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1 Introduction 

When maesuring the field in a magnet, such a combined function dipole, one usually attempts to 
decsribe the field as a s u m  of Fourier harmonics, or multipoles. There is a standard terminology of 
so-called “normal” and “skew” mdtipoles associated with this practice. The multipole content is 
useful to know for problems such as particle tracking, to determine orbit stability of the particles in 
a synchrotron or storage ring. In high-precision experiments such as the muon g - 2 experiment at 
BNL, a knowledge of the field quality, i.e. multipoles, also affects the precision of the experiment, 
i.e. the measured value of g - 2. The purpose of this report is to describe a set of functions which 
satisfy Laplace’s equation in two dimensions, say a and y. The functions do not depend on a; 
however the z axis is not straight, but is curved in a circle of radius PO. Hence the functions do 
depend on PO, as well as a and y. These functions are introduced to deal with problems, such as the 
fitting of magnetic field measurements, where the field is two dimensional, but the z a x i s  is curved. 
Typically, if the z axis is straight, the field, or potential, can be expressed as a s u m  of Fourier 
harmonics T~ cos(n0) and T” sin(nO), where a = T cos 8 and y = T sin8. However, Fourier harmonics 
do not satisfy Laplace’s equation in two dimensions when the z axis is curved. The functions to be 
described below are therefore generalizations of the Fourier multipoles above. I shall refer to them 
as “curved multipoles.” 

Note that the term “curved longitudinal axis” or “curved z axis” is ambiguous. Consider a 
rectangular dipole: we can draw a straight line through the middle, and define this line to be 
the z axis. Then we can use Fourier harmonics to give a multipole decomposition of the field, 
relative to this axis. However, this is not the design orbit of the accelerator; it is not the axis 
the particles will follow. If we use that axis, which is a circular arc, then we shall need to use a 
more complicated representation of the field, specifically, I propose the use of curved multipoles. 
For a combined function dipole, one has to specify the higher order terms in the field to have a 
well-defined description of the magnetic field, and one is forced to introduce some generalization 
of the Fourier harmonics anyway. Note, however, that the prescription I shall offer below to derive 
the generalizations of the Fourier harmonics is not unique; other methods will be briefly described 
in the appendix. 

@ 

2 Laplace’s Equation 

2.1 Multipole Expansion in Two Dimensions with Straight z Axis 

When the electric field is contained in the two-dimensional (a ,y)  plane, it can be derived from 
a scalar potential V = V(z,y), a function of 2 and y only. A magnetic field which is contained 
in the two-dimensional (2, y) plane can be derived from a vector potential with only one nonzero 
component, i.e. A’ = Aded, where Ad = Ad(a,y), and ed is a unit vector in the longitudinal 
direction. We shall usually call this the z direction. To save on notation, we shall frequently use 
the symbol iP, or P i r n ,  to denote either V or Ad, because many of the statements below will apply 
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equally well to both V and A+. e 
When the z a x i s  is straight, Laplace's equation for both V and A+ has the common form 

a20 a20 -+- - - 0 ,  
a x 2  a y 2  

(2.1 

where, as stated above, ip could denote either V or A+. It is well-known that ip can be decompose( 
into a linear combination of so-called normal and skew multipoles, given by the general formula 

00 00 m 00 

3; + i@; = C(. + iY)" = = rn[cos(ne) + isin@e) 1, (2.2 
n= 1 n=l n=l n=l 

where the superscripts denote normal and skew multipoles, with an obvious notation. We see tha 
@E = Fcos(n8) and @.", = Psin(n8) .  In Cartesian coordinates, the expressions for the first fev 
multipoles are 

$7 = 2 ,  @ef = Y ,  
a; = x2-y2 ,  @$ = 2xy, 
@! = 03-3xy2,  ip; = 322y- y3, 

@? = X' - 6x2y2 + y" @$ = 4x3y-4xy3, 

@g = x5 - 1 0 ~ ~ ~ 2  + 52y" ~ e g  = 5x4y - 1 0 e 2 ~ 3  + y 5 ,  

(2.3 

@$ = x6 - 15x4y2 + 15x2y4 - y6, @: = 6x5y - 20x3y3 + 6xy5. 
The general formula for the coefficients is 

(2.4 
n-2k-1 2k+1 n! 

(n  - 2k - 1)!(2k + l)! 
Kz 

@; = C ( - l ) k  X Y l  
k=O 

where K1 and K2 are the largest integers such that n - 2k >_ 0 and n - 2k - 1 2 0, respectivelJ 
Hence Kl = n/2, K2 = (n  - 2)/2 for even n and K1 = K2 = (n - 1)/2 for odd n. 

2.2 Fourier Harmonics 

Given a potential ae?,(z, y) in some region of space which contains no charges, we can decompos 
it into a s u m  of multipoles. The procedure is well-known. We integrate around a circle o 
radius T,,,,, and calculate 
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for n 2. 1 ,  where a: = r cos 8 and y = T sin 8. The above are definitions of a, and b,. The potential, 
when represented in the form Gelm = Getm(r,  8) is defined to be 

The coefficients A, and B, have units of Volts/(meter)n, or Tesla/(meter),, as appropriate, as 
opposed to a, and b, which have units of Volts or Tesla for all n. For numerical work the upper 
limit on the s u m  is of course finite. It is well-known that Eq. (2.6) is the general solution for Wm 
in two dimensions, when (1) no charges are enclosed in the domain of the multipole expansion, and 
(2) the z axis is straight. One can also add a Bo term, but that is a constant, and is neglected by 
programs such as POISSON because an additive constant does not contribute to the field. 

