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Experiments at the IUCF Cooler Ring using a partial Siberian Snake and an rf 
solenoid have yielded graphs of deliberately induced depolarizing resonances 
including, in particular, higher order synchrotron sideband resonances. This is 
a short report to describe some theoretical formulas to fit those resonances, and 
to suggest tests to quantify the main predictions of the theory. 
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1 Introduction 

This is a short note based on a very interesting recent preprint circulated by the experimental 

collaboration using a partial Siberian Snake at the IUCF Cooler Ring [l] which describes the use 
' 

of an rf solenoid to induce depolarizing spin resonances in the circulating proton beam. In addition ' 
to  the rf solenoid, a partial Siberian Snake was present in the ring, of strength s, where the spin 

rotation angle around the longitudinal axis is TS, so that s = 1 describes a fuLz Snake. Values of s 

from 0 to 0.04 (a 4% Snake) were used. 

Upon reading the preprint, I found that in addition to the main depolarizing resonance, where 

the rf solenoid frequency resonated with the spin tune, higher order resonances were also observed, 

viz. so-called synchrotron sideband resonances, where the rf solenoid frequency resonated with the 

synchrotron oscillations as well as the spin tune. Such resonances are analogous to  synchrotron ' 

sidebands surrounding the betatron tune in the case of orbital motion, caused by tune modulation 

of the betatron oscillations by synchrotron oscillations and the chromaticity. 
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A fairly detailed description of the experiment a.nd parameter values is provided in Ref. [l], 

but the fits to  the data are restricted to the main resonances only. This is understandable, because 

there is no detailed theory to treat the higher order resonances. I realized, however, that formulas i 
0 

to describe such resonances could be adapted from the literature on electron storage rings, in 

particular a classic paper by Yokoya [2]. The IUCF Siberian Sna,ke experiment affords a unique 

opportunity to  bring these two subsets of physics together, to enhance our understanding of spin 

physics in storage rings, and this note is a short report in that direction. 

2 Basic Formulas 

The basic goal, in the theory, is to derive an expression for the ii axis for the various particles. 

The vector A is the generalization of A", which is the spin closed orbit for a particle on the closed 

orbit. Following Yokoya [2], we can parameterize ii by writing 



where 5 is a complex number and & is a solution of the Thomas-BMT equation on the closed orbit, 

and lcu is orthogonal to  A". As is well known, k" will thus precess around f i L g  a t  the spin tune v,,, 

and in particular it has the property 

4 -t 0 

+ 
so LO is a complex vector. Of course f i (0  + 27r) = f i (0 ) .  Eq. (2.1) is just a way of representing a 

unit vector by a complex number C. The equation of motion for ( is [2] 

where w' is the spin precession vector which describes the perturbations, including the rf solenoid, 

and [ = 0 in the absence of perturbations (d = 0). The above equation is solved using perturbation 

theory, assuming both 151 and 13 I are small. To leading order, ( --+ (1, where 

The perturbation we treat first is the rf solenoid, which oscillates at  a frequency f, or a tune 

v = f / f c ,  where fc is the revolution frequency, and IC0 oscillates at  the spin tune v,,, so we can 
-t 

@ write 

where a is a constant and the rf solenoid is localized at  e,,,. We can put 0,f, = 0. We also do not 

need a detailed expression for a in terms of the accelerator lattice. Decomposing the delta function 

into a sum of Fourier harmonics, we find 

and a resonance will occur when one of the exponents goes to zero, i.e. the resonant frequencies 

are 

f r  = f c ( P ~ l : s p ) ,  (2.7) 

in agreement with Eq. (2) of Ref. [l]. Picking out one such term, i.e. the term closest to resonance, 

and neglecting the rest, we obtain 
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where v, = f r / f c ,  and the solution which satisfies the appropriate boundary conditions on ii is 

e i ( ~ - ~ , ) 6  

u - v, 

Defining A = f - f, and A = -aft, we can write this as 

[I = -a 
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(2.9 

(2.10 

At this point we encounter a slight difficulty, which is that (1 diverges at the resonance, wherea 

we know that f i  is a unit vector and the full solution for [ must satisfy I[[ I: 1. We therefore adop 

the following approximate strategy. For the polarization, the function of interest is the componen 

along i i o ,  i.e. .Jl"", and we know that, for smaZZ [[I[, 

We use this approximation to express the polarization as 

(2.11 

(2.12 

where Po is the initial polarization (a global constant). The r.h.s. will now be finite even wher 

the rf solenoid frequency is close to the resonance, although of course the r.h.s. was derived b; 

extrapolating an approximation. The above expression is similar to, but not exactly the same as 

the form used in Eq. (5) of Ref. [l] to fit to the resonance in the polarization, which is instead 

A2 - P _ -  
p0 a2+r2* 

We see that the width I' used in Ref. [l] corresponds to /AI above. 

