that  the coefficient of 
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s is positive. I t  follows that the lower sideband at Z(W+CJO-LJRF), which has a negative sign in 

(6-3), is unstable, and the opposite above transition. 

It is interesting to  revisit the form factor derived in Section V. We rewrite it as, 

The simplification of the form factor in (5-18) cannot be made in the case of the coupled bunch 

mode, since now [ w  [ is not close t o  CJRF if n # 0. Now both variables have to be considered in 

the Bessel function. In general, the influence of the synchrotron phase oscillation amplitude 

cannot be overlooked, such as the simplification in (5-18). Taking the AGS Booster as an exam- 

ple, the form factors for different r are shown in Fig.7. At  the RF frequency of 2.55 MHz as 

shown both in Fig.5 and Fig.7, the influence of the variation of r is not significant. For the 

higher frequency, which is often of interest in the coupled bunch instabilities, this influence 

shows up. For a small variation, for instance in Fig.7 a range of r between 0.01 to  0.2, the 

form factors are approximately the same. This fact has the following implications. Once a cou- 

pled bunch motion has started, the signal frequency shift by the coupled bunch mode fre- 

quency can excite reactions from the longitudinal impedance at these frequencies. For each 

bunch, the synchrotron oscillation may get chance to  grow, and so does the phase oscillation 

amplitude r appeared in the form factor (6-6). This amplitude, on the other hand, is also the 

amplitude of the coupled bunch mode. The insignificant influence of the variation of r in the 

process, shows the reason why we can assume that the coupled bunch mode is a rigid wave, 

when we consider the instability problem. 

3. Examples of the AGS Booster and the AGS 

In a test, a coupled bunch instability has been excited in the AGS booster by tuning an 

unused RF cavity [l]. The coupled bunch motion was observed in a long front porch, with the 

revolution frequency of 850 KHz. The harmonic number of the booster is 3, and the RF fre- 

quency was 2.55 MHz. In the test, the coupled bunch instability of a dipole mode was 

observed at the first revolution line, i.e., at 850 KHz, which implies that  n =2.  There are 
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2x1Ol1 protons in a bunch, therefore we have Io = 0.082 A and IB = 0.164 A. The synchrotron 

oscillation frequency was about 4.3 KHz, the synchronous phase angle #s = 0, and the RF vol- 

tage amplitude V = 30 KV. 

a 
The RF cavity used to  excite the coupled bunch motion has a quality factor 2.5 and a 

shunt resistance 3 Kn, it  was tuned at the the revolution frequency in the test. The impedance 

of the cavity and also the driving RF cavity is shown in Fig.8. 

To estimate the coupled bunch instability, the equation (6-5) can be used. T o  estimate 

the resistance E which is crucial in this test, the form factor in (6-6) is used, where the Gaus- 

sian distribution is still used since the associated error is not significant. The bunch length can 

be measured, which is rL M 130 nS. The final effective resistance E of the unused cavity is 

shown in Fig.8 by dotted line, which indicate that i t  is 60 db, Le., 1 KO at the 850 KHz. The 

growth rate calculated using (6-5) is about 27.7 mS, which is close to  the test result of 30 mS. 

In an AGS operation, a coupled bunch instability was observed and analyzed [lo], which 

appeared at the 1.77 GeV front porch, with RF frequency of 4.18 MHz. It is a dipole motion 

with a coupled bunch mode n = 11, and the AGS has an R F  harmonic number h = 12. To 

locate the frequency of the coupled bunch mode exciting resonator, two tests were performed. 

The bunch lengthes are 46 nS and 70 nS, and the beam currents are 0.089 A and 0.457 A, 

respectively. The RF voltages are 260 KV and 184 KV, the synchrotron frequencies are 1.64 

KHz and 1.38 KHz, respectively. The observed growth rates are 48 mS and 24 mS, respectively. 

The form factors according to (6-6) are plotted in Fig.9, where a moderate I =O.lrL is used. 

To generate the observed growth rates, the required resistances in the longitudinal impedance 

are plotted in Fig.10, which shows that at approximately 17.6 MHz the required resistances are 

crossed, note that  the closest unstable coupled bunch mode frequency is at 17.1 MHz, therefore 

Fig.10 shows a possible location of the exciting resonator for the coupled bunch instability. 

This result agrees to  the one obtained by different approaches [lo]. 
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Fig.1. Beam Dynamic Model for Longitudinal Coherent Dipole Motion. 
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Fig.2. Beam Dynamic Model for Pedersen Formulation. 
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Fig.5. The Form Factor 2 J l ( r ) / r .  
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Fig.6. Coupled Bunch Spectrum Lines. 
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Fig.3. Vector Diagram of Beam Loading. 
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Fig.4. Step Responses for Different Transfer Functions. 
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Fig.7. Form Factors with Different r . 
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Fig.8. Impedance of the Driving RF Cavity and Unused Cavity in the AGS Booster. 
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Fig.9. Form Factors of the Two Tests at AGS. 
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Fig.10. Resistances Required to Excite the Observed Growth Rates at AGS. 