The above statements explain the reason for the standard multipole expansion in Fourier har- 
monics: it yields the general form of the solution of Laplace’s equation in two dimensions, within 
certain well-defined circumstances. However, when the z axis is curved in a circle, Eq. (2.6) is 
not the general solution for The coefficients A,, and B,  are no longer constants, bat become 
functions o f r .  Although V - 9 ”  is still a function of two variables only, @e?m = Q i e i m ( a : ,  y), Eq. (2.5) 
no longer yields a correct prescription for calculating ipeim(r, 8) from W m ( e ,  y). 

2.3 Equations for Scalar and Vector Potentials with Curved z Axis 0 
We seek a set of functions which will yield a corresponding multipole expansion when the H axis is 
curved. In curvilinear coordinates, Laplace’s equation for a scalar V does not have the same form 
as that for a component of a vector A$. Nevertheless, the twin problems of solving for V and A&, 
when the z axis is curved, are closely related, and so we shall treat them together. In cylindrical 
coordinates (p ,  4, y), Laplace’s equation has the form 

for a scalar V .  Here the origin is at p = 0, the center of curvature. We define the e axis to be 
radial, and z to be longitudinal (the 4 direction). Suppose the z axis has a radius of curvature 
po = PO(&),  or curvature h = p i ’ .  We shift the origin to p = PO, hence p = po + z = po(1 + he). 
Then 

dp = d o ,  dz = p o d 4 ,  p d 4  = (1+he)pod4 = ( l + h e ) d z ,  (2.8) 
and so in the “curved z axis coordinate system” Laplace’s equation for a scalar V has the form 

l a  a2v +--(--) l a  1 av = 0 .  -- ((1 + he)=) + - 1 + ha: ao dy2 l f h x d z  l + h x  dz 

The above equation is valid even if h is a function of z. However, I shall only consider cases where 
h is constant, and V = V ( e ,  y) only. Then the derivatives in z vanish. Laplace’s equation simplifies 
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to 0 a2v 
((1 + h a ) g )  + ay2 ,= 0 .  

l a  
1 + ha a x  
-- (2.10) 

It will be convenient below to use the dimensionless variable 6 = 1 + hz instead of a ,  in which case 
the above equation becomes 

(2.11) 

For the vector potential, Laplace’s equation is more complicated. However, if A’ = A,@, and Ad is 
a function of a and y only, we obtain the equation 

Shifting the origin, and defining = 1 + ha, etc. yields 

a l a  a2 
= h 2 - ( - - ( t A d ) ) +  -A ay2 d *  at t a t  

(2.12) 

(2.13) 

2.4 General Expressions for Multipoles 

We now need to compile a list of “curved multipoles” analogous to the “straight multipoles” in 
Eq. (2.3), i.e. curved dipole, .skew dipole, quadrupole, skew quadrupole, sextupole, skew sextupole, 
octupole, etc. for both the scalar and vector potentials. This will provide a set of basis functions 
(I use the word ‘basis’ loosely in this context), in terms of which to express the potentials, and 
eventually the electric and magnetic fields, when the z axis is curved in a circle. To this end, it is 
useful to note some relationships between multipoles of different order. 

Suppose that and 9” are solutions of Laplace’s equation for a scalar and vector potential, 
respectively, in two dimensions, with a curved z axis, i.e. 

(2.14) 

Let us define !Pelrn = d&eim/ay. We see immediately that 9“ and 9” are also solutions of the 
appropriate forms of Laplace’s equation in two dimensions, with a curved z axis, because the partial 
derivative a / 8 y  commutes with all the derivatives in. Eq. (2.14). For example 
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8 h2 13 a2ae 

- - - [ - - ( t 3 + w ]  aY I = o .  (2.15) 

We can turn the above result around, within limits to be described below, to deduce that if !Petrn 

is a solution of Laplace's equation (in two dimensions, etc.), then defining 

v y o ,  y') dy' (2.16) 

will also yield a solution of Laplace's equation. Hence we can obtain higher order multipoles by 
systematically integrating lower order multipoles with respect to y. The catch is that the integrals 
are indeterminate up to the addition of an arbitrary function of e. Hence we can obtain higher 
order multipoles from lower order multipoles provided we can find a way to determine the terms 
which depend only on 2. 

sv 

The following prescription provides the necessary functions. We leave the y dependence alone 
in all the expressions for the straight multipoles, in Eqs. (2.3) and (2.4)) and generalize the 2 

dependence via zn + UE(o) for the electrostatic scalar potential, and on + Up(.) for the magnetic 
vector potential, where U i ( a )  and U r ( o )  axe functions of o only, to be determined below. In other 
words, we search for functions UZm(o) such that the expressions for the first few curved multipoles 

where we put a tilde on @ to denote that the t axis is curved, and the superscripts n and s on Sn*' 
denote normal and skew multipoles, respectively, and we drop the superscripts {e, m} on to 
avoid cluttering the notation. We can easily verify that 

(2.18) 

i.e. if 3 : ~ ~  is a solution of Laplace's equation with a curved t a x i s ,  then 6'si*"/ay is (proportional 
to) a multipole of one order lower, and hence is also a solution of Laplace's equation. The general 
formula for the curved multipoles is given by modifying Eq. (2.4) in the obvious way: 

n! elm 2k+l  
K2 

k=O 
3; = C ( - l ) k  

(n - 2k - 1)!(2k + l)! un-2k-1 

(2.19) 