(2.13 

It is not obvious which of Eqs. (2.12) or (2.13) is better to use. Let us follow Ref. [l] and USI 

Eq. (2.13), so as to follow their work more closely. It is stated in Table 1 of Ref. [l] that I' = 0.6: 

kHz for a 4% partial Snake. Using this value and Pc, = 0.76 (which is a value not published ir 

Ref. [l] but was read off from their Fig. 4), yields the dashed curve shown in Fig. 1 below. Thc 

figure is a reproduction of Fig. 4 in Ref. [I]. The theory curves are calculated in this report, an( 

are absent in the figure in Ref. [l]. We see that the resonance in the theory curve is too wide. li 

Eq. (2.13), I' is the half width at  half max of the resonance. However, if we interpret the value o 
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I’ = 0.62 kHz published in Table 1 of Ref. [l] as the full width at  half max, then the equation for 

the polarization should read 
A2 - P 

Po A2+aI’2 ’  
_ -  (2.14) 

Using this equation, with I’ = 0.62 kHz, yields the solid curve shown in Fig. 1 below, which fits the 

resonance much better. Thus there may be some misunderstanding on my part as to the definition 

of I’ in Ref. [l]. Let us use Eq. (2.14) henceforth. 

The next step is the really new substance of this report, viz. the fitting of the higher order 

synchrotron sideband resonances visible in Fig. 4 of Ref. [l], or Fig. 1 of this report. We follow 

Yokoya’s treatment [2]. The synchrotron sidebands induce tune modulation of the spin precessions, 

via the term 6 - A0 in Eq. (2.3). Skipping most of the mathematics (a derivation is given in Ref. 

[2]), the result is that t -+ (2, where 

(2.15) 

where the angular brackets denote an average over the beam, and I ,  is a modified Bessel function 

and the argument X2 is given by 

(2.16) 

where a will be explained below, and all the other symbols have their usual meanings, e.g. G = 

(g - 2)/2 N 1.792847. The parameter X2 is sometimes called the “tune modulation index.” The 

angle a! is the tilt of the A0 axis away from the vertical, and one can show that 

tan( TS / 2) 
sin(aGy) ’ 

where s is the partial Snake strength as explained above, so 

tancr = 

sin( T Gy ) 
.dtan2(7rs/2) + sin2(nGy) 

cosa = 

The value of the polarization is plotted using the function 

1 - P _ -  
Po 1 t (1<212) ’ 

with (l<21z) given by Eq. (2.15), and recall la12 = P/(4f ; f ) .  
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(2.17) 

(2.18) 

(2.19) 



To fit the synchrotron sideband resonances, it  is therefore necessary to know the value of X2. Ref. 

[l] tells us that G-y N 2.0222, using G = 1.792847 and a proton kinetic energy of 7' = 120.02 f 0.03 0 
MeV and y = 1 -I- T/938.272, and the partial Snake strength was s = 0.04, which tells us the 

value of cos a. The value of the synchrotron tune was [l] f,9 = 1.62 f 0.04 kHz, and the revolution 

frequency was fc = 1,597,952 Hz and v, = f3/fc. However, the value of u ~ / E o  is not given in Ref. 

[l]. Now 
- = p - ,  UE 2 U P  

Eo Po 
(2.20) 

where p is the momentum, and p2 = ( v / c ) ~  = 1 - Y - ~ .  Further, a typical value of up/po  is 

so let us guess that up/po N 0.001, and u ~ / E o  is given appropriately. All of this yields 

x2 21 0.1. (2.21) 

The fit to the data is shown in Fig. 2 below, where the data are again from Fig. 4 of Ref. [l], and 

the solid curve is the fit using Eq. (2.19) with Po = 0.76 and I' = 0.62 kNz as before. In addition to 

the synchrotron sideband resonances at  fr f fs, the resonance fr f 2f, also lies in the range of the 

data, although it is very narrow and does not appear in the data. Perhaps a more detailed search 

might reveal it. 