We now need to determine the Eunctions Qrn, for n = 0,1,2, .  . . 
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2.5 Tabulation of V:tm Punctions 0 
We shall present the details of the derivations of UE and Ur later. For ease of reference, and to 
justify that the required functions do exist, we list the explicit expressions for UE and Ur for n = 0 
through 6 in closed form below: 

u; = 1 ,  

u; = k-llnEP 

u; - - - ( 5 2 - 1 - 2 1 . t ) ,  1 

ui - - 3 2h3 ( 1 - t2 t (1 + 1 2 )  1.t) , 
- 2h2 

u; = 8h" ( - 5  + 4t2 + t4 - 4(1+ 26') 1.5) , 

27: = z ( 3 ( 1 - t 4 ) + 2 ( 1 + 4 t 2 + E ' ) 1 . t ) 7  16h5 

u; = -( -10 - 9t2 + 18t4 + t6 - 6(1+ 6t2 t 3t4) 1.t) , (2.20) 
16h6 

and 

2h2 

u,m = s ( - - t t 3 - 4 t 1 . t ) .  3 1 
5 

UT = - (1 t 45 - 553 t 4(25+ 5 3 1 4  9 

8h4 6 

t 1st - 9t3 - lot5 + 6 ( 3 t  + 6t3 + E5)1.5) . (2.21) 

It is also convenient to expand them in power series in x, especially when 5 N 1, Le. x << po (which 
will the case in many applications), because the series expansions will converge rapidly, whereas 
the closed form expressions may involve delicate cancellations when 5 N 1. We find 

hnxn+l 
f ... + (q- +.  . . u; = x - - + - - -  hx2 h2x3 h3x4 

2 3 4 n + l  
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hx3 h2x" h3x5 hnxn+2 
x 2  - __ + - - - +. .. + (.q- +. . . u; = 3 4 5 n + 2  

) hn-'zn, 4 2 

n=5 

1 + -) hn-'xn, 10 4 +--- 
n - 1  n - 2  n - 3  n - 4  

12 15 " 
n=6 

u,e = 

hn-1 
+ . . . + (-1)n-l- + . rn . he2 h2x3 h"x4 x - - + - - -  u;" = 2 2 2 2 

] hn-'xn, 4 
UT = 

) ]  hn-'xn, +--- UT = x4++,-(-1)" [ 1 - 4 ( ? - -  n n - 1  n - 2  n - 3  
3 3 m  5 

n=5 

(2.22) 

) ] hn-'xn, +--- 
n - 2  n - 3  

3 4 

1 - 6 ( 1 0 _ - -  26 28 16 +--- 
n n - 1  n - 2  n - 3  

) ] hn-'xn . (2.23) 5 1 +--- 
n - 4  n - 5  

2.6 Recursion Relations for UEym Functions 

In this section, we derive recursion relations for. UE and Ur , and various other useful relationships 
between these functions. From the general expression for 5; in Eq. (2.19), we see that 
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Let us use [ = 1 + hz and put U:T~ = U:lm([). We begin with the scalar potential, so we treat 17: 
first, Substitution into Eq. (2.11) yields 

h2 d 

Retaining only terms which do not depend on y after differentiation, we find that 

(2.25 

(2.26 

This can be solved recursively to determine the U:'s, provided we supply expressions for Ug ant 
Uf. We shall do so later. In any case, we know that, in the limit of zero curvature h +. 0, U: N z" 
First, however, we turn to the vector potential, and the Uz functions. The recursion relation fo 
Up is easily found to be 

(2.27 

We can now derive a remarkably simple relation between the U z ' s  and U:'s. Differentiating Eq 
(2.26) with respect to 6, we deduce that 

-[--(tu:)] d I d  = n(n h2 - 1) UT-2 * 
d t  t d t  

(2.28 d I d  n(n - 1) dUz-, 
2[52('2)] = h2 d t  * 

This is ezactly the same as Eq. (2.27), with dUz /d t  in place of UF! This is a slightly hast: 
identification of Uz with dU:/de, however. Note that, in the limit h + 0, or rather (ha( << 1 
we expect Uz 5 Up N z", hence dU,"/d[ N n z n - l / h .  The correct relation between Ur and UE i 
therefore 

(2.29 

This can be verified to be consistent with Eqs. (2.27) and (2.28). It is therefore unnecessary t 
derive the 17:'s and U r 9 s  separately. 

The above relation, Eq. (2.29), although simple and elegant, has one disadvantage: to calculat 
Up, we need to know Ue to one order higher, i.e. UE+l. This may involve unnecessary effort 
because the labor involved in solving for U: increases with the value of n. It is possible to obtai~ 
Ur from via the following trick. Using Eqs. (2.26) and (2.29), 

Multiplying though by [ and integrating yields 

(2.30 
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The lower limit of integration follows from the fact that Ur-l = 0 at E = 1, for n 2 2. Shifting the 
index and dividing by [, we find that 

t'cI-l(t') d e 9  (2.32) 

which is valid for n 2 1. Hence we can calculate Ug and UF for n = 0,1,2, * .  . , N without having 
to know Ug+l .  Im fact, we can use Eq. (2.29) to calculate Uz from Uz-l and Eq. (2.32) to calculate 
Uz from Uz-l ,  as opposed to Eqs. (2.26) and (2.27). Let us do so. Let us write 

(2.33) 

The above form for Uz-l will be justified a posteriori in a later section. Then, substituting in Eq. 
(2.29) yields 

0 
the form of which will also be justified a posteriori below, we find that 

00 
Furthermore, if we put 

Uz-l = c6tk + &Ek E ,  
k=O 

and substitute into Eq. (2.32), we first obtain 

10 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 
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Writing 

we deduce that 

(2.40) 

(2.41) 

Eqs. (2.36) and (2.41) can easily be coded into a computer program to yield the coefficients of the 
terms in Ui and Ur up to arbitrary values of n. 