3 Discussion 

The fit of the theory to the data in Fig. 2 is actually better than I had originally expected. 

This is naturally pleasing, but is tempered by various obvious approximations/assmptions that 

have clearly been made in deriving the theoretical fit. Let us now consider the implications of 

the above results. First, note that the experimental data show only the transverse polarization 

d m ,  and not the full polarization, because the longitudinal component Pl at the polarimeter 

is unmeasurable. We adjust the global scale factor Po to deal with this, yielding in this case 

PO = 0.76. Second, Ref. [l] used a phenomenological function - basically a Lorentzian - to fit 

the shape of the main resonance. The same function was used in this report. A brief discussion 

of this topic was provided above, where a slightly different function was derived (but not used). 

However, the data show that the resonance is not symmetric around its center, which indicates 

that the theory is oversimplified in describing the resonance shape. 
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The values of most of the parameters have been clearly listed in Ref. [l], as well as a description 

of the: experiment and the meaning of the graphs. Values of ancillary parampters such as the 

revolution frequency and the synchrotron frequency, were also provided. However, the value of an 

important parameter (from the point of view of this report), was not given, viz. the energy spread 

a,q/Eo. The value of this parameter had to be guessed above. This weakens the goodness of the 

fit. 

0 

There are several suggestions one can make for further study. It might be best to tabulate these 

in a list. 

1. First, of course, it  would be good to measure the energy spread of the beam, if possible. This 

would cross-check the value used above. 

2. The theory claims that the widths of the synchrotron sideband resonances are all proportional 

to that of the main “parent” resonance. This can be checked by varying the peak value of the 

magnetic field integral of the rf solenoid. All the resona.nce widths should scale identically. 

Unfortunately, it appears that the field used was already at  its maximum value in Ref. [l], 

and so one could only make the resonances narrower, not wider, which is a pity. e 
3. The theory also indicates that the relative widths of the synchrotron sideband resonances 

are all governed by only one parameter X2, which is a combination of several quantities, viz. 

a ~ / E o  and v,. One could test this claim, e.g. by varying the energy spread, and/or varying 

the synchrotron tune. One could also vary the value of Gy, but to achieve a significant change 

might require too large a change of beam energy, resulting in unacceptable loss of polarization 

at  injection due to  the mismatch between the injected polarization and the direction of the 

i i o  axis in the ring. I t  is probably therefore better to vary cr~/Eo and v,. Note that changing 

v, would also change the locutions of the resonances. Reducing v , ~  (which might be easily 

achievable), would bring the resonances closer together, while also making them wider. Under 

these circumstances, it might be possible to observe the second synchrotron sidebands frlt2f8. 

4. The fits in this report have been restricted to only the data pertaining to  the 4% partial Snake. 

There are graphs (Fig. 2 in Ref. [l]) which show that synchrotron sideband resonances are 

clearly visible at  other values of the partial Snake strength, including 5 = 0 (no Snake). 



.* ... 

However, the graphs are too small to resolve enough detail for a theoretical fit to the higher 

order resonances. It may be of interest to plot the data for s = 0, etc., on a larger scala, and 

to  fit the higher order resonances. In particular, if we believe, as is plausible, that the energy 

spread and the synchrotron tune are the same in all cases, then it should be possible to fit all 

of the higher order resonances for all values of the partial Snake strength without introducing 

new parameters into the theory. This may be a test that the authors of Ref. [l] can perform 

without taking more data. 

a 

4 Conclusions 

The experiments at  IUCF with a f d  or partial Siberian Snake have yielded many results which 

have increased our understanding of polarized particle motion in storage rings, and in many cases 

have been ahead of theory. A fit to  the data and a few theoretical predictions have been made 

above in one such area, viz. the behavior of the higher order synchrotron sideband resonances, 

and perhaps may help to set the theory on a firmer footing. In particular, it should be possible to 

check if the higher order synchrotron sideband resonances a.11 depend on only one parameter, viz. 

the tune modulation index X2. @ 
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