It is also useful to express the UE and Ur as power series in a. Although the power series 
will contain arbitrarily high powers of x, i.e. infinitely many terms, as opposed to the closed form 
expressions, in many, if not most, applications, 1x1 << po, or equivalently Iha( << 1, so the series 
expansions will converge rapidly. We put 

m W 

whence, using Eq. (2.29), 

k=n-3 

(2.42) 

(2.43) 

(2.44) 

Note that Pn = an-l = 1 because 17; N xn and Ur-l N xn-l for Jhol + 0. Next let us write 
00 

UE-1 = g p i x k ,  u,m = Z a i x k ,  (2.45) 
k=n k=n-1 
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and substitute into Eq. (2.32), which yields 

Equating powers of a, we find 

(2.46) 

(2.47) 

which we rewrite in the form 

a; = pi-1 = 1, 

ai = - ( P L - ~  t h ~ k - , )  - hak-l I (k 2 n t 1) (2.48: n 
k: 

where the first line again follows because because Uz N an and Uz-l N anW1 for Ihal + 0. 

0 2.7 Multipoles for Electric and Magnetic Fields with Curved z Axis 

The above expressions in Eqs. (2.17) or (2.19) pertain to the potentials. We also want multipole$ 
for the electric and magnetic fields, i.e. for the components E,, E,, B, and B,. When the .z axis ir 
straight, this is a trivid problem, because the required functions are the same as for the potentials 
viz. Fourier harmonics. The result is slightly more complicated when the z axis is curved. 

It can  easily be shown that, if E,, E,, B, and B, are functions of a and y only, then the1 
satisfy the equations 

d2  B, - 0 ,  

(2.49 
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Hence E, and B, satisfy the same equation as A4, and E, and B, satisfy the same equation as V. 
Hence, to expand E, and B, in multipoles, we use the UE functions, while to expand E, and B,, 
in multipoles, we use the, Uz functions. Explicitly, 

@ 

FZo = U& i?Zo = 0 ,  

j?Z1 = uy, F.i1 = ur y ,  

i?J3 = uT-3uyy2, i?Z3 = 3U,my-UTy3, 

Fg2 = UT -UT y2, Fi2 = 2 u y y ,  (2.50) 

Fg4 = UT - 6 U T y 2 + U T y 4 ,  Fi4 = 4U3my-4Uyy3, 

etc., for the horizontal components of the fields, and 

q0 = u,, 
q1 = u,., F;l = U,.Y, 

F.r3 = u; -3Ufy2,  

i$) = 0 ,  

q3 = 3u;y- u,. y 3 ,  

- 

F.2 = u;-u,.y2, F;2 = 2u,ey, (2.51) 

2r4 = U$-6Uzy2+U,y4,  ?i4 = 4U3y-44ufy3, 

etc. for the vertical components of the fields, and so on for higher order multipoles. Here the 
symbol F denotes either E or B, and the tilde indicates that the multipole is for use when the z 
axis is curved. 

2.8 Explicit Expressions for U:im Functions 

We have now built up a fairly elaborate scheme, but still hav not yet justified the explicit expres- 
sions for the UE and UF functions presented above. We now do so. We first note that, in the limit 
of zero curvature h * 0, Uz -N Ur -N a”. We start with Uo, for which the equation is 

ii(F2) = 0 .  

We see immediately that a suitable solution is 

ut = 1, 

which trivially reduces to Uz --+ a(’ = 1 as h + 0. Next, we have 

also. A suitable solution in this case is 

u; = h-lInJ = h%l(l+hz) 

13 
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hnxn+l 
+ . . . + (-1)n- + . . . hx2 h2x3 h3x4 - 

- x--+3-- 2 4 n + 1  
(2.55) 

which clearly reduces, as expected, to Uf N x1 = x as h --f 0. Using Eq. (2.29), we find that 

Ur = h -  (2.56) 1 dU," - - 
dE - E '  

Furthermore, using Eq. (2.32), with Ug = 1, 

ul;n = - hE 1 J F ~ ~ ~ ~ ~  1 = 2h ( e - f )  
hnxn+l 

- he2 h2x3 h3x4 + a  ..+ (-1)n- + ... (2.57) 
- x--+2-- 2 2 2 

The next fwnction is U;, for which Eq. (2.29) tells us 

dU," 
dE 
- -  

u,e = - ( [ 2 - 1 - 2 l n [ )  1 
2h2 

hnxn+2 
- o2 - - ha3 + - h2x4 - - h3x5 + ... + (-1)n- + .. . (2.58) 

3 4 5 n + 2  
- 

Using Eq. (2.32), we find that 

ur = -1 2 E  ['U:dt' = - 2 E  J [ ' l n t ' d [ '  = - 1 ([21n[-T+i) E2 
hE 1 h2E 1 h2 E 

1 

] hn-2xn + - (2.59) 2 7 11 1 
3 12 20 2 n(n- 1) 

x2 - - hx3 + - h2X4 - - h3x5 + . . . + [ - + 
- - 

We can continue the integrations using Eqs. (2.29) and (2.32), but it is easier eventually to use 
Eqs. (2.36) and (2.41), hence let us do so now. Then Eq. (2.36) tells us that 

2 l  2 
u; = 2h3 3 1 2  [ z + 4 + ( - 2 - 4 ) E 2 + l n E + - E 2 h E  1 2  

n c c l  r n  n 1 
L L - - 

14 

hn-'xn. (2.60) 



d) The expression for UF is, via Eq. (2.41), 

1 E" 2 

3 1 - - - 8h3 ( - F + t 3 - 4 E I n t )  

At the next order, the expression for U$ is given by 

U$ = - 
2h4 

hn-'xn. 3 "  4 2 

n=5 

(2.61) 

(2.62) 

As for UT, we have 

6 
u,m = - [ (  h4 t 4 16 

- - + 4~ - 5t3 + 4(2t + t3) h t ] 
- - 5 +--- 3 ] hn-'xn. (2.63) 

n n - 1  n - 2  n - 3  
n=5 

At the next order, we have 

u; = - 

- - 15 [ 3(1- 6') + 2(1+ 4E2 + E4)hE] 
16h5 

(2.64) 15 O0 6 12 10 4 

n=6 

and 
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, 

0 

(2.65) 

Next, 

6 2  

- - [-io - 9E2 + 18t4 + E6 - 6(1+ 612 + 3t4) ht]  
16h6 

and 
0 8  u? = - 45 [ (2 + 0 + 3 + 2 + 8 + ") + (? - 2) 5'+ (-- 4 - -) 16 E3 8h6t 2 4 6 4 16 3 6 Z  2 4 

2 + (-? 6 - 2) 36 t5 + i ~ h ~ t  ;t3ht+ s t 5 h ~ ]  

- - 

) ]  . (2.67) 
28 16 +--- 5 1 - 6  10 26 +--- 

n n - 1  n - 2  n - 3  n - 4  n - 5  n=7 

We can continue this process to any desired order. It is simpler to automate the process by coding 
it into a computer program, rather than to write out the expressions explicitly. 

2.9 Fitting of Boundary Conditions 

2.9.1 General Procedure 

We now have a set of 'basis' functions in terms of which to express the potentials V and A4 and the 
fields E,, etc. To determine the potential and fields for a given system, we need a procedure to fit 
the boundary conditions for that system. Such a procedure is of particular interest for the fitting 
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of analytical functions, i.e. z;y8, to experimental measurements of magnetic fields taken using Hall 
probes, etc. However, it is simpler, for pedagogical purposes, to treat examples where we fit only 
the electrostatic potential to specified boundary conditions. This means that we need treat only 
the Uz functions. Fitting the electric or magnetic field, or the magnetic vector potential, involves 
basically the same procedure: we merely use UF instead of U:, whenever appropriate. 

@ 

For simplicity, I shall treat only Dirichlet boundary conditions, i.e. I shall assume the value of 
V is given on some surface which bounds the region where we wish to calculate V. Otherwise, if 
we are given the derivative of V, i.e. the electric field, we may need to use a mixture of UE and 
Ur functions. When the z a x i s  is straight, one can express an arbitrary potential, in a region that 
does not enclose any charges, as a s u m  of straight multipoles, using the Fourier series expansion in 
Eq. (2.6). When the z a x i s  is curved, we express the potential as a sum of curved multipoles (in a 
region that encloses no charges) via 

w 

(2.68) 
n=l 

where the 2, and 3, are constants, and have units of Volts/(meter),, just like the A, and B,, in 
Eq. (2.6). I have included an additive constant 30 as well, because 80 = V(O,O), the value of the 
potential at the origin, which is not zero in general. 

The coefficients A, and 3, are determined as follows. The boundary conditions tell us the value 
of V on some surface which bounds the region where we wish to calculate V. We select a set of 
points (zj, yj), i = 1,2, . . . N on this bounding surface, and obtain a set of simulaneous equations 

(2.69) 

for i = 1,2, -. e N. In the above equation, the unknowns are 2, and 3,. The value of V ( q ,  yi) is 
known. The total set of N equations is solved for 2, and &. In the special case of an expansion in 
orthogonal functions, we can let N + 00, and fit an infinite set of coefficients, and the s u m s  become 
integrals - this is implicitly the procedure one uses to detennine the a, and b, coefficients of the 
Psin(n0)  and rncos(nO) multipoles in Eq. (2.5). The “bounding surface” is a circle of radius 
T,,,,. Unfortunately, the curved multipoles vc,s in Eq. (2.68) are not orthogonal (or, strictly 
speaking, I have not found a suitable weight function with respect to which they are orthogonal). 
Hence the solution of Eq. (2.69) is more complicated. What one does, therefore, is to use only a 
finite number of multipoles in the sum in Eq. (2.69). We choose N to be a large but finite number, 
and perform a least-squares fit to determine the 2, and .8,. Note that the value of N must equal 
or exceed the number of coefficients being fitted. Note also that, in general, this procedure yields 
only approximate values for 2, and 3,. We can illustrate the above ideas by treating some model 
examples below 

w - -  - -  
80 + B, Vz(zi, ~ i )  t An Vi(zci, yi) = V(zi, yi) 3 

0 
n=l 

First, however, let us digress briefly to discuss the important problem of fitting a set of multipoles 
to experimental magnetic field measurements. Typically, for a dipole magnet, one measures the 
vertical component of the magnetic field in the magnet midplane, i.e. one obtains a set of values 
for B,  as a function of z. Far away from the ends of a magnet, the field does not depend on z. 
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The structure of Laplace’s equation guarantees that, if B, is independent of z, a knowledge of 
B,  = By(x,y = 0) is sufficient to determine Bbl(z,y) completely. Hence one expresses B,,(z,y) 
as a polynomial in x and y, which satisfies Laplace’s equation, and fits the coefficients of the 
polynomial to the experimental data (for which y = 0), using a least-squares fit. To express the 
field using curved mdtipoles, we simply expand B, as a s u m  of curved multipoles, and this time 
the least-squares fit gives the coefficients of the curved multipoles. There is no “bounding surface” 
in this case, instead we fit to data in the magnet midplane. Otherwise there is no difference to the 
procedure described above for calculating the electrostatic potential V using Dirichlet boundary 
conditions. 

e 

2.9.2 Dipole 

The first example I shall treat is a horizontal dip01 The system consists of two vertical cylindrical 
plates which extend to f m  in the vertical direction, as sketched in Fig. 1. The inner plate is at 
p = pu - a, or 1: = -a, and the outer one is at p = po + a, or 1: = a, since z = 0 is at p = PO. The 
boundary conditions are V = -VO at z = -a and V = VO at 1: = a. 

It is good to study this system fist  because we know that the solution is exactly expressible 
using only two curved multipoles, viz. the curved dipole term qT plus a constant vg, i.e. 

V = A + B h ( l + h x )  = A f B h t  = A V , , + B h T r ,  (2.70) 

where A and B are constants, not related to the A, and B, above. Hence we can check the 
accuracy of the least-squares fitting procedure in Eq. (2.68) because we know the exact answer. It 
is relatively simple to show that the exact solution for the potential is 

1 + hx 1 + ha 
1 - ha 

(2.71) 
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1.e. 0 (2.72) 2VO B =  ln(1 - ha) + ln(1 + ha) 
A = VO ln(1 - ha) - In(l+ ha) ' ln(1 f ha) - In(1- ha) * 

We use eleven terms in Eq. (2.68), i.e. we put 

(2.73) 

Let us put a = 5 cm, po = 1000 cm, and VO = lo4 Volts. For the points (1:j,yi), we fit to 21 
points on each plate, so N = 42 and we put yi = (i - 11)/2 cm at 1: = -a, for i = 1, . . . 21 and 
yi = (i - 32)/2 cm at 1: = a, for i = 22, . . . 42, so -5 5 y 5 5 cm on each plate. The resulting 
values of the coefficients are shown in Table 1. We f h d  that only the constant and dipole terms, 
viz. and gl, are significantly nonzero, as expected. Further, one can easily verify that the 
values of 30 (= A )  and 51 (= Bh = B / p )  agree with the exact analytical values determined from 
Eq. (2.72), using the numerical values for Vo, a and po quoted above. 

Table 1 

Multipole Normal Skew 

0 0.3515Ef01 0.0000Et00 
1 0.2000Ef03 0.52833-30 
2 0.64873-31 -0.22653-32 
3 -0.28923-32 -0.83843-32 
4 -0.47773-33 0.97183-34 
5 0.34783-34 0.31813-34 

2.9.3 Torus with cos(28) Potential 

Let us now consider a more complicated system, but where we still know the exact answer when 
the I a x i s  is straight. Consider a cylinder of radius a, and suppose the potential on the surface of 
the cylinder is given by V = Vu cos(28), where z = T cos 8 and y = T sin 8 and T = a on the surface 
of the cylinder. Then we know that, if the longitudinal or z a x i s  of the cylinder is straight, the 
potential inside the cylinder is an exact quadrupole: 

v = - 7  vo 2 cos(2e). (2.74) 

Now suppose that the z axis is bent in a circle of radius po, so that the cylinder forms a torus, but 
the potential on the surface is still given by VO cos(28), as sketched in Fig. 2. 

a2 
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We do not know the exact solution for the potential in this case, but we expect that it will 
be dominated by the curved quadrupole term v;. We again put a = 5 cm, po = 1000 cm, and 
Vu = 10‘ Volts. This time we use twenty-three terms in Eq. (2.68), i.e. we put 

a 
(2.75) 

n=l  

We fit to 100 points spaced equally around the circumference of the cylinder, in the (qy) plane. 
The resulting values of the coefficients are shown in Table 2. As expected, we find that the largest 
term is the quadrupole. In fact, the coefficient of the quadrupole is exactly Vola2 = 10“/25 = 400, 
which shows that the effects of curvature are small in this case. There are also distinctly nonzero 
constant and dipole terms because the curvature of the z a x i s  shifts the origin of the quadrupole 
away from the center of the cylinder, and a sextupole term because of the curvature of the z axis. 
It is encouraging that the coefficients of the higher order multipoles rapidly become very small, to 
the extent of being negligible. This shows that we have used an adequate number of multipoles in 
the s u m  in Eq. (2.75). As expected, the coefficients of the skew multipoles are very small. 

Table 2 
~ 

Multipole Normal Skew 

0 -7.81263+01 0.0000E+OO 
1 2.5000 1.05883-10 
2 400.0000 -2.77073-13 
3 3.33343-02 -2.05443-12 
4 -4.16673-06 -5.73603-13 
5 1.56263-09 -4.37263-14 

6 -3.94373-13 1.51583-14 

7 -2.60993-16 -1.01063-15 

8 ~ 4.01043-20 -8.04433-17 

9 -2.08603-22 9.08083-21 

10 -2.99243-25 -6.798 1E-25 

11 5.05423-29 -1.02683-26 

We cannot compare to an exact solution, so we must use some other method to determine 
the goodness of the least-squares fit. Note that, since we have used only a finite sum of curved 
multipoles, and we have fitted to only a finite number of points, the value of V in Eq. (2.75), on 
the surface of the cylinder, will not be exactly Vo cos(2B). We can plot the difference, say vbc - Vjs 
against 8,  where “bc” means “boundary condition” and “2s” means “least-squares.” The resulting 
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graph is shown in Fig. 3. We see that the difference between GC and fis is of 0(10-'3) Volts. 
RecaJling that Ifi,l = O(10") Volts, this is an excellent fit to the boundary conditions. a 

In the above calculation, we put a = 5 cm and po = 1000 cm, which means that alp0 = 0.005, 
so the effects of the curvature of the z axis were not in fact very large. Let us deliberately increase 
the curvature effects by repeating the calculation with po = 50 cm, and a = 5 cm and VO = lo4 
Volts as before. We again use twenty-three terms, as in Eq. (2.75). The values of the coefficients of 
the multipoles are shown in Table 3. This time the coefficient of the quadrupole is 399.8327 which 
is slightly different from Vola2 = 400, which shows that the curvature of the z axis has indeed 
modified the quadrupole coefficient. We again investigate the goodness of the least-squares fit by 
plotting Kc - fis against 8, in Fig. 4. We fhd  that (Gc - fisJ = 0(1O-l2) Volts for Ificl = 0(104: 
Volts, which is again a good fit. Hence we see that, even when the effects of curvature are of ordei 
alp" = 5/50 = 0.1, the use of the curved multipoles and the least-squares fitting procedure yields 
a good fit to the boundary conditions. 

Table 3 

Multipole Normal Skew 

0 
P 
2 
3 
4 
5 

6 

7 

8 

9 

10 

11 

-3.1355 
50.0889 

399.8327 
0.6684 

-1.6 7653-03 
1.25983-05 

-6.3 185E- 08 

5.27693-10 

-3.30773-12 

2.90083-14 

-2.03653-16 

1.83113-18 

0.0000E+OO 
3.38863-14 
1.78193-14 

-2.58283-15 
-4.936lE-16 

1.6598E-16 

1.12903-16 

7.05033-18 

1.02553-18 

2.94873-19 

5.383 73-20 

4.977173-21 
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2.9.4 Quadrupole Plates in Vacuum Chamber e 
Let us now consider a more realistic example, and one where we do not know the exact answer even 
when the z a x i s  is straight. Consider a vacuum chamber of square cross-section, with four plates 
inside, as sketched in Fig. 5. The potential is Vo on the top and bottom plates and -Vo on the 
right and left plates, where Vo = 10* Volts, and the vacuum chamber is at ground. 

The setup forms an electrostatic quadrupole. However, there will be higher order terms present, 
even when the z axis is straight. A geometry similar to this is being considered for the muon storage 
ring in the muon g - 2 experiment at Brookhaven National Laboratory. We put PO = 1000 cm. The 
distance from the center of the vacuum chamber to each plate is a = 5 cm. The plates have widths 
of 6 cm each. The “bounding surface” in this case consists of the surfaces of the plates, because we 
are only really interested in the region “enclosed” by the four plates. We fit to 50 points on each 
plate, spaced equally along the length of the plates, making N = 200 points in all. Note that this 
time, the bounding surface does not completely enclose the region where we wish to calculate the 
potential, and furthermore, we are ignoring the wall of the vacuum chamber, which is at ground. 
We use twenty-nine terms in the sum, i.e. we put 

1 4  

(2.76) 
n=l 

The values of the coefficients are shown in Table 4. In Fig. 6, we plot Vbc - fia on the right, 
top, left and bottom plates, for 200 points spaced equally along each electrode, so i = 1,2,. . . ,200 
on the horizontal a x i s  denotes the points on the right electrode, i = 201,202,. . . ,400 denotes the 
points on the top electrode, and so on for the others. We see that this time l vbc  - V,,l oscillates 
with an amplitude of about 5 Volts, and we also see a Gibbs-like phenomenon at the edges of the 
plates, which is to be expected since the potential changes abruptly there. The agreement with the 
boundary conditions is still good, although less impressive than in the previous examples. 



Table 4 

Multipole Normal Skew 

0 -2.08083-02 0.0000 

1 -3.3759 1.66123-07 

2 -437.1907 -2.19793-10 

3 

4 

5 

6 

7 

8 

9 

10 

11 

-2.13463-02 

-5.6687E-06 

1.00323-03 

6.73473-02 

8.08 143-06 

2.78643-09 

-2.20203-07 

-1.41233-05 

-1.88 13E-09 

5.9 1363-09 

-8.07563-13 

-1.60113-10 

1.76 76E-13 

-4.27993-12 

3.85773-16 

1.12933-13 

-7.38873-17 

4.01903-15 

12 -2.98853-1 3 3.6831349 

13 5.25513-11 -7.87073-18 

14 3.03953-09 6.65193-20 

There are some obvious limitations as to how good a fit we can expect, the most notable of 
which are that we have ignored the outside wall (the vacuum chamber) in the fit, and the bounding 
surface does not fully enclose the domain of the multipole expansion. Hence the solution in this case 
is only valid if the outside walls (which are at ground) are far away from the electrodes, otherwise 
they will strongly perturb the potential in the gaps between the electrodes. Hence we cannot expect 
to fit the boundary conditions to as good a level as in the previous models. In particular, we should 
divide the entire interior region of the vacuum chamber into sections, with a different multipole 
expansion in each region, and fit them all simultaneously to the total boundary conditions. A 
program such as POISSON can solve Laplace’s equation for such a system. Hence one can, if desired, 
use POISSON to calculate the potential as a function of (z, y) coordinates, i.e. V&jsson(z, y), and 
then fit the s u m  of curved multipoles to this function, where the (z;, yi) points need not be on the 
surfaces of the electrodes anymore, but can be distributed throughout the domain of the multipole 
expansion. This is analogous to the use of a s u m  of multipoles to fit to experimental magnetic field 
measurements in a magnet, as described above. 
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3 Conclusion d) 
I have described a set of functions, which I have called curved multipoles, to generalize the straigk 
multipoles, or Fourier harmonics, pn cos(n8) and pn sin(n0). The new functions satisfy Laplace’ 
equation in two dimensions when the third or z axis is curved in a circle of radius PO. Hence th 
functions depend on o, y and po. I have given curved multipoles for both the electrostatic scala 
potential V and the magnetic vector potential A4, and also the components of the electric an 
magnetic fields E,, E,, B,, and B,. Finally, I described how to use these functions to fit th 
boundary conditions in a few model examples, to demonstrate the use of these functions. 
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Appendix a 
A Alternative Formalisms 

A.1 Homogenous Polynomials 

Dragt and co-workers [l] have treated the problem of combined function dipole, hence they solve 
for the vector potential Ad. The reference axis is curved in a circular arc, hence the quadrupole 
and sextupole, etc. components of the field will induce higher order terms due to the curvature. 
Their method is briefly described below. 

Their starting equation is 

and new variables 5 and 7.1 are introduced via p = po + 5 and y = 7. Further, define f(t, 7) = pA,p. 
Prom this we obtain 

[ ( P 0 + O ( $ + & )  -4 f = 0 -  

Following Dragt et al. [l], f is expanded in homogenous polynomials U, of degree n in 6 and 7, via 

The Un's here are not related to the Un(z) functions in the main body of the text. Substitutint 
into Eq. (A.2), and equating terms of like degree yields 

Next, we decompose 
U n  = p n  t S n  7 

(A.4: 

(A.5: 

where Pn is a particular solution of Eq. (A.4), to be determined below, and S, is a solution of thf 
homogenous equation 

(A.6: 

Thus Sn = Zrtrn sin(n6) + &nrn cos(n6), where Zn and gn are constants, and 4 = T cos 0 and 77 = 
T sin 6. Hence S,, is the general solution in the absence of curvature, and P, contains the extr: 
terms induced by the nonzero curvature of the z axis. 

The calculation of P, is described in Ref. [l]. Starting from, say, the quadrupole 
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A particular solution for this is given by 

The solution is chosen so that P3 has no term that varies like 38. This makes it orthogonal to 
$5. In general, we choose Pn such that it will have no term which varies like ne, hence it will be 
orthogonal to S,. This criterion makes the solution for Pn unique. For example, putting 

- - 
s3 = --(6 b3p0 3 -36q2)+ 7j- U3Po(3pq - q3) (A.10) 

3 
yields 

the solution for which is 

(A.12) 

We see that P4 has no term which varies like 46. One can continue this to derive expressions for 
Pr;, PG, etc. up to any desired order. 

A.2 Two-Dimensional Power Series 

A method of calculating the coefficients for a scalar potential, when the z axis is curved, has also 
been given by Berz 123, who includes the possibility of z dependence in the potential. The method 
is briefly described here. As pointed out by Berz [2], the method is also applicable to magnetostatic 
problems, since a - B' = x I? = 0, hence B' can be derived from a scalar potential. We start with 
Eq. (2.9), and put 

(A.13) 
Om yn 0 0 0 0  

v = amn(z) * 
m=O n=O 

Then, using primes to denote derivatives with respect to z, 

(A.14) 
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and so 
h'x dV - 1 a2v 

I + hx a22 (1 + hz)2 at - (A.15) 

We substitute this into Eq. (2.9), and multiply throughout by (1 + h ~ ) ~ ,  which yields 

a a2V a2V av 

a2V OV d2V d2V 

0 = (1 + hx)2- [(I + h x p ]  dX + (1 + hx)3- + (1 + hx)- a t 2  - h'z-, 0% 
O X  

dV 
h'x-. (A.16: = (1 + hz)3= + h ( l +  hx)2- a x  + (1 + hz)3- aY + (1 + hx)- aa2 - az 

Hence 
xm-2 n Y 
(m - 2)!n! 

0 = (1 + 3h0 + 3h2x2 + h3x3) a m n  
mn 

xm yn-2 
+(1+ 3hz + 3h2x2 + h3x3) amn 

mn m!(n - 2)! 

xm yn xm yn 
+(l+ h X ) C & ,  - + h'XCu;, -. 

mn m!n! inn m! n! (A.17 

We collect terms in xm yn, and multiply by m!n!, which yields 

a, n+2 = - mhk-l + mh'a,-1 

- [ am+2 n f (3m l)ham+l n 3mham-1 n+2 

+m(3m - I)h2amn + 3m(m - 1)h2am-2 n+2 

+m(m - 1)3h"Um-l  + m(m - I)(?% - 2)h3am-sn+2 ] , (AS8 

which can be used to calculate am n+2 in terms of other coefficients with smaller values of m and/o 
n. It is understood that a coefficient vanishes if either of its indices takes a negative value. 

The above recursion relation simplifies considerably if the potential, and the curvature h, art 

(A.19 

This method will yield a solution for V as a s u m  of terms of the form xm yn, i.e. a polynomial o 
power series in two variables, as opposed to a multipole-type expansion. One can, if desired, grou] 
the terms so that m + n adds up to a constant within each set, i.e. 

independent of t .  Then we use Eq. (2.10), and we find 

a m  n+2 = -am+2 n - (m + l ) h a m + ~  n - mharn-1 n+2 - 

(A.20 
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in which case V will be a s u m  of homogenous polynomials of degree k9 (= 0,1,2,  e .) in z and y. 
In the limit of zero curvature, h ---f 0, the polynomials will reduce to the usual multipoles, as listed 
in Eq. (2.3). 
